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1) and Marcel Teleucă
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1. Introduction and Notations

A graph G on n vertices is complete if for any two vertices of G there exists
an edge of G connecting these vertices. The complete graph on n vertices is denoted

by Kn and has
n(n − 1)

2
edges. A graph G is bipartite if there exists a partition of

its set of vertices V (G) = A ∪ B, A ∩ B = ∅, such that every edge connects some
vertex in A to some vertex in B. A bipartite graph is complete bipartite if it contains
all edges {a, b} such that a ∈ A and b ∈ B. If |A| = p and |B| = q, the complete
bipartite graph is denoted by Kp,q and has pq edges.

Definition 1. A complete bipartite graph K1,n is called a star graph.
Definition 2.Let G be a graph on n vertices F1, F2, . . . , Fn. A graph D(G) is

called the doubling of the graph G if the following conditions hold
i) The graph D(G) is on 2n vertices A1, A2, . . . , An and B1, B2, . . . , Bn.
ii) If there exists an edge FiFj in the graph G, there exist edges AiBj and AjBi

in the graph D(G).
Definition 3. A graph that does not contain complete subgraphs on k vertices

is called a k-free graph.

2. The Applications

2.1. Some Starting Problems
Let us begin with a simple problem.
Problem 1. Find the maximal number of edges of a graph G on m ver-

tices, which does not contain star subgraphs on n vertices (not necessarily induced
subgraphs).

Solution. If n > m, there can be no subgraph on n vertices. The maximal

number of edges of G is thus
m(m − 1)

2
.

If m ≥ n, suppose the degree of a vertex A is at least n − 1. Then the vertex
A and any n − 1 of the vertices adjacent to A form a star subgraph on n vertices.
Suppose then the degree of every vertex is at most n−2. Then the graph G obviously
does not contain any star subgraphs on n vertices. Thus a graph contains a star
subgraph on n vertices if and only if there exists a vertex of degree at least n − 1.

Is it always possible to find a graph with degree of any vertex at most n − 2?
Arrange the vertices in a circle. Let us consider 3 cases.
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Case 1. n is even. Join any vertex A to
n − 2

2
vertices left to A and

n − 2
2

vertices right to A. The degree of any vertex will be equal to n − 2. Therefore the

maximal number of edges will be equal to
(n − 2)m

2
.

Case 2. n is odd and m is even. Join any vertex A to
n − 3

2
vertices left to

A and
n − 3

2
vertices right to A. Because m is even, for every vertex A there is an

opposite vertex on the circle. So join any vertex A to its opposite vertex.
Case 3. n is odd and m is odd. If the degree of every vertex would be equal

to n−2, the sum of degrees of all vertices would be equal to (n−2)m. This number
is odd, but it must be equal 2× number of vertices. Thus all vertices can’t have
degree n− 2. Case 1 implies that we can add edges to the graph in such a way that
every vertex will have degree n− 3. Recall that n− 3 ≤ m− 3 < m− 1. Let’s assign
numbers to all vertices on the circle. Then because of procedure of joining vertices
in case 1, no vertex with number k will be connected to the vertex with number

k +
m − 1

2
. If we connect the vertices with numbers 1, 2, . . . ,

n − 1
2

to the vertices

with the numbers 1 +
n + 1

2
, . . . , n, we will get the graph with all vertices of degree

n− 2 and one vertex of degree n− 3. This means that the maximal number is equal

to
(n − 2)m − 1

2
.

Therefore the answer is equal to max
(

m(m − 1)
2

,

[
(n − 2)m

2

)]
. �

We continue with a more difficult problem.
Problem 2. Find the maximal number of edges of a graph G on n vertices,

which does not contain triangles (K3).

