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Abstract. Let f € C[X] with deg f > 2. If A is the generalized Frobenius
companion matrix of f, we apply several matrix inequalities to A2 and A3
to derive new bounds for the roots of f.
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1. Introduction
Let the polynomial

2

fnlx) =2" — az" =™t — - —ay_1x —ay, € ClX]

with a, # 0. We suppose that there are complex numbers by, bs,...b,_1,
c1,C2,...,Cpy such that

alp = C1,a9 = Cgbl, az — Cgblbg, e, Qp = Cnblbg e bn,1 (11)

and consider the matrix

0 by_1 0 - 0
a=|0 0 b O e (1.2)
Cp Cpn—1 Cp—2 C1

Then we have the equality (see [5], p. 43)
fn(x) = det(xI, — A),

which shows that the roots of the polynomial f,, are exactly the eigenvalues
of matrix A.

DProfesor, Bucuresti, rzamfir620gmail . com
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Type (1.1) decompositions are always possible. The simplest decompo-
sition is obtained when we choose

b1:b2:"':bn—1:15 Ck:akvkzlvna

and in this case the matrix A is the classical Frobenius companion matrix.
In what follows we call A given in (1.2) the generalized Frobenius companion
matriz corresponding to decomposition (1.1).

Using the standard notation, for A € M,,(C) we denote by o(A), r(A),
||A|| the spectrum, the spectral radius, and the spectral norm of A, respec-
tively. We recall the following well-known properties of the spectrum, spectral
radius, and spectral norm of A (see, e.g., [2]):

o(A) = {Xe€C: \is eigenvalue of A},
r(A) = max{|A\|: A€a(A)},
JAll = max{VX:xeo(aa)} =r(a*a)?,
where A* is the Hermitian adjoint of A. From matrix analysis we have the
well known inequality

r(4) < [l4]-
We need the following result due to Kittaneh ([4], p. 602):

Lemma 1. Let A € M, (C) be partitioned as
A Ax
A =
(A21 Az )’

where Aj; is an n; X nj matriz with n; +n; = n. If

. <HA11H ||A12H>
[A21] | Aozl

then we have the inequalities

r(4) < r(A),

i < ||4]

2. Main Results

In what follows we use A™, where m € {2,3}, to give new bounds for
the roots of f.
Case m = 2. Let
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be the generalized Frobenius companion matrix corresponding to decompo-

sition (1.1). Calculating, for n > 3 we obtain

0 0 bp—obn_1 0 0
0 0 0 bn—3bp—2 0
A2 = e . e ..
bicn, bicn—1  bicp—2 bicn—3  bicn—4
(0773 Qp—1 Op—2 ap—3 Qp—4

where oy = cic + bpcp+1, K = 1,n, and b, = cp41 = 0.
We write A2 as a sum of three matrices

A2=R+S+T,

where
0 0 0 0
0 0 0 0
R— . ’

0 0 0 0
Qp  Op—1 Op—2 aq

0 0 0 e 0

s=1| o 0 o - 0 |,
bic, bicp—1 bichn—2 - bicy
0 0 0 e 0

_ 0 Bn—2
= %)
and B,_9 = diag (bn_lbn_g, ceey bgbl) S Mn_Q(C).
An elementary calculation shows that we have
R*S=RT=S"R=ST=T"R=T"S =
From (2.3) we find
42" = ||(a)" 42

= |[(R+S+T)" (R+S+T|)

= ||[R*R+ S*S+ 17T

< RR[ A+ [1S™SI + 1TT) -

We calculate and get
IR R|| = [an]* + azl” + - - + |on[*,

15*S) = o1 (lea + leal? + -+ fea]?)

|IT*T| = max <|b1b2|2 [babs|2, ... \bn_gbn_1|2> .

bici
o

(2.3)
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Using these relations we find the inequality

142]* < max (Joabol? [babsl . bn-2bn-1[?)

- (2.4
+ 3 (Joul? + 101 1oy ). )
j=1
Since for every root z of the polynomial f we have the inequality
1/2
12| < || 422, (2.5)

the next theorem follows from (2.4) and (2.5).

Theorem 2. For every root z of the polynomial f we have the inequality
1

4

2 < [ max((bibal s a-sb )+ D0 (g 4 fbaf - les?)
j=1

Another way to establish new bounds for roots using A? is to partition

this matrix for n > 4. We choose by = by = --+ = b,,_1 = b > 0 and partition
A? as
A A
A? =
<A12 A22> ’
where
0 0 b2 0 0
0 0 0 b2 -0
A= --- EMnfl((C%
0 0 0 0 0
bcn bcn_l bcn_g bcn_g b01
0
0
Ap =1 : € M,1(C),
b2
bCl
A21 = (ana Qn—1,---, 062) S Cn_la
A22 =1 € C.
From Lemma 1 we obtain

Anll Az
A2y <, (A
) < <HA21H | Aoa|

,
1 2
5 (14w + sall + /(LA = [ 4n ) + 4 Avall - |41] )
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Next we need to evaluate all the above norms. Obviously, we have:

[ Ar2]| = by/b2 + |e1 [, (2.7)

J Aol = \/lasl?® + lasl® + - + anl?, (2.8)

| Azal| = [ (2.9)

We have a little bit more work to do in order to evaluate ||A;1|. If we
have a Hermitian matrix A; = (a;;) € M,(C) written in a partitioned form

as follows
Al - (A\:} . > )
¥ Gpn

where # € C"!, z* is the hermitian adjoint of = and :4: € M,_1(C), then
we find

det A; = a,,, det E —z* (adj ;ﬁ) T, (2.10)

where adj A; is the classical adjoint of A; (see [2], p. 175).
Using successively relation (2.10) and applying recursive reasoning, we
obtain

det ()\In—l — AIIAE) =
—A(A—p)" [A? = (b +a) A+ 1 (\cn_l\z + \cnm ;

where

n

2

a=>Y el
=2

From the last equation we immediately obtain

1
lAul® =5 [b2 (0" +a) + bQ\/(b2 +a)? — 42 (|cn_1|2 + |cn]2)] . (211)

We are able to give the next theorem.

n
Theorem 3. If z is a root of f, B = ||A11]|, and v = Z |a]| , then
j=2

we have the inequality

W YO rrmraw oy
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Proof. Within relation (2.6) we replace the norms provided by (2.7), (2.8),
(2.9), (2.11) and use inequality (2.5). O

Case m = 3. Let us now consider the third power of the matrix A.
Basic computations will show that for n > 4 we have

0 0 0 bp—3by_obn_1 0 e 0
0 0 0 0 bp—_4bp_3bp_o --- 0
A3 = 0 0 0 0 0 o0
bibacy, bibacn—1 bibacp—2  bibac,—3 bibacn—g -+ bibacy
biboay, biboan—1 bibaa,—2  bibaoy,—3 biboap—g -+ bibaoy
Bn anl 57172 an?) Bn74 te Bl
where
ar = cici + bgcpyt,
B = bicacy + bkbk+1ck+2 + crag

for k =1,n, and b, = by11 = cpy1 = cpya = 0.
We write A3 as a sum of four matrices

A=M+N+P+Q, (2.12)
where
0 0 0 - 0
0 0 0 0
0 0 0 0
671 /Bn—l Bn—Q 61
0 0 0 0
0 0 0 0
bia, brop—1 biay—2 -+ biog
0 0 0 0
0 0 0 - 0
0 0 0 0
P= bibac, bibacn—1 bibacn_o -+ bibacy € Mn(C),
0 0 0 0
0 0 0 0

o= (y ") e
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and T),—3 = diag (bn—3bn—2bpn—1,bn—4bp—3bp—2,...,b1babs) € M, _3(C).
We have the equalities

M*N = M*P=M*Q=N*P=N*Q=PQ=0. (2.13)
Using (2.12) and (2.13), we find
1437 = [(M+N+P+Q) (M+N+P+Q)|
|M*M + N*N + P*P + Q*Q||
< [MEM| + [N*NJ| + | P*P| + |Q* Q] -

Next we attempt to evaluate the four norms involving the matrices M,
N, P, and @) that appear in the last inequality above. We have

IMM = (B + 1B+ + (Bl

INNI = il (Jonl? + sl + -+ + )
IPPI = Joabof (Jeaf + leal” + -+ leal?)
1Q*Q| = max {|bpbgps1bria| : 1 <k <n—3}.

From the last four equalities we deduce now

9 n
4% < max {Ibbrsaberal} + D (186 + b2 ol + [brbol” )
- k=1

Since for every root z of f we have the inequality
3(|1/3
2l < [|4%]
we have proved the next theorem:
Theorem 4. For every root z of f, we have the inequality

n 1/6
< 2 2 2 2 2 ]
2] < <l<glgg_3<|bkbk+1bk+2\>+;(|ﬁk| + 11 el + [orol? fex?)

3. Applications

1) Let the polynomial f(x) = 2® + 2* — 222 + 1. Using the package
Mathematica, we find that the roots of f (rounded to 6 digits) are

z1 = —0.915974 — 1.071789z,
Z2 = Z1,
zg = —0.733892,

zg = 0.782920 — 0.269331¢,

25 = 24,
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therefore max {|z|: k =1,...,5} ~ 1.4099. If we choose

a
b1:...:b4:b:max{|ak|1/k:k::2,3,4,5} and CkZbel

and use Theorem 1, we obtain that for every root z of f holds the inequality

2| < v/12.23355 ~ 1.87.

Applying Theorem 1 with by = by = --- = b,_1 = 1 we obtain Corollary
2.2 from [4], which, applied to f, gives the weaker bound

2| < V18 ~ 2.0598.
We observe that if we apply Theorem 3 we find the bound

2| < V19.31725 ~ 1.638,

which is better than the bound given by Theorem 1.
2) Let the polynomials

fi = ad+221 4323 -z -1,
fo = zt—223 +42® —x 41,
fa = a5+2%+z+1,

fi = a®—4a* —32% -2z +1,
fs = a® -2 + 323 — 2z + 1,
fo = az*—22% 322 —dx+1.

In the next table we denote by M, M, and M the bound (correct to 3
digits) given by Theorem 1, Theorem 3 (both applied with by = --- =b,_; =

= b= max{|ag|'* : k= 2,3,4,5} and ¢, =

of the roots, respectively.

a
bk—fl) and the maximum modulus

Polynomial M, Mo M

fi 2.565 2.298 1.655
o 2.791 2.575 1.860
s 1.638 1.550 1.305
fa 4.675 4.671 4.661
fs 2.580 2.305 1.691
fo 2.781 2.715 2.648

We remark that in the case of f; the bound M is very close to M.
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We compare now the bound Ms with some classical bounds. Let

Me =1+ max < a0 , a e tn-1 ) (Cauchy’s bound),
an| |an an
ao > a1 |? a 2\ /2
Mcy = <1 SR [t R o (R ) (Carmichael-Mason),

an an an

a1 —ao|®  |az—ar|? an —a 2\ V2
My = <1 4| =20 CIt S (T et ) (Williams),

an an an
1/2 1/(n—-1) 1/n
Mp = 2max{ fn—1 , fn=2 ey @ , a0 } (Fujiwara [1]),
Qan an Qnp, 2a,

1 _
MjLr = 5 <1+ lai| + \/(|a1] — 1)2+46> , where 6 = max{|ag| : k=1,n}

(the bound of Joyal, Labelle and Rahman from [3] which improves the clas-
sical bound of Cauchy).
We have the results given in the table below.

Polynomial Ms Mgc Moy Mw Mjyrr Mp

fi 2298 4 4 3.741  3.302

f2 2575 5 4.795 8.717 3.561 4
f3 1.550 3 2.645 2828 2

fa 4.671 5 5567 7.071 4.791

fs 2305 4 4.358 6.928 4.791

fe 2.715 5 5.567 6.164 3.561 3.561
We remark that in every case the bound My is the best.
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Several discrete inequalities
D.ST. MARINEscul), M. Monea?, M. OpiNcARIU®), M. STROE?Y

Abstract. In this paper we present new conclusions for an open problem
proposed by Yu Miao and Feng Qi in [5] and obtain their results under
more general conditions.

Keywords: discrete inequality, Holder inequality.
MSC: 26D15, 28A25

1. Introduction

In [6] is considered an open question about an integral inequality. This
problem was solved in different ways in [1], [3] and [7]. A complete solution
for this problem can be found in [4]. But in [5], Yu Miao and Feng Qi propose
a discrete form of this problem:

Open Problem 1.1. For n € N*, let {z1,x2,..., 20}, {Y1,Y2,.-.,Yn} be
two sequences of positive real numbers satisfying x1 > xo > -+ > Tp, Y1 >
Y2 = -+ 2 Yn and

m m
ZwiSZyi for 1 <m <n.
i=1 i=1

Under what conditions does the inequality

n m
>yl <3 yt?
=1 =1

hold for a and (7

Several answers to this open problem are presented in the same article
or in [2]. In this paper we show new improvements of this discrete inequality
and find the results from [5] as a consequence of our work.

2. Some useful lemmas

In this section we present and prove some useful results. First, we recall
two well-known lemmas.

1>Coleg‘iul National ,Iancu de Hunedoara“, Hunedoara, Romania,
marinescuds@gmail.com

2)Colegiul National ,,Decebal“, Deva, Romania, mihaimonea@yahoo.com
3>Colegiul National ,Avram lancu“ Brad, Romania, opincariumihai@yahoo.com
4)Colegiul Economic ,Emanoil Gojdu“, Hunedoara, Romania, maricu_stroe@yahoo.com
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Lemma 2.1. (Abel) Let ay,as,...,an, by, ba, ..., by be real numbers. Then
n n—1 k
D aibi=) ( ai) (by — brg1) + (a1 + a2 + -+~ + an_1) by.
i=1 k=1 \i=1

Lemma 2.2. (Cauchy) Let z, y be two positive real numbers and a,b € [0, 1]
with a +b=1. Then

ax + by > 2%’

The next lemma is the starting point for all the results which follow in
this paper.

Lemma 2.3. Let ay,a2,...,ay,, bi,ba, ..., b, be real numbers with

k k
Zai < Zbi forall k€ {1,2,...,n}.
i=1 i=1

Let t1,ts,...,t, be some real numbers with t1 >ty > --->t, > 0. Then

k k
Zaiti < Zbiti forall k€ {1,2,...,n}.
i=1 i=1

k k
Proof. We evaluate the difference > a;t; — > b;t; using Lemma 2.1. We have
i=1 i=1
k k k
Z aiti — Zbiti = Z (ai — bz) ti
i=1 i=1 i=1

1 J J k k
= <Z a; — bi> (tj — tj+1) + (Z a; — Z bl') tr <0,
=1 =1 =1 =1

j=1 \i= =

k k
because, by hypotheses, >  a; < > b; for all k € {1,2,...,n} and t} > tx41
i=1 i=1
for all k € {1,2,...,n—1}. O
The next two lemmas are consequences of the previous result.

Lemma 2.4. Let z1,3,...,Tn, Y1,Y2,--.,Yn be positive real numbers with

k k
Zmi < Zyl forall k€ {1,2,...,n}.

i=1 i=1
If t1 > x9>--- >z, then

k k
Z:Uf < Zylﬁ forall p€[l,00) and all k € {1,2,...,n}.
i=1 i=1
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Proof. For f =11t is clear. If 8 € (1,00) then there exists « € (1, 00) with

Now

k k k
fo = Z:z:ia:f_l < Zyixf_l
i=1 i=1 i=1

from Lemma 2.3. Moreover,

k k /8 /& 1/a k /8 , k 1/
Suat e (Xo) () - (2w) (%)
i=1 i=1 i=1 i=1 i=1

from Holder inequality. We thus obtain
k k B /& 1/a
st (Yu) (3)
i=1 i=1 i=1
and after simplification

k 1/8 k 1/
(zxf) . (zyf) |
=1 =1

whence the conclusion follows. O

Remark. This result is more general than Lemma 2.3 from [5] because we
do not use the condition y1 > y2 > - -+ > y,,.

Lemma 2.5. Let x1,x32,...,Tn, Y1,Y2,---,Yn be positive real numbers with

k k
Za:i < Zyl for all k € {1,2,...,n}.
i=1 i=1

If yy <ya <--- <y, then

k k
fo‘ < ny‘ for a € (0,1] and k € {1,2,...,n}.
i=1 i=1

a—1

Proof. For o =1 it is clear. If a € (0,1) we apply Lemma 2.3 for t; = y;
and get

k k k
Doy =D it =Y wayt
=1 =1 =1

From Hélder inequality we obtain

k . k x? a(l—0) k . «a k X 11—«
S =y it < () (o)

1_
i=1 Y; i—1 Yi i—1
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and
-« k « k 11—« k
e (L) (L) < (S) () -
i=1 i i=1 i=1 i=1
Wthh concludes our proof. O

3. An answer for the open problem and other improvements

Now we present some discrete inequalities as consequences of the results
from the previous section.

Proposition 3.1. Let x1,x2,...,%n, Y1,Y2,--.,Yn be positive real numbers

with i i
Z Z forall k€ {1,2,...,n}.

Ilezmaz---z Tn, hen

k
I
=1

forall B>« and all k € {1,2,...,n}.

-
=<
o
&
@

Proof. We apply Lemma 2.4 for z; := %, y; := y{* and § := é O
e
Proposition 3.2. Let x1,x2,...,%n, Y1,Y2,...,Yn be positive real numbers

with
k k
Za:i < Zyl forall k€ {1,2,...,n}.
i=1 i=1

If $1>x2>--->3:n then

Zxa+'3<2x s forall >1, >0 and all k € {1,2,...,n}.

k
Proof. From Z z; < Z yi we get Z Z by using Lemma 2.4. Now
=1 =1 =1 =1
we apply Lemma 2.3 for a; := :c;B , b ;8 and t; := z§* and obtain the
conclusion. O

Now we are ready to present a more general version of the Open Pro-
blem 1.1. We also give a proof for this result.

Proposition 3.3. Let x1,x0,...,%n, Y1,Y2,...,Yn be positive real numbers

with
k k
Zmi < Zyl forall k€ {1,2,...,n}.
i=1 i=1
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If ©1>x9>--->x, then

k
Y oatyl <
=1

o forall B>1,a>0 and all k€ {1,2,...,n}.

S.
(]~
I
<
8

k k k k
Proof. From Y z; < > y; we obtain ) :J:f <> yf by using Lemma 2.4. If
i=1 i=1 i=1 i=1

we apply Lemma 2.2 we obtain

O ot B aths  ap
a+ﬁxl a+ﬁyl —xlyl
and
a+6 a+p
D DS S
From Proposition 3.2 we have
o &
- o, f atf
a+p Zz; b+ + 5 Z .
o k k
> a—l—ﬂ + atf el B
> g a+52y =) =i
and
B k o k
Q+5 > (1= & ﬁ
RO ( a+5); oyf,
which conclude the proof. O

Remark. Proposition 3.3 represents a more general result than Theorem
3.1 from [5] because we do not use condition y; > ya > -+ > yp.

Finally, we give two more results, similar with Propositions 3.1 and 3.2.

Proposition 3.4. Let 8 and x1,x2,...,Zn, Y1,Y2,---,Yn be positive real
numbers with

k k
Zaz? SZy;B forall k€ {1,2,...,n}.
=1

=1
If y1 <yo <--- <y, then

k k
fo‘ < ny‘ for all o € (0,8) and all k € {1,2,...,n}.
i=1 =1

Proof. Apply Lemma 2.5 for x; := xf,yi = yf and o := % O
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Proposition 3.5. Let x1,x2,...,%n, Y1,Y2,...,Yn be positive real numbers
with

k k
Za:i < Zyl forall k€ {1,2,...,n}.
i=1 i=1

7
Ifyn <ya <--- <y, then

k k
fo‘yiBSnyJﬁg for all a€ (0,1], <0 and all k € {1,2,...,n}.
i=1 i=1

k k
Proof. We are using Lemma 2.5 and the condition ) z; < > y; to get
‘ i=1

=1
k k
Z:EZCY < ny‘ for all a € (0,1].
i=1 i=1
For all 8 < 0 we choose t; := yiﬁ in Lemma 2.3 and obtain the conclusion by
applying this lemma for z; := z{' and y; := yf . O
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Problems with lattices defined by equivalence relations

VASILE Popl)

Abstract. Using some simple theoretical notions, such as equivalence rela-
tion, quotient set, lattice network, measure of a set, some difficult problems
of I.M.O. type are treated in a unitary approach. Some of the problems
presented here are related to Blichfeldt’s Theorem (1914) and Minkowski’s
Convex Body Theorem (1912).