Solution. We claim the maximal number of edges is equal to
[
n2

4

]
. The proof

is by induction on the number n of vertices. For n = 1 and n = 2 the result is trivial.
Suppose n > 2. Assume the graph has an edge AB. Since the subgraph

determined by the other n−2 vertices does not contain triangles, using the induction

hypothesis we find that the number of its edges is at most
[
(n − 2)2

4

]
. Let C be a

vertex different from A and B. Because the graph G does not contain triangles, it
contains at most one of the edges AB and AC. Thus the number of edges with one
end in {A, B} and with the other different from A and B is at most n − 2. Note
that we must also count the edge AB. Thus the number of edges of the graph G is
at most [

(n − 2)2

4

]
+ (n − 2) + 1 =

[
(n − 2)2 + 4(n − 2) + 4

4

]
=
[
n2

4

]
.

The graph K[n
2 ],[n+1

2 ] is an example of a graph with
[
n2

4

]
edges. �

2.2. Theoretical Results
The above problem is a particular case of Turán’s theorem. To prove this

useful theorem we need Zarankiewicz ’s lemma.
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Lemma (Zarankiewicz). If G is a k-free graph, then there exists a vertex

having degree at most
[
k − 2
k − 1

n

]
.

Proof. Assume the converse. To prove the statement we need some notations.
Consider an arbitrary vertex V1. Denote by Ai the set of vertices adjacent to Vi.

Let x be equal to
[
k − 2
k − 1

n

]
. By the assumption, we get:

|A1| >

[
k − 2
k − 1

n

]
> 0.

Hence there exists V2 ∈ A1. By the assumption |Ai| > 1 + x for any i. Furthermore
we have:

|A1 ∩ A2| = |A1| + |A2| − |A1 ∪ A2| ≥ 2(1 + x) − n > 0.

Hence there exists V3 ∈ A1 ∩ A2. Then we get:

|A1 ∩ A2 ∩ A3| = |A1 ∩ A2| + |A3| − |(A1 ∩ A2) ∪ A3| ≥
≥ (2(1 + x) + (1 + x)) − n = 3(1 + x) − n > 0.

Continuing in the same way we see that the for any i∣∣∣∣∣
j⋂

i=1

Ai

∣∣∣∣∣ ≥ j

(
1 +

[
k − 2
k − 1

n

])
− (j − 1)n.

For i = k − 1:∣∣∣∣∣
k−1⋂
i=1

Ai

∣∣∣∣∣ ≥ (k − 1)
(

1 +
[
k − 2
k − 1

n

])
− (k − 2)n > 0.

Therefore, there exists a vertex Vk ∈
k−1⋂
i=1

Ai.

In this case the vertices V1, V2, .., Vk form a complete graph with k vertices.
Hence the graph G is not k-free. The contradiction completes the proof.

Now let’s prove Turán’s theorem.
Theorem (Turán). The maximal number of edges of a k-free graph with n

vertices is [
k − 2
k − 1

· n2 − r2

2
+
(

r

2

)]
,

where r is the remainder of n when divided by k − 1.
Proof. The proof is by induction on n. Assume the result true for all k-free

graphs having at most n − 1 vertices.

Using Zarankiewicz ’s lemma we can pick a vertex with at most
[
k − 2
k − 1

n

]
adjacent vertices. The subgraph determined by another n − 1 vertices is k-free by
the inductive assumption. Hence the number of edges is at most[

k − 2
k − 1

n

]
+

k − 2
k − 1

· (n − 1)2 − s2

2
+
(

s

2

)
,

where s is the remainder of n− 1 when divided by k − 1. Let us consider two cases:
s = k − 2, r = 0; and r = s + 1.
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For both cases we check that:[
k − 2
k − 1

n

]
+

k − 2
k − 1

· (n − 1)2 − s2

2
+

s2 − s

2
=

k − 2
k − 1

· n2 − r2

2
+

r2 − r

2
.

This completes the proof. �

2.3. Some More Problems We continue with a similar problem.
Problem 3. Find the maximal number of edges of a graph that does not

contain two triangles with a common edge.
Ssolution The complete bipartite graph K[n

2 ],[n+1
2 ] satisfies the conditions

of the problem. Hence we want to prove that the maximal number is equal to[
(n − 1)2

4

]
. We can rewrite the condition of the problem in the following way: for

any 4 points the number of edges connecting these points is at most 4. It is easy to
see that this condition is equivalent to the condition of problem.