Keywords: equivalence relation, quotient set, planar and spatial lattice
MSC: 11P21

1. Introduction

In the mathematical contests of I.M.O. or I.M.C. type for students, the
difficulties of the problems are not given by the complexity of the theoretical
notions, but by the lack of similarity to other problems and because much
creativity is needed for finding the solution. We give an example of such a
problem from the selection contests of I.M.O. Romanian team in 2008.

On the real line we consider a finite number of intervals with the sum
of their lengths smaller than 1. Prove that there exists a unitary division of
the real line (see Definition 2.15) which has no common points with these
intervals.

A nice solution is presented below: We divide the real line in segments
of length 1, we cut these unit segments and we put all of them over one of
them. The original intervals are, therefore, transposed on this segment and
since the sum of their lengths is smaller than 1, there exist some points on the
segment not covered by any interval. We choose such a point and construct
the unitary division with an extremity at this point. This division has no
common points with the initial intervals.

Some of the problems presented here are inspired by two theorems from
the geometry of numbers.

e Blichfeldt’s Theorem [1]. Any bounded planar region with area
greater than A placed in any position of the unit square lattice can be trans-
lated so that the number of lattice points inside the region will be at least
A+1

e Minkowski Convex Body Theorem [3]. A bounded convex region
symmetric about a lattice point and with area greater than 4 must contain
three lattice points in the interior.

For a detailed discussion about these two theorems see [4], pp. 119-126.

The theorems can be generalized to the n-dimensional case as well:

DUniversitatea Tehnica din Cluj-Napoca, Facultatea de Automatica si Calculatoare,
Cluj-Napoca, Romania, vasile.pop@math.utcluj.ro
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e Let V be a bounded region in R™ with volume greater than 1. Then
V' contains two distinct points (x1,x2,...,2,) and (y1,¥ys2, .. .,ys) such that
the point (z1 — y1, 22 — Y2, ...,y — Yn) is a lattice point in R™.

e If V' is a bounded, convex region in R™ having volume greater than
2™ and is symmetric about the origin, then V contains a lattice point other
than the origin.

These two theorems with proofs can be found in [2], pp. 26-28.

The goal of this paper is to present some general ideas which allow a
unitary approach for some problems of .M.O. or LM.C. type. The theoretical
aspects which are necessary for solving such problems are simple algebraic
notions, such as: equivalence relation, quotient set, lattice network, measure
of a set, Dirichlet principle. The complexity and the diversity of the chosen
problems prove the efficiency of the proposed model.

2. Theoretical facts

Definition 2.5. If A is a set, then the subset p C A x A is called an equiv-
alence relation on A if the following conditions are satisfied:

(r) (a,a) € p, for everya € A (reflexivity)
(t) if (a1,a2) € p and (a2, a3) € p, then (a1,a3) € p (transitivity)
(s) if (a1,a2) € p, then (az,a1) € p (symmetry)

In the sequel, let A be a set and p an equivalence relation on A. We
will denote by a1 p ag the fact that (a1, as2) € p.

Definition 2.6. For every a € A, the set
a={zxecAlxpa}
1s called the equivalence class of a.
Remark 2.7. If a1,a0 € A then a1 = a3 or a1 Nay = (). We can notice also

that the set of equivalence classes represents a partition of the set on which
the relation is defined.

Definition 2.8. A subset S C A is called a complete system of representa-
tives (c.s.r.) of the classes of the equivalence p if the following conditions are
satisfied:

(a) for every a € A, there exists s € S such that a € 3,

(b) if s1,82 €S, s1 # S92, then 51N 53 = ().

Definition 2.9. Let S be a c.s.r. of p, B C A a subset of A and B = ubeBB.

The set Sp = 5N B is called a system of representatives of classes of the set
B.

Definition 2.10. Let S be a c.s.r. of p. The set {s | s € S} is called the
quotient set of A with respect to p and is denoted by A/p.



18 ARTICOLE

In sections 3 and 4 we will use the following results.

Theorem 2.11. Let p be an equivalence relation on A, S a c.s.r. of p and
B C A a subset of A. Then the following conditions are equivalent:

i) There exists a € A such thatanN B = ).
ii) There is no c.s.r. included in B.
iii) A+ B.
iv) S # Sp.

Theorem 2.12. If A is an uncountable set and if each equivalence class is
a countable set, then A/p is uncountable.

Corollary 2.13. Let A be an uncountable set with every equivalence class
being a countable set and let B be a countable subset of A. Then there exists
a class a C A such thatan B = ().

Theorem 2.14. If B is subset of A which contains strictly a c.s.r. then
there exist b1,by € B, by # ba, such that by = bs.

Definition 2.15. If the straight line D is identified with the real line, then
every subset of the form {x + k |k € Z}, v € R, is called a unitary division
of D.

Definition 2.16. If the plane P is identified with R?, then the set

{(z,y) € R?| (,y) € Z°}

1s called o planar lattice. The straight lines x = k and y = k, k € Z, are
called lattice lines and the points (z,y) € Z*? are called lattice points.

Definition 2.17. If the 3-dimensional space is identified with R3, then the
set

{(z,y,2) e R? [ (2,y,2) € 2%}
1s called a spatial lattice. The planes t = k ory =k or z = k, k € Z,
are called lattice planes. The straight lines x = k,y =p orx = k,z = p or
y ==k, z=p, k,p € Z, are called lattice lines. The points (z,y,z) € Z> are
called lattice points.

3. Lattices determined by equivalence relations

In this section we present some equivalence relations for which the equiv-
alence classes determine lattices.

Theorem 3.1. The relation p C R x R defined by
rpy & r—yEeZl

for every x,y € R is an equivalence relation on R. The equivalence classes
are unitary divisions of the real line and [0,1) is a c.s.r. of p.
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Proof. The properties (r), (t), (s) are easily verified, so p is an equivalence
relation. We notice that z py < {z} = {y}, where {z} denotes the decimal
part of x. For g € R the equivalence class of xy can be represented by the
set {z € R|{z} ={xo}} = {eo + k| k € Z}, which is the unitary division of
R which contains the point gy, €9 € [0,1) being the decimal part of all the
elements of this class. In every equivalence class we choose as a representative
the number from the interval [0,1), and so we obtain that [0,1) is a c.s.r. of
p.

Theorem 3.2. In the plane R? the relation p C R? x R2, defined by

(x1,91) p (z2,y2) & w1 —29 € Z andy1 —y2 € Z

1s an equivalence relation. The equivalence classes are lattice points and the
square [0,1) x [0,1) is a c.s.r. of p.

Proof. We have (z1,41) p (22,92) < {21} = {22} and {y1} = {y2}. The
equivalence class of a point (zg, y0) is (xo,y0) = { (x0o + k,y0 +p) | k,p € Z },
which is the plane lattice with the point (xg,yp). The quotient set can be
represented by the complete system of representatives choosing in every class
as a representative the point (zg,y0) € [0,1) x [0, 1).

Theorem 3.3. In the space R? the relation p C R? x R3, defined by
(w1,y1,21) p (T2, Y2, 22) & T1 — X2 €L, y1 —yY2 € Z and 21 — 22 € Z

1s an equivalence relation. The equivalence classes are spatial lattices and
one representation of the quotient set is the cube [0,1) x [0,1) x [0,1).

Theorem 3.4. On the unit circle U = {z€ C||z| =1} of the complex
plane, the relation p C Cx C, defined by z1 pzo2 & 2 = 25, is an equivalence
relation for every fixed n € N*. For n > 3, the equivalence classes are the
vertices of reqular polygons with n sides inscribed in the circle U and the arc
{z=cost+isint|t e [0,2m/n)} is a c.s.r. of p.

Proof. If zy € U then the equivalence class of zg is

where U, = {2 €C[2"=1} = {ep =cos T 4 isin 2T |0 <k <n—-1}.
So zo = {zr = 206k | 0 < k <n— 1}, which are the vertices of the regular
polygon having zy as a vertex.

4. Problems

Problem 4.1. Let (xy,), be a sequence of real numbers. Prove that for ev-
ery v € R* there is an arithmetic progression (ay), with ratio r such that
{zp|neN}N{a,|neN}=0.
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Solution. Because ag + kr # x, < 2 +k # = & by +k # yp, we can
suppose that r = 1. Every arithmetic progression with ratio r = 1 is a subset
of a unitary division of the real line. It is sufficient to prove that for every
sequence (yn)n there exists a unitary division of the real line which has no
common point with the set B = {y, |n € N}. If {y, } is the decimal part
of Y, then the set B={{y,} |n €N} C[0,1) is a countable subset of the
uncountable interval [0,1). It follows that there exists a € [0,1) \ B. Using
Theorem 2.11 and Corollary 2.13 we have aN B = (), so the progression with
ratio 1 and the first term a has no common points with the sequence (yp ).

Problem 4.2. Let (A,)n be a sequence of points belonging to the circle C.
Prove that for every N € N, N > 3, there exists a regular polygon with N
vertices inscribed in the circle C, with none of the vertices belonging to (Ay)n.

Solution. We can suppose that the circle C is the unit circle of the complex
plane: U = {2€ C||z| =1}. Defining the equivalence relation on U by
z1pz2 & 2 =2V, we know by Theorem 3.4 that the equivalence classes of
this relation are the regular polygons with N sides inscribed in U. Each class
is a finite set (at most countable) and U is uncountable. Using Theorem 2.12
and Corollary 2.13 for the set B ={ A, |n € N} we get an a € U such that

its class, @, a regular polygon with N sides, has no common points with B.