The proof is by induction on n. For n = 1, 2, 3, 4 there is nothing to prove.
Suppose that for any graphs with a number of edges smaller than n the inductive
assumption was proved. Let us consider two cases.

Case 1. There are no 4 points in the graph having exactly 4 edges connecting
them. In this case we can add at least one more edge to the graph while the condition
remains satisfied. Hence the number of edges is not maximal.

Case 2. There are 4 points A, B, C, D such that the edges AB, BC, CD,
DA are connecting them. Therefore the number of edges connecting these points is
equal to 4. By inductive assumption we have that the number of edges connecting

the other n − 4 points is equal to
[
(n − 4)2

2

]
. Let’s find the maximal number of

edges connecting one of the points A, B, C, D to one of the other points.
Let E be a vertex different from A, B, C, D. Suppose that E is adjacent to

at least three points from the set {A, B, C, D}. Without loss of generality we may
assume that these points are A, B and C. Then there are 5 edges joining the points
A, B, C, E: EA, EB, EC, AB and BC. Thus we get a contradiction.

It follows that a point E different from A, B, C and D cannot be adjacent to
more then two points from the set {A, B, C, D}.

Therefore the maximal number is equal to:[
(n − 4)2

4

]
+ 2(n − 4) + 4 =

[
(n − 4)2 + 2 · 4 · (n − 4) + 42

4

]
=
[
n2

4

]
.

This completes the proof. �
The following problem was proposed at IMO 2003.
Problem 4. Let A be a 101-element subset of the set

S = {1, 2, . . . , 1000000}.
Prove there exist numbers t1, t2, . . . , t100 in S such that the sets:

Aj = {x + tj | x ∈ A}, j = 1, 2, . . . , 100

are pairwise disjoint.
Solution Let a1 < a2 < · · · < a101 be the elements of A.
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Let G be a graph with S the set of its vertices, having an edge between
vertices i and j if and only if the sets B = {a1 + i, a2 + i, . . . , a101 + i} and C =
{a1 + j, a2 + j, . . . , a101 + j} are disjoint. The graph has 1000000 vertices. For an
arbitrary vertex k to be joined with l, k−l should not be equal to any of the numbers
ai − aj (i ≥ j). Obviously, there are 101 · 100 of the numbers ai − aj (i ≥ j). Thus
any vertex x has degree at least 1000000− 101 · 100 .

Therefore the graph G has at least
1000000(1000000− 101 · 100)

2
edges. The

problem asks to prove that there is a 100-clique in the graph. By Turán’s theorem,
there is a k-clique in a graph with n vertices if the number of edges is strictly greater
than

M(n, k) =
k − 2
k − 1

· n2 − r2

2
+

r(r − 1)
2

,

where we have taken r to be the remainder of n when divided by k − 1. In our
case n = 1000000, k = 100 and r = 1. We can check that the number of edges
10000002

2
− 100 · 101 · 1000000

2
is greater than M(1000000, 100) =

98
99

· 999999999999
2

and thus we are done. �
We continue with a problem from BMO 2008 Shortlist that can be solved using

Turán’s theorem.
Problem 5. In some country there are n ≥ 5 cities operated by two airline

companies. Every two cities are operated in both directions by at most one of the
companies. The government introduces a restriction that all round trips that a
company can offer should have at least six cities. Prove that there are no more than[
n2

3

]
flights offered by these companies.

Solution. Consider the graph G with n vertices representing connections be-
tween them operated by two companies. The condition of the problem is equivalent
to the fact that there do not exist circuit subgraphs C3, C4, C5. Assume to the

contrary that there are at least
[
n2

3

]
+ 1 edges in the graph G. Using Turán’s

theorem we conclude there exists a complete subgraph K4 = {A1, A2, A3, A4} of the
graph G, with all its edges colored in two colors (blue and red). As there are no
circuit subgraphs C3, C4, C5 in G, the only possible coloring is the following: the
edges A1A2, A2A3, A3A4 are colored blue and A1A3, A2A3, A2A4 are colored red.