Problem 4.3. On the real line we consider a finite number of intervals
having the sum of lengths equal to L. Prove that if L > 1, then there exist
two distinct numbers x1,xo on these intervals such that x1 — xo € Z. If
L < 1, prove that there exists a unitary division of the real line which has no
common points with these intervals.

Solution. Considering the relation p on R: z py < = —y € Z, we know
by Theorem 3.1 that the equivalence classes are unitary divisions of R and
S =[0,1) is a complete system of representatives of the classes. For every
interval I;, consider the set S, = {{xz} |z € I} }. Consider also B = U}'_, I},
and Sp = U}_,Sk. If ZN I}, = 0, the set S C [0,1) is formed by a single
interval with a length equal to the length of I. But if Z N I # 0, then S
is formed by a union of two intervals with the sum of lengths equal to the
length of Iy, if this length is strictly less than 1. If the length of I} is greater
than 1, then S, =[0,1).

Suppose L > 1. In this case there are points in [0,1) covered at least
twice by the sets Sk. For such a point g € [0, 1), there are distinct points
x1,x9 € B with {z1} = {22} =¢p,s0 21 — 29 € Z.

Suppose L < 1. Because Y ,_; 0(Ix) = > p_1 £(Sk) <1 =1¢([0,1)), we
can find a € [0,1)\Sg. So S =10,1) # Sp. By Theorem 2.11, anB = 0, i.e.,
the unitary division @ has no common points with the intervals considered.

Problem 4.4. On a circle of radius 1 we consider a finite numbers of arcs
having the sum of lengths equal to L. Prove that:
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a) If L > 2w/n, n € N, n > 3, then there exists a regular polygon with n
vertices, inscribed in the circle, for which at least two of its vertices lie on
the given arcs.

b) If L < 2mw/n, n € N, n > 3, prove that there exists a regular polygon with
n vertices for which none of its vertices lies on the given arcs.

Solution. Consider all arcs obtained by rotations with 2kr/n with & =
0,1,...,n — 1. We have obtained a set of arcs having the sum of lengths
L' =nlL.

If L > 2r/n then L' > 27. Since L’ exceeds the length of the circle,
there are points which are covered by two arcs. A point C with this property
comes from points A and B by rotation with 2k;7/n and 2kam/n. A regular
polygon with n vertices having C as a vertex has also A and B as vertices.

If L < 27/n then L' < 2, so there is a point D which has remained
uncovered by the initial arcs and their rotations. A regular polygon with n
vertices having D as a vertex does not have common points with the arcs.

Remark 4.5. Considering the relation on the unit circle in the complex
plane: z1 pze & 2] = 2§, we know by Theorem 3.4 that the equivalence
classes are regular polygons with n vertices, inscribed in the circle. We can
solve this problem using Theorem 2.14 for the first part and Theorem 2.11
for the second part of the problem.

Problem 4.6. Let (a,), be a sequence of real numbers. Prove that there
exists a € R such that a, — a is irrational for every n € N.

Solution. We consider on R the equivalence relation: zpy < x—y € Q. The
equivalence classes have the form @ = a + Q, so they are countable. Using
Theorem 2.12 we deduce that the quotient set is uncountable. Taking the set
B ={a,|n €N} it follows from Corollary 2.13 that there is a class @ such
that @ N B = (). This is equivalent with a + g # a,, for every ¢ € Q and for
every n € N. So a, —a € R\ Q, for every n € N.

Problem 4.7. Let (a,)n be a sequence of real numbers. Prove that there
exists a € R such that for every polynomial P € Q[X]| and for every n € N
we have P(a, —a) # 0.

Solution. A real number b is called algebraic if there is a polynomial P € Q[X]
such that P(b) = 0. The set of algebraic numbers A is a field which includes
Q. Because Q[X] is countable and each polynomial from Q[X] has a finite
number of roots (algebraic numbers), we deduce that A is countable.

Let p C R xR be the equivalence relation defined by zpy < z—y € A.
The equivalence classes have the form ¥ = z + A, so they are countable.
Using Theorem 2.12 and Corollary 2.13 we find a class @ = a + A which has
no common points with the countable set { a,, | n € N }. It follows a,, —a ¢ A,
for all n € N.
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Problem 4.8. Let (a,), be a sequence of nonzero real numbers. Prove that
there exists a € R such that for every polynomial P € Q[X] and for every
n € N we have P(ana) # 0.

Solution. Because the set of algebraic numbers A has the algebraic structure
of a field, we deduce that p C R* x R* defined by z py < z/y € A* is
an equivalence relation. The equivalence classes have the form 7 = zA, so
they are countable. Using Theorem 2.12 and Corollary 2.13 we find a class
b =b-.A which has no common points with the countable set { a,, |n € N}.
It follows ay /b ¢ A, for every n € N. Taking a = 1/b the conclusion follows.

Problem 4.9. [1] In the plane, consider a finite number of polygons with the
sum of areas equal to S. Prove that:

a) If S > 1, then there is a planar lattice with at least two lattice points
contained in the given polygons.

b) If S < 1, then there is a planar lattice with all its points in the exterior of
the given polygons.

Solution 1. Suppose we cut the lattice through the lattice lines. We overlap
completely the obtained unit squares with the [0,1] x [0,1] square. Some
of the initial polygons have been cut but they are transformed in a finite
number of polygons included in [0, 1] x [0,1]. The sum of areas of all these
new polygons is the same with the sum of areas of the original polygons.

If S > 1, there are in the unit square [0, 1] x [0, 1] points that are covered
more than once by the new polygons. If (z¢, o) is a point with this property
and it is covered by the translation of the polygons F; and P;, then the lattice
(x0,Y0) + Z X Z has at least two common points with the polygons.

If S < 1, there are uncovered points in [0, 1] x [0,1] by the translated
polygons. Let (xo,y0) be such a point. The lattice (x,y0) + Z x Z has no
common points with the polygons.

Solution 2. If we consider the equivalence relation from Theorem 3.2 we know
that the classes of equivalence are planar lattices and a complete system of
representatives of the classes is the square [0, 1] x [0, 1] with area 1. We apply
Theorem 2.14 for a) and Theorem 2.11 for b).

Problem 4.10. [4] Let R be a bounded convex region in R? having area
greater than 4. If R is symmetric about the origin then R contains a lattice
point other than the origin.

Solution. Consider the region R' = {z/2 | x € R} which is convex having
area greater than 1. From Blichfeldt result (Problem 4.9) there are distinct

points (ﬂ yl), (IBz @) such that (wl — U —y2> € 72, (z1,y1) € R,

2°2/)7\272 2 72
(x2,y2) € R. Since R is symmetric about the origin (—z2,—y2) € R. The
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fact that R is convex ensures that every point on the line segment between

1 1
(x1,y1) and (—xz2, —y2) is in R. Therefore §($1>y1) + 5(—1‘2, —iy2) € RNZ2.

Problem 4.11. [5] We consider in the plane a finite number of segments
having the sum of lengths S < /2. Prove that there is a planar lattice with
lattice lines not intersecting any of the given segments.

Solution. We chose in the plane a rectangular system of coordinates. Let
P,, and P,, be the projections of the segment L; on the Ox and Oy axis.
If pa;, py, and [; are the corresponding lengths, then p,, = I; - | cos ;| and
Py; = li - | sin o], where o is the angle between the segment L; and the axis
Oz. Using the inequality (a + b)? < 2(a® + b?) we get py, + py, < V2 - 1. If
pz is the sum of all projections of the segments on Ox and p, is the sum of
all projections on Oy, then p, + p, < V2.3 <V2-v2=2.

If we rotate the rectangular system by the angle ¢ € [0, 7/2] and we set
pz(t) and py(t) to be the sum of the projections on the axis of the rotated
system of coordinates, we have p,(0) = py(7/2) and p,(0) = py(7/2). So
there is a t € [0,7/2] such that p,(t) = py(t) < 1. Let 2’Oy’ be this new
system. By Problem 4.3, there exists a unitary division xo+7Z of the axis Ox’,
having no common points with the segments P,. Similarly, there is yg + Z,
a unitary division of Oy, having no common points with the projections
P, The lattice (z0,Y0) + Z x Z has the property that the segments aren’t
intersected by the lattice lines.

Problem 4.12. Prove that for every function f : R — R there is a real
number a such that the graph of the function g = f — a does not contain
points with both coordinates rational numbers.

Solution. The set A = {f(q)|q€ Q} is countable, so it can be written
as A = {z,|n €N}. Consider B = Upen(zn, + Q) = A+ Q, which is a
countable union of countable sets, so is countable. We can choose a € R\ B.
We prove that g = f — a satisfies the desired property.

Suppose (q,9(¢q)) has both coordinates rational numbers. It follows
g € Qand f(q) —a € Q. Then a € f(q) + Q C B, which contradicts the
choice of a.

Problem 4.13. [6] For every point from the space which has rational coor-
dinates it can be obtained a spatial lattice which has this point as a lattice
point. Prove that no matter what direction these lattices have, we can obtain
another lattice with its lines passing between the lines of the other lattices.

Solution. The set Q3 is countable and for every spatial lattice the set of
its lines is countable. So the set of all lines of all lattices we can draw is
countable. Let D = {d,,|n € N} be this set. Consider now an arbitrarily
chosen lattice. We cut this lattice into cubes with side length 1 and overlap
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all this cubes with the unit cube V' = [0, 1] x [0, 1] x [0, 1]. The lines of D are
transformed in a countable set of segments, D’, from the cube V. If we prove
that there is a point M (z, yo, 20) € V such that the lines parallel to lattice
lines, passing through M, do not intersect the lines from D’, then a lattice
containing M and with lines parallel to the lines of the lattice arbitrarily
chosen will not intersect the lines of D.

There exists a set, which is at most countable, having as elements per-
pendicular planes with Oz, containing segments from D’. But there exists an
uncountably infinity of planes x = xy € [0, 1] which do not contain segments
from D’. Such a plane is intersected by segments from D’ in a countable set
of points. Let P, and P, the projections of the segments of D’ on the planes
z =10 and y = 0. These projections will cut the segments x = xg, z = 0 and
T = z9, y = 0 in countable sets of points. Let (zg,yn,0) and (zo,0, 2],) be
these points.

We choose yo € [0,1] \ {yn | n € N} such that the plane y = yo does
not contain segments from D’. The projection P, of the lines from D’ on
the plane z = 0 cuts the line y = yg, * = 0 in a countable set of points
{(Ovy()azx) | ne N}

Because the sets {z], |n € N} and {2/ |n € N} are countable, there
exists zg € [0,1] \ { 2,, 2/ | n € N}. The segments

{ (w0, y0,t) [t €[0,1] }, { (w0,t,20) [t €[0,1] } and {(¢,90,20) |t €[0,1] }

do not intersect segments from D’.
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Abstract. This note deals with the problems of the 2013 edition of the
,, Iraian Lalescu” mathematical contest for university students, hosted by
the University of Alba Iulia between May 20 and May 22, 2013.
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In perioada 20-22 mai 2013 s-a desfagurat la Alba Iulia etapa nationala
a concursului studentesc ,,Traian Lalescu”.

La concurs au participat peste 60 de studenti, reprezentand 10 uni-
versitati din cinci centre universitare: Bucuresti, Cluj, Constanta, lasi si
Timisoara.

Concursul s-a desfagurat pe patru sectiuni: A - facultati de matematica,
B - Invatamant tehnic, profil electric anul I, C - invatamant tehnic, profil
mecanic gi constructii, anul I, D - invataméant tehnic, anul II.

Subiectele au fost propuse, discutate si alese in dimineata concursului
de cate o comisie la fiecare sectiune, in care fiecare universitate a avut cate
un reprezentant.

La organizarea concursului, pe langa Universitatea ,,1 Decembrie 1918”
din Alba Iulia, care a oferit conditii optime de concurs, cazare si masa, au
contribuit Ministerul Educatiei gi Cercetarii si Fundatia ,, Traian Lalescu”.

Prezentam in cele ce urmeaza enunturile si solutiile problemelor date la
sectiunile A si B ale concursului. Pentru solutiile oficiale facem trimitere la
http://www.uab.ro/ctl.

Sectiunea A

Problema 1. Fie A € M,,(C) o matrice, A o valoare proprie a matricei

A" iar v € C™ un vector propriu asociat lui A\. S& se arate ca daca vectorii
v, Av, ..., A" 1y sunt liniar independenti, atunci A" = \I,,.

Vasile Pop

Aceasta problema a fost consideratd usoard de catre juriu. Prezentam
doua solutit date de studenti in concurs.

Solutia 1. Fie u : C*— C", u(z)= A"z. Observam ci v, Av,..., A" 1y
sunt vectori proprii pentru w; fiind in numéar de n si liniar independenti, ei
constituie o baza de vectori proprii pentru u. Matricea lui u in aceasta baza

DUniversitatea din Bucuresti, Facultatea de Matematica si Informatica, RO-010014
Bucuresti, Roméania, gamin@fmi.unibuc.ro

2)Universitatea Tehnics din Cluj-Napoca, Facultatea de Automatica si Calculatoare,
Cluj-Napoca, Romania, vasile.pop@nmath.utcluj.ro
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este Al,. In consecinti, existi S € GL,(C) astfel incat A™ = SAI,,S~1, deci
A" = A\, O
Solutia 2. Notand cu P4 = X"+ a,_ 1 X" '+ .4+a1 X +ag polinomul
caracteristic al matricei A si aplicand teorema Hamilton-Cayley obtinem
A" + anflAn_l 4+ +a1d+apl, =0,
de unde
A"+ ap 1 AV o+ o+ a1 Av + agu = 0,
sau Inca
A+ ap 1 A" o+ -+ ag Av + agv = 0;
tinand cont de independenta liniara din enunt, deducem
an,lzan,gz-u:al:aoJr)\:O.

Rezulta P4 = X™ — A\, de unde, aplicand din nou teorema Hamilton-
Cayley, A™ = \,. O

Problema 2. Si se determine functiile continue f : R — R cu
proprietatea ca pentru orice z,y € R pentru care x —y € R\ Q avem
f(@) - f(y) € R\ Q.

Vasile Pop

Aceasta a fost consideratd de juriu drept o problema de dificultate medie.
Studentii care au rezolvat problema au procedat in spiritul solutiei pe care o
prezentdm mai jos.

Solutie. Fie a € R\ Q fixat. Din conditia data rezulta

flz+a)— f(z) e R\Q, VzeR

deci functia continua g, : R = R, go(x) = f(z + ) — f(z) ia numai valori
numere irationale. Din continuitate rezulta ca aceasta functie este constanta,
deci

9a() = ga(0), VZ ER &
)

fx+a) = f(z) = fl@) = f(0), Vz €R, Va eR\Q (1)
Pentru zg fixat i « variabil in R\ Q rezulta
f(zo + ) = fa) = f(xo) = £(0). (2)

Functia hy, : R = R, hyy(a) = f(zo + @) — f(@), este continua pe R
si constanta pe R\ Q, deci constanta pe R. Astfel, relatia (2) are loc pentru
orice a € R, deci si relatia (1) este valabila pentru orice x € R gi a € R.

Avem agadar de determinat functiile f : R — R pentru care

flx+y) = fx) = fly) = £(0), V 2,y € R.
Functia A: R — R, A(z) = f(z) — f(0), verifica ecuatia lui Cauchy
Alz+y) = A(z) + A(y), V z,y € R,



CONCURSUL STUDENTESC ,, TRAIAN LALESCU*, 2013 27

pentru care solutiile continue sunt A(z) = ax, x € R. Deci f(z) = ax + b,
V x € R, cu care revenind obtinem a(x —y) e R\ Q,Vz —y € R\ Q, fapt

1
echivalent cu a € Q (daca a € R\ Q, pentru z —y = — € R\ Q s-ar obtine
a
1
Functiile cerute sunt prin urmare f : R - R, f(z) =ax+b, a € Q, b €
R. O

Problema 3. Fie k£ € N*. Demonstrati ca valoarea minima a lui n € N*
pentru care exista matrice A € M,,(Q) cu proprietatea A% = —1I,, este 2k,
Gabriel Mincu

Aceasta a fost considerata de juriu drept o problema de dificultate me-
die. Concurentii au dat mai multe solulii, care au diferit insd numai la
niwelul unor detalii tehnice. Solutia prezentata mai jos urmeaza ideile din
demonstratiile aparute in concurs.

Solutie. Fie n € N* pentru care exista matrice A € M,,(Q) cu propri-
etatea A2 = —1I, si fie A o astfel de matrice. Atunci A anuleaza polinomul
f=X 2 4 1, deci pa | f, unde pa este polinomul minimal al matricei
A. Cum polinomul f este ireductibil peste Q (lucru care se poate constata
aplicand criteriul lui Eisenstein polinomului f(X 4 1)), deducem ca pus = f.
Conform teoremei lui Frobenius, P4 este o putere a lui f. Prin urmare, val-
oarea minima cerutd este cel putin 2¥. Este insd ugor de viizut ci matricea
companion

0 0 O 0 0 -1
1 0 0 0 0 0
1 .
A 0 0 0 0 0 € My (Q)
o 0 o ... 1 0 O
o 0 o ... 0 1 0
verifica A% = — L. Asadar valoarea minimi ceruti este 2. O
Problema 4. Sa se demonstreze ca
1
2,2 _ 2
lim —— we —nel” g,

ri—oo Inn / (1+22)(1 + [nx]?)

Tiberiu Trif

Aceasta a fost consideratda de juriu drept o problema dificila. Aprecierea
s-a dovedit a fi corectd, doar un singur concurent abordand problema, fard a
reugi insd finalizarea solufiei. Abordarea sa este prezentatd in solufia 2, in
timp ce solutia 1 este cea propusd de autorul problemes.
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n2x? — [na:]2 ) . n

(1+ 22)(1 + [nz]?) n—oo Inn

Solutia 1. Notam I, = /

Facand schimbarea de variabila nx = ¢, obtinem

1 n
t2 2 — [t]?
I,= | ——=dt+n dt.
" /n2 FedT / (n? +¢2)(L+ [t]?)
0 1
Notand cu J, cea de-a doua integrala din membrul drept al relatiei
1
2
1
anterioare si tinand cont de relatia / ——5 dt =1 — narctg —, constatam
ne+t n
0
ca

n—oo Inn n—oo Inn

2 1 2
= lim <1 — narctg) + lim n—Jn.
n

. 1 1
Intrucét lim n? <1 — narctg > = —, deducem ca
n

n—00 3
2
n
= lim —J,.
e ¥
k+1 2 12 n—1
Notand J, ; = / W2+ B2+ 1) dt, avem J,, = ; Ink S
. =
1 o 1 3k+1
+
Tn g > t*— k) dt = : :
Pt (k+ D)2)(R2 4 1) /( ) n?+ (k+1)2 3(k2+1)
k
1 1
De aici, J, : .
e aicl, Jok > 2+ (k+1)2 k+1
1
Consideram functiile f, : [1,00) — (0,00), fn(t) = s ) care sunt
k+2
strict descrescatoare pe [1,00). Avem J, ;> fn(k+1) > / fn(t) dt oricare
k+1
ar fi k € {1,2,...,n—1}. Rezulta de aici ca
n—1 n+1 n+1
dt 1 t
n — Jn ———— = — Il —V—— 5
! l; ke / t(n? +2) n? n\/n2+t2 2
= 2

deci
2

1 1
n—Jn>— 1HL—1D2+IH\/H2+4 . (4)
Inn Inn Von2 4+ 2n+1
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Avem insa si

1 o 1 3k+1
+
; t2 — k) dt = : .
Ik < TR T D) /( = e s D
k
Deducem ca
3k+1 1 1

Jn = )
FS AR 32 RE 1R | 3R 4 KD)

adicd pentru orice k € {1,2,...,n — 1} avem J,; < fn(k) + gn(k), unde
functiile g, : [1,00) — (0, 00) sunt definite prin g, (t) = m
Intrucat si functiile g, sunt strict descrescatoare pe [1,00), obtinem ca

mai sus Jy, j < / fn(t)dt + / t)dt pentru orice k € {2,3,...,n — 1}.