First of all we prove that we get contradiction for n = 5, 6, 7, 8. Extract from
the graph G four vertices A1, A2, A3, A4 of the subgraph K4 and observe that each
of the remaining n − 4 vertices has at most two connections with these 4 vetices. If
there will be three connections than two of them will be of the same colour and they
together will form with vertices of K4 will form the subgraphs C3, C4 of C5. There

are at most
(n − 4)(n − 5)

2
edges between n − 4 remaining vertices. Thus there are

in total at most:

6 + 2(n − 4) +
(n − 4)(n − 5)

2
edges of the graph G. But we can check that for 5 ≤ n ≤ 8 :

6 + 2(n − 4) +
(n − 4)(n − 5)

2
≤ n2

3
.
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So the statement is true for n = 5, 6, 7, 8.
Now we prove it by mathematical induction, using the above result as a base

case. We apply the same idea. We assume the contrary and find the subgraph K4

whose existence ensured by Thuran’s theorem. By the induction hypothesis there

will be no more than
n2

4
edges between the remaining n − 4 vertices. Thus in the

graph G there will be at most 6 + 2(n − 4) +
(n − 4)2

3
edges.

But for n > 8:

6 + 2(n − 4) +
(n − 4)2

3
≤ n2

3
⇔ 6n − 12 + (n − 4)2 ≤ n2 ⇔ 4 ≤ 2n.

We get a contradiction and thus we are done. �
Further we will prove a lemma which can be used in many problems and at

the same time is interesting in itself.
Lemma. Let G be a graph with v vertices a1, a2, . . . , av. Suppose it does not

contain a complete bipartite subgraph Km,n. Denote by di the degree of the vertex
ai, and denote by d the arithmetic mean of the degrees of all vertices. Then the
following inequalities hold

v∑
i=1

m−1∏
j=0

(di − j) ≤ (n − 1)
m−1∏
j=0

(v − j);
m−1∏
j=0

(d − j) ≤ (n − 1)
m−1∏
j=0

(v − j).

Proof. i) Consider D(G) - the doubling of the graph G. We claim a graph G
contains a bipartite compete subgraph of the form Km,n if and only if the doubling
of the graph also contains a complete bipartite graph of the form Km,n.

Denote by F1, F2, . . . , Fv the vertices of the graph G and denote by A1, A2, . . . ,
. . . , An, B1, B2, . . . , Bn the vetices of the graph D(G). Suppose that graph G con-
tains a complete bipartite subgraph with the points Fi1 ,Fi2 , . . ., Fin , Fj1 , Fj2 , . . . , Fjn .
Hence the points Fi1 , Fi2 , . . . , Fin are adjacent to the points Fj1 , Fj2 , . . . , Fjn . By the
definition of doubling graph the points Ai1 , Ai2 , . . . , Ain are adjacent to the points
Bi1 , Bi2 , . . . , Bin . Thus we get a complete bipartite graph. Similarly we can prove
the inverse.

Let Si be the set of vertices adjacent to the vertex Bi. Then Si has di elements.
It follows that the doubling of the graph G doesn’t contain complete bipartite graphs
of the form Km,n. Because we don’t want to get a complete bipartite graph of this
form in the D(G) the number of the sets Si containing all m arbitrary vertices
Ai1 , Ai2 , . . . , Aim must be at most n− 1 . We can choose these m arbitrary vertices

in
(

v

m

)
ways. Hence the number of possible (m + 1)-tuples (Si, Ai1 , Ai2 , . . . , Aim),

where Si contains the points A1, A2, . . . , An, is at most (n − 1)
(

v

m

)
. On the other

hand Si contains di vertices. Hence it was counted
(

di

m

)
times. Therefore the

number of (m + 1)-tuples (Si, Ai1 , Ai2 , . . . , Ain) is equal to
∑(

di

m

)
. Therefore we
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have the inequality: ∑(
di

m

)
≤ (n − 1)

(
v

m

)
.