k—1 k—1
Drept urmare, are loc

2

In (1) dt t) dt
</f +/ +/2M+ﬂ

1

deci
J<11 t " 1" 1 tt"+3
—1In — — ——arctg— —
T2 22 . 3n%t|;  3nd gn . 2n?
de unde
2 Invn2+1 5 1 1
n—Jn< nvnT + arctg—. (5)
Inn Inn 6lnn  3nlnn n

Cum expresiile din membrii din dreapta ai relatiilor (4) si (5) tind la 1

cand n tinde catre infinit, concluzionam ca [ = lim —J, = 1. (]
n—oo Inn

Solutia 2. Folosind notatiile I, si [ de la solutia 1, obtinem succesiv:

kAl
n—1 7 2,2 2
n n‘x* —k
= lim — dz =
nLIEolnnZ/ A+22)(1+k2) "
kAl
= lim o S n” — n’ 4k’ dx =
_nﬁxmnkw 1+k2  (1+k%)(1+2?) B
=0 %

. n n n? + k2 k+1 k
:Jﬁ&hnz§%<1+k2_:b+m (Mdgn__magn>>d$:
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n 2 n n? + k? n
lim — arctg ————— | dx.
rHoolnnZ(lJrk? 1+ k2 gn2+k2+k) v
3
Cum insa x — 3 < arctg x < x pentru orice x > 0, putem incadra [ intre

lim n Z n n? + k2 n .
PR — . 1
woelnn £ \T+ k2~ 14k n2+ k2 +k 3

..n n n? + k? n n? + k2 n?
hm—z — . + . .
n—oo Inn £ 14+k2 14k n2+k24+k 14Kk (n24+k2+k)3

n—1 2 2 3 n—1
Dar 0 < — .
. <lnnzo 14+ k2 (n2+k‘2+k)3<lnn§ 1+k2?0 deci
n—1
n n k
= lim — . .
nggo]nnzo<1+k2 n2+k2+k>
Cum

n—1 n—1
1 n2k 1 1 1 1

Z 2\ (12 1 12 T )T Z n T a2 ,
Inn £ (I+ k%) (n?+ K2+ k) &k Inn £~ E(1+ k%)  n?+k2+k

iar membrul drept al acestei relatii tinde la zero cand n tinde la infinit,

obtinem [ = lim — Z =L O

N—00 lnn

Sectiunea B

Problema B1l. Punctele M; i Ms se migca rectiliniu gi uniform
pornind din A1(0,0,0), respectiv B1(1,0,0), cu vitezele 3 = i + j + k si
To=1i+7]—k.

Sa se determine ecuatia suprafetei generate de dreptele M;Ms si sa se
precizeze forma ei.

Vasile Pop

Solutie. La momentul arbitrar ¢ vectorii de pozitie ai punctului M;(t)
si Ma(t) sunt 7oy, =Ta, +1-01 §1 T, = Ta, +1t- 02, deci punctele M si Mo
au coordonatele:

Ml(t) = (t7t7t)7 MQ(t) = (1 +1,t, _t)
Un punct arbitrar de pe dreapta Mj M, are vectorul de pozitie de forma

7F=(1—8)Tam +5 Ta,, sER,
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deci punctele suprafetei S au coordonatele (z,y, z) date prin relatiile:
(I—s)t+s(l+t)=t+s,
(1—s)t+st=t,
=(1—s)t—st=t—2st, t,s €R,

T
S:< vy
z

(ecuatiile parametrice).
Din primele doua relatii obtinem ¢ = y si s = & — y; introducand aceste
valori in cea de-a treia relatie, obtinem ecuatia implicita
St z=y—2y(z—vy)
sau
S: 2 —2zy+y—2=0,

care este ecuatia unei cuadrice.
Matricea formei patratice este

A= -

O = O
SN =
o OO

cu valorile proprii Ay = 14+ v2 >0, \a =1 — 2 < 0si A3 = 0. Suprafata
este un paraboloid hiperbolic. O

Desi juriul a considerat problema usoara, rezultatele au aratat o slaba
pregatire a studentilor in probleme de geometrie aplicatd. Acelasi lucru s-a
observat si la o problema asemandatoare, data la sectiunea C, pe care o lasam
spre rezolvare:

Problema C3. Si se determine ecuatia suprafetei formata din toate
punctele spatiului egal departate de dreptele Dy :x =y =2, Dy : x — 1 =
=y = —z, gl sa se precizeze forma ei. (Raspuns. Suprafata este un parab-
oloid hiperbolic de ecuatie S : 2yz + 2xz —2x +y + 1 =0.)

Problema B2. Fie V un spatiu vectorial de dimensiune finita peste
corpul K iar F': V x V — K o forma biliniara. Definim subspatiile:

Vi={zeV|F(x,y) =0, VyeV}
Vo={yeV |F(z,y) =0, VzeV}

Sa se arate ca V7 si Vo au aceeasi dimensiune.

Problema este clasica, dar face apel la cateva notiuni esentiale cum sunt
matricea unei forme pdtratice, matricea unei aplicaii liniare sau teorema
dimensiunii pentru aplica{ii liniare. Fa s-a dovedit foarte bund ca problema
de concurs.

Solutie. Alegem o baza B = {e1,e,...,e,} In V si consideram ma-
tricea lui F in baza B, A = (a;;) unde a;; = F(e;,e) € K, i=1,n.

ij=Ln’
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Avem
n n n o n n
F inei,Zyjej = Zinij(ei,ej) = Z aijxiyj
i=1 j=1 =1 j=1 1,j=1
si atunci

n n
) szwieievl(:) Z aijjriy; =0, Vi=1n<%
i=1 ij=1
n X1 0
@Zaijxizo,ijl,in@)At. = ,
i=1 T 0

n n
° yZZyj€j€V2<:>ZaijxiijO,Vizl,n@
Jj=1 i,j=1
n Y1 0
e ayy=0,Vi=TneAd- | 1 | =|:|,
7=t Yn 0
astfel ca Vi = ker A? i Vo = ker A.

Cum rangA = rang A’ si dimker A = n—rangA, dim ker A = n—rangA’
rezulta dim V; = dim V5. ]

Problema B3.
a) Sa se arate ca

1
1 1 . 1 /x”d
- —_— e e e — x‘
n+1 n+2 n+3 1+=x
0

b) Sa se calculeze

ad 1 1 1 2
3 _ n )
n+l n+2 n+3

n=0

Ovidiu Furdui

Problema consta initial doar in cerinta de la actualul punct b), dar
Juriul a considerat necesard addugarea punctului a) pentru a oferi ideea de
rezolvare.

Solutie. a) Fie m € N gi fie
1 RS S 1
n+1 n+2 n+3 n+2m

SQm
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suma partialad de ordin 2m asociata seriei din enunt. Avem ca

g 1 1 L 1 n 1 _
T+l n+2  n+3 n+2m
1
— / (CC” o CC”+1 + $n+2 L xn+2m—1) dr =
0
L 2m L n L n+2m
1—
= [ 2" x d:U:/ x d:U—/ac dz.
1+=x 1+ 2 1+x
0 0 0

Rezulta ca

1 1
" xn+2m
Som — dz |=| — d
‘Zm /1—|—$$}‘/1+£L‘x
0 0

1
1 In2 —1In(1 —
:/ n n(l —x) do —
1+z 1+z
0

_ ((l—x)ln(l—x) —i—%ln(l—i—x)— In2 >

1+x

1

0
si problema este rezolvata.

Remarca. Egalitatea (x), adicad insumarea termenilor sub semnul in-
tegralei duble, este justificata in virtutea teoremei:
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Daca (uy,)y, este un gir de functii nenegative masurabile, atunci
o oo
[>Xw= [uw
n=1 n=1

Problema B4.
Sa se determine functiile continue f : R — R cu proprietatea

f(@) = fly) eR\Q

pentru orice x,y € R pentru care x —y € R\ Q.
Vasile Pop

Este aceeasi cu problema A2 si a fost consideratd pe bund dreptate de
juriu cea mai grea de la sectiunea B, doar primii doi clasali reusind sd o
rezolve partial.
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PROBLEMS

Authors should submit proposed problems to gmaproblems@rms.unibuc.ro.
Files should be in PDF or DVI format. Once a problem is accepted for publication,
the author will be asked to submit the TeX file also. The referee process will usually
take between several weeks and two months. Solutions may also be submitted to the
same e-mail address. For this issue, solutions should arrive before 15th of June
2014.

PROPOSED PROBLEMS

393. Let A, B,C, D be four distinct points in a plane II, which are not the
vertices of a parallelogram. Let H be one of the halfspaces bounded by II.

(i) In H we consider the semicircles of diameters AB and C'D that are
orthogonal on II. Prove that in H there is exactly one semicircle with the
diameter situated on II that is orthogonal on the two semicircles and on II.

We denote by C(AB,CD) the semicircle from (i). Similarly we define
C(AC,BD) and C(AD, BC).

(ii) Prove that C(AB,CD), C(AC,BD) and C(AD, BC) pass through
the same point.

(iii) Prove that C(AB,CD), C(AC, BD) and C(AD, BC) are orthogo-
nal on each other.

Proposed by Sergiu Moroianu, Simion Stoilow Institute of
Mathematics of the Romanian Academy, Bucharest, Romania.

394. Find all polynomials P € Z[X] such that a®>+b?+c? | f(a)+ f(b)+ f(c)
for any a,b,c € Z.

Proposed by Vlad Matei, student, University of Wisconsin,
Madison, USA.

395. Let z1,29,...,2p > 1. Put P =[]z, P, = [Liz (L <i<n).
Prove the following inequality:

n n

1 n(n — 2) 1
+ >n—-1 —_—
;Hzi 1+ VP ( >;1+ "VE
Proposed by Cezar Lupu, University of Pittsburgh, Pittsburgh,
and Stefan Spataru, International Computer High School of Bucharest,

Romania.

396. Let I be a field and let V' be an F-vector space. We denote, as usual,
by T'(V), S(V) and A(V) the tensor, symmetric and exterior algebras over
V', respectively.

Let Is be the subgroup of T'(V) generated by 1 ® - -+ ® Tp — T5(1) ®
“ @ Tg(p) With z1,...,2, € V and 0 € Ap,. Then [g is a homogenous ideal
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in T(V) and we denote S'(V) = T(V)/Ig. Then S'(V) is a graded algebra,
S'(V) = D,,505™(V). We denote by ® the product on S’(V). Hence if
T1,...,o, €V then the image of 21 ® --- @z, € T(V) in §'(V) = T(V) /I
18210 Oy

(i) For n > 1 let pgm gn : S™(V) — S™(V') be the linear map given by
1 © - @ Ty > 1Ty For n > 2 find a linear map ppn gm : A™(V) —
S"™(V') such that the short sequence

pS/n’Sn
s

0 — An(V) 225 gy S*(V) =0

is exact.

(ii) If FF = [Fy prove that for any n > 1 there is a linear map pgn an :
S™(V) = A"(V) withzy - xp— 21 A+ Axy. If n =2, 3 find a linear map
prn-1.gn : T (V) = S™(V) such that the short sequence

Prn—1 ,Sm

— 14 n7 n
0— T (V) S™(V) R AV = 0
is exact.
Proposed by Constantin-Nicolae Beli, Simion Stoilow Institute of
Mathematics of the Romanian Academy, Bucharest, Romania.

397. Let n > 1 be an integer and let f : R” — R” be a function with the
property that the image under f of any sphere S of codimension 1 is a sphere
of codimension 1 of the same radius. Prove that f is an isometry.

Proposed by Marius Cavachi, Ovidius University of Constanta,
Romania.

398. Let A € M,,(Q) be an invertible matrix.

a) Prove that if for every positive integer k there exists By € M, (Q)
such that BF = A, then all the eigenvalues of A are equal to 1.

b) Is the converse of a) true?

Proposed by Victor Alexandru, Cornel Baetica, Gabriel Mincu,
University of Bucharest, Romania.

399. Let n >3 and let P = a, X"+ +ap € R[X] with a; > 0 Vi such that
all the roots of P’ are real. If 0 < a < b prove that

f;(P’(:U))fldx S P'(b) — P'(a)
f;(P”(:p))_ldx ~ P(b)—P(a)

Proposed by Florin Stanescu, Serban Cioculescu School, Gaesgti,
Dambovita, Romania.
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400. Let S(n) == S 7_o(=2)F (1) (*=F). Prove that 4(n + 1)S(n) + (n +
2)S(n 4+ 2) = 0 and conclude that

S, — (—1)"/? (n%) if n is even,
0 if n is odd.

Proposed by Mihai Prunescu, Simion Stoilow Institute of
Mathematics of the Romanian Academy, Bucharest, Romania.

401. Let a and b be positive integers. Prove the following identities:

0 2265w (4) ()

6 S epe) <2aa + p1> <2bb + pl> _ (20 . +1)b(2+b - 1) (2aa> <2bb>,

p=>0

with the convention that (77?) =0ifn<O0orn>m.
Proposed by Ionel Popescu, Simion Stoilow Institute of
Mathematics of the Romanian Academy, Bucharest, Romania.

402. Let u : [a,b] — R be a twice differentiable function with u'(a) = v/(b) =
0 and let A € R.
(1) Prove that u ( ) = Au(c)u/(¢) for some ¢ € (a,b).
(2) If moreover u”(a) = 0 prove that (d — a)u”(d) = v/ (d)(1 + A\(d —
a)u(d)) for some d € (a,b)
Proposed by Cezar Lupu, University of Pittsburgh, USA.

403. A parabola P has the focus F' at distance d from the directrix A. Find
the maximum length of an arc of P corresponding to a chord of length L.
Proposed by Gabriel Mincu, University of Bucharest, Romania.

404. Let F' : Z x Z — 7Z be a function satisfying the following conditions:
1) |P(e,9)| > lo] + ly] Va,y € Z.
2) There are m,n > 1 and matrices A = (a;;), B = (b;ij) € Mmn(Z)
such that

F = 7.
09) = 22, 28, (a7 bigw) Yoy €

Prove that either F(x,y) > O Vx, y € Zor F(z,y) <0Vx,y € Z. Give
an example of a function F' for each of these two cases.

Proposed by Serban Basarab, Simion Stoilow Institute of
Mathematics of the Romanian Academy, Bucharest, Romania.
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SOLUTIONS

365. Let K be a field and let f,g € K[X], f,g ¢ K, such that ¢g" —1 | f"—1
for all n > 1. Then f is a power of g.

Proposed by Marius Cavachi, Ovidius University of Constanta,
Romania.

Solution by the author. We define several polynomials.
For kK > 0, n > 1 we define n(lk) € K[X] by r,(lo) = 1221 and inductively

gr—1
Pt = 9k+17"7(1?1 — P,

For k > 0 we define pg = 1 and ppyq = (1 — ¢g**1) fpi for & > 0. Thus
pe=(1—g)- (1 ghf.

For k > 0 we define Q; € K[X,Y] with degy Qr < k by Qo = —1 and
Quer(Y) = (Y — 1)QulgY) — F(g"1Y — DQu(Y) for k > 0. (Here we
regard @i as polynomials in the variable Y with coefficients in K[X], i.e.,
Qi € KIX][Y].

By straightforward calculations one verifies by induction on k that

() pif" + Qr(g")

(gt =gt = 1) (g - 1)

Let & > 0 be large enough such that (k + 1)degg > deg f. Since also
degy Qr < k, we get

r

((k + 1)n + k(k;l)) degg > deg(prf" + Qr(9")).

(k)

Hence the degree of the denominator of the fraction above, which gives ry 7,
is larger than the degree of the numerator when n is large enough. But
rﬁlk) € K[X] so we must have rﬁﬁ) =0, i.e, prf™+ Qk(g™) = 0 for n large
enough, say for n > Nj.

We write Qg = arY* 4 - - 4+ ag with a; € K[X]. Then we have

k
pf"+Y a;g7 =0, n> N
§=0
Let m > Ny. In the equation above we take n = m,m+1,...,m+k+1.
Hence we get that the homogeneous linear system of k + 2 equations with
k + 2 unknowns

k
X+ Y gmIX; =0, 0<i<m+1,
5=0
has the solution X1 = pg, X; = a; for 0 < j < k. This solution is nontrivial
since pp = (1 —g)--- (1 — ¢g¥) # 0. It follows that A, the determinant of the
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system, is 0. One checks that

k
= fm H gmjAla
3=0

where A; is a Vandermonde determinant, namely

k
M=+ ] @-DH][-9)
7=0

0<j<I<k
Since ¢/ # ¢' when j # I, we have f = ¢/ for some j. O

A note from the editor. The proof of this result is very ingenious
but it involves a construction, the polynomials rﬁbk), which the reader might
find very unnatural. We give a possible approach that leads to the definition
of r,(f) in a natural way.

The author first used this method to solve the similar problem for Z
instead of K[X]: determine all a, b € Z with |a|, || > 1 such that b"—1 | a"—1
Vn > 1.

The idea is to find some linear combination of r, := % € 7Z with
coefficients in Z that is less than 1 in absolute value. Since such linear
combination is an integer, it must be zero. This way we obtain algebraic

relations between a and b.

We have ry, = rl, + 1), with 7], = ;& and ) = . Slnce\r”]<<1

when n > 0 we will focus on 7/,. We have " —1 = b™(1 + O( =), so 1},
n . . n+1
27(1 + O(bin)) Similarly, 7’;L+1 bn+1 (1+ O(bn ), s0 rn+1 = b (1 +O(bn ))
Therefore if 7/} := br,11 — ar, then rll = O(bnrn) = O(b%)' This way
the order of magnitude was decreased by a factor of . One calculates
_ n+1 _ n+1 ..

7"%(1) = —(bn(ill)b()b(iﬂfl). We have 7“,( ) = 7(1%1211 (1—1—0(1%”)). Similarly, r;L(Jlr)l =

LD (14 0(h)), s0 ) = S (14 0(k)). Hence, if > = b/, —
arl) then ri? = O(binr%m) = O(;@,—) so the order of magnitude decreased

again by b".

(k) /(0)

We see a pattern. For k > 0 we define r,"’ recursively by r, ' =1, =
=1 and Tv/z(kﬂ) = b”“r:ff_)l — ar;(k) And we show inductively that r,(k) =

%, where py, € Z is some constant satisfying pp1 = (1—b*"Hapy

so that pp = (1 —b)--- (1 — b¥)a*. The definition G b”“r;(_]i)l — arl®
is justified by the following. We have

/k a”
k) = pkm( +O(b">)

and similarly
n+1

) a

= PR e 1) k(R 1) /2 (1+0(

o)
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Hence r;l(_]i)l = bkﬂlrgk)(l + O(bin)) Therefore when we take 7" " =
b"“ril(_]i)l - argk) we have r;(kﬂ) = O(binr;(k)). Hence at each step the order

of magnitude decreases by a factor of b".
We now apply the same linear transformations to r,, i.e., we define

r,(LO) = r, and rgﬁl) = bkﬂrgfgl — ar%k). Since r, € Z VYn we have r%k) €z
Vk,n. Since r,, = rl, +rl! we have ri) = ¥ —{—’I“;L(k), where ") = = s
and r;{(kﬂ) = kargﬁ — arg(k). It is easy to see, by induction, that rg(k) is
a linear combination with integer coefficients of !/, ... ,r;;+k, rZ(k) = corl +

Vo= O(&) for 0 < i < k, we have ™ = O().
Hence, |r;{(k)| < 1 for n > 0. Also note that ri") = O(b(%nl)n). Then if we
take k large enough such that [b|**! > |a| we have |1";L(k)] < 1 when n > 0.
Hence for n > 0 we have |7“,(1k)\ < ]r;l(k)\ + \rg(k)] <1 Asr? € Z, we get

rgk) =0.
Now

! : !
<ot 4 cgry e Since T

b n 7 41 (s
G LD D el (el ) RER Gl VRS CANl )
n P pnt+i — 1 (b —1)--- (bntk — 1)

B Qr(b")
(b —1) - (bR — 1)
where Qi (X) =31 —c(X —1)--- (bij(_jl) -+ (b*X —1). (One can prove
that Qg are given by Qo = —1 and Qpy1(X) = V(X — 1)Qu(bX) —
a(D*'X — 1)Qr(X), same as in author’s proof.) Together with ) =
pra™ (k) _ _ pra™+Q(b™)

this implies 0 = r,’ = j» 80 from here the

" =1)-- (" FF-1) (b —1)---(bn k-1
proof follows as above, with a, b replacing f, g.