Multiplying both sides by m! we get:∑
di(di − 1) · · · (di − m + 1) ≤ (n − 1)v(v − 1)(v − 2) · · · (v − m + 1).

ii) Suppose that P (x) = x(x − 1) · · · (x −m + 1) For d ≤ m− 1 the inequality
is obvious. Let’s calculate the minimal value of the expression
ddsumP (di). We shall prove that the minimum is achieved when all variables are
equal. The inequality written in the form

∑
P (di) ≥ vP (di), or:

P (d1) + · · · + P (dv)
v

≥ P

(
d1 + · · · + dv

v

)
is similar to Jensen inequality. But the function P (x) isn’t convex. It is however
convex for x ≥ m − 1. Let’s try to replace the numbers d1, d2, . . . , dv with another
numbers in order to get rid of the numbers that are smaller than m−1. At the same
time we would like to keep the sum of the numbers unchanged.

Suppose that di and dj are numbers such that di < m − 1 ≤ d < dj . Let’s
observe that P (1) = P (2) = · · · = P (m − 1) = 0. The function P (x) is increasing
for x ≥ m − 1. Hence we get:

P (di) + P (dj) = P (dj) ≥ P (dj + di − m + 1) = P (di + dj − m + 1) + P (m − 1).

It follows that we can replace the numbers di and dj with the numbers at least
equal to m− 1: di + dj −m+1 and m− 1. We observe that the sum of the numbers
didn’t change. Continuing in the same way we will get a sequence of the numbers
bigger than m − 2. We can apply Jensen inequality to them.

The following two problems are applications of the above result.
Problem 6. Suppose that the two parts of a complete bipartite graph have

w and v−w vertices respectively. Suppose that this graph doesn’t contain complete
bipartite subgraphs of the form K2,n. Prove that the number of edges is at most
v +

√
v2 + 8(n − 1)(v − 2)w(v − w)

4
.

Solution. Denote by d1, d2, . . . , dw the degrees of first part’s vertices and denote
by S their sum. Obviously the sum of degrees of first part’s vertices is equal to the
sum of degrees of second part’s vertices. Using the lemma we get:

w∑
i=1

di(di − 1) ≤ (n − 1)(v − w)(v − w − 1) ⇔

⇔
w∑

i=1

d2
i − S − (n − 1)(v − w)(v − w − 1) ≤ 0.

It follows from a well-known inequality that:

w∑
i=1

d2
i

w
≥ S

w2
.

Using this result we get the following inequality:

S2 − wS − (n − 1)w(v − w)(v − w − 1) ≤ 0.
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By considering the second part we get a similar inequality:

S2 − (v − w)S − (n − 1)w(v − w)(w − 1) ≤ 0.

Adding these two inequalities we get: 2S2 − vS − (n− 1)vw(v − 2) ≤ 0. Solving this

inequality we get: S ≤ v +
√

v2 + 8(n − 1)(v − 2)w(v − w)
4

.

The number of edges is half the sum of degrees of vertices of the graph, but
the sum of degrees of vertices of a part is also half the sum of degrees of vertices
of the graph. It means that the number of edges is equal to the sum of degrees of
vertices of a part. Thus the number of edges is equal to S. It completes the proof
of the problem. �

Problem 7. Suppose that a graph with v vertices doesn’t contain a complete
bipartite graphs of the form K2,m. Prove the inequality:

v
(
1 +

√
1 + 4(n − 1)(v − 1)

)
4

.

Solution. Using the lemma we get an inequality for the average degree of the
vertices:

d(d − 1) ≤ (n − 1)(v − 1), d2 − d − (n − 1)(v − 1) ≤ 0.

Using this inequality we get d ≤ 1 +
√

1 + 4(n − 1)(v − 1)
2

.

Because the number of edges is equal to
vd

2
, we are done. �
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