The same reasoning may be applied to f,¢g € K[X] instead of a, b.
The degree function deg : K[X| — Z>o U {—o0} extends to deg : K(X) —
Z\J{—o0} by defining deg g = deg P —deg Q). This extended degree satisfies
the usual properties of the degree: deg AB = deg A+deg B and deg(A+B) <
max{deg A,deg B} VA, B € K(X). Then we define a norm |-| : K(X) — R>g
by |A| = 2984, We have |A| = 0 iff deg A = —o0, i.e., iff A =0. Then |-|is
a non-archimedian norm, i.e., |A||B| = |AB| and the triangle inequality | A+
B| < |A|+|B| is replaced by the stronger inequality |A+ B| < max{|A|, |B|}.
The completion of (K (X),|-|) is K((%)).

Also, same as for Z, if A € K[X] and |A| < 1 then A = 0. (Otherwise
deg A > 0 so |A| = 294 > 1)) The notation A = O(B) means that
|A| < ¢|B] for some constant ¢ > 0, which is equivalent to deg A < ¢/ +deg B
for some constant ¢ € R (actually, ¢ = log, ¢).
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With this definition of the norm on K(X), the proof follows almost
verbatim from that on Z, but with a, b replaced by f, g. Note that the
condition |a| < b**! translates as | f| < |g|¥*!, which is equivalent to deg f <
(k4 1)degg.

We give a possible approach that leads essentially to the same solution.
We will produce linear combinations of the polynomlals 7 L with coefficients

=)
in K[f,g] € K[X] that have negative degree, so they must be zero.
Let a = deg f, b = degg. Let kK > 1 with (k4 1)b > a. Then for any

n > 1 we have the identity % = i + 4 g% + m. (Note that
Lot W is the beginning of the expansmn = Zi21 g%, which holds

in K (( )) ) It follows that

n_1 n n n 1
e A A N LS
g"—1 \yg g ggr =1 g"—1
Note that deg% = —((k+ 1)b — a)n and degnL1 = —bn are
< 0 when n > 0. Therefore in order that a linear combination of the £ 7 }

with n > 0 have negative degree it is enough that in this linear combmatlon

n
the terms of the type (gik) cancel each other. To do this we employ the

1
g —1

usual technique from linear recurrence sequences.
Now 5 gi are the roots of ALY +4---+Ag = (gY —f)--- (Y —f) €
K(X)[Y]. Note that A; € K[f g] C K[X]. In particular, Ay = (—f)" # 0.

Then the sequence x, = Ly 4. 4 < I > satisfies the linear recurrence

g
Apry + -+ Ak:chrk = 0. It follows that

fn+k n+j f n+j fn"rj
Z g1 ZA << ) Tt <gk) T R (g — 1)

=0
k
fn+J 1
n+]_]_) ZAJ( k(n+j) n+j_1)_gn+j_1 )

J=

. ntj

But for n > 0 and 0 < j < k we have degAjW =deg A; —
(k+1)b—a)(n+j) <0and degAng%_1 =degA; — (n+ j)b < 0. Hence
the degrees of all the terms in the sum above are negative, thus we have
deg(zj 04 g:: i) < 0, which implies ZJ 0A; g:: i = 0. By multiply-
ing with (g" —1)---(¢g"** — 1) one gets 0 = ijo Aj(gh — 1) (fH —

1) (g = 1) = Py(g", f*), with P, € K[, g][Y. 2] € K[X][Y. Z] given by

ZA (f1Z-1)---(¢"Y —1).
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(Here f7Z —1 replaces the factor ¢/Y —1 in the product (Y —1)--- (¢*Y —1).)
Since all terms of Py(Y, Z) but the one corresponding to j = 0 contain the
factor Y — 1, we have Qx(1,Z) = Ao(Z — 1)(g —1)---(g* — 1) # 0, so
Pk(Y, Z) 75 0. (Recall that AO 7'5 0.)

We have degy P(Y,Z) = k and deg, Pi(Y,Z) = 1, so we write

1 k
Z) =Y Bi;Z'YI.

i=0 j=0
Take n sufficiently large such that Py (g", f*) = - - = Py (g"T2k+1, fot2h+ly —
0. Then the linear system of 2k + 2 equations with 2k + 2 unknowns

1k
33 KO 20, 0SSk
i=0 j=0

has nontrivial solution, so its determinant is 0. One sees that the determinant
is A= H?:o gim H?:o frg’" A1, where A1 is the Vandermonde determinant

+ [ @-9¢) [I o' —ro) ] (&' —re).

0<s<t<k 0<s<t<k 0<s,t<k
It follows that g* — fgs = 0 for some s,t and so f = g'~%. 0
Our sum Z =0 Aj gn ﬂ 1 L coincides with rﬁlk) defined by the author. If
(gY —f)---(g"Y = f) = )+ +A( ) then, by using the relatlons A(kH)
o ARED — (A +A§€ N(g" Y — ) and rFTY = gt B e (B
one proves by induction on k that Z =0 A(k) ! ZE i = n(lk).
Also one may prove that Bio = pg and Big = - = By =0, so

P(Y, Z) can be written as ppZ + Q(Y) for some Qi € K[X][Y]. Therefore
P(g"™, ™) = pr.f™ + Qr(g™), same as in the author’s proof.

366. Let K be an algebraically closed field of characteristic p > 0.

For i > 0 we define the polynomials @; € Q[X] by Qo = X and Q;+1 =
@. If £ > 0 writes in basis pas k = cop+c1p+- - -+egp® with 0 < ¢; < p—1
then we define P, € Q[X] by P, = Q) Q7" - - Q%.

Prove that if f = X* 4+ ap_1 X* 1 4 --- +ap € K[X] with ag # 0 has
the roots ag, ..., as with multiplicities k1, ..., ks then

Vf = {(wn)nzo txn € K, Tpip + 0p—12p4k—1 + -+ aor, =0Vn > 0}

is a vector space with {(Pj(n)al’)p>0:1<i<s, 0<j<k; —1} as a basis.
(Hint: Use the note “Linear Recursive Sequences in Arbitrary Charac-
teristics” by C.N. Beli from the issue 1-2/2012 of GMA.)
Proposed by Constantin-Nicolae Beli, Simion Stoilow Institute of
Mathematics of the Romanian Academy, Bucharest, Romania.
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Solution by the author. From [B] we know that a basis of Vp is given
by {(?)a”)nzo :1<i<s, 0<j <k —1}. It is enough to prove that for

2

every i ((j)af)n>0 with 0 < j < k; — 1 and (Pj(n)aj)n>o0 with 0 < j < k; — 1
are bases for the same K-vector space. Therefore we reduce our problem to

proving that for any £ > 0 ()0(), ey ()k() and Py, ..., Py are bases for the same

K-vector space. Here ()l( ) and P, are regarded as polynomial functions from
Z (or merely Z>o) to K. In fact they are functions from Z to Z but they
take values in K when composed to the left with the ring morphism Z — K.
We need some preliminary results. _
Lemma. @Q; is a polynomial of degree i with leading coefficient p_zj
and Q;(Z) C Z, for all i > 0.

Proof. We use induction on i. For ¢ = 0 the three statements are

P_0.
obvious. We prove the induction step ¢ — ¢ + 1. Since Q;11 = % and

deg Q; > 0, we have deg Q;1 = pdeg Q; = p'TL. Also, if a, b are the leading

-1
coefficients of Q; and Q;4+1, respectively, then b = %ap. Since a = p_ppfl ,

J+1_q

we have b = p p-1 . Finally, if n € Z then by the induction hypothesis
Qi(n) € Z, so Qit1(n) = W € Z, and therefore Q;+1(Z) CZ. O

Corollary. Py is a polynomial of degree k with leading coefficient p—¢» (k")
and Py(Z) C Z, for all k > 0. (Here by e,(a) we mean the biggest power of
p dividing a.)

Proof. We write k in base p as k = ijo cjpj with 0 < ¢; <p—1. Then
P = T1;50 Q;fj. It follows that deg Py = }5;50¢;degQj = 3,5 cip) =k
and, since Q;(Z) C Z, we have Py(Z) C Z. For the second statement recall
that ep(k!) = %ﬁkj), where sp,(k) is the sum of digits of k written in base p.

J—1
Since the leading coefficient of Q); is p_ppj, the leading coefficient of Py will

i1

Cj
be Hj>0 (p p—1 ) =p~9, where

g_ chpj 1 20l — Xm0 _ k—sp(k) _ e, (K1),
= p—1 p—1 p—1
so we get the desired result. O
We now start the proof. We already know from [B] that ()0(), ol ()k()

are linearly independent, so they are the basis of a K-vector space V of
dimension k + 1. Therefore it is enough that W, the k-vector space spanned
by Pp, ..., Py, coincide with V, i.e., that (7) € W and P, € V for 0 < < k.

Let a — a be the morphism of rings Z — K. Since K has characteristic
p, the image of this morphism is Z;, and it can be extended to Z, := {3

a,b€Z,ptb} as%:dffl.
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Let M be the Z-module generated by ()0(), ey ()k() and let N be the
Z(p)—module generated by Fy,..., P,. We claim that P, € M and ()l() eN
for 0 <1< k. (Here ()l() and P, are just polynomials in Q[X].)

We know that ()l(), I > 0, are a Z-basis for the module of all integral
valued polynomials in Q[X]|. That is, M = {P € Q[X] : P(Z) C Z}. Then
P, € M follows from the Corollary.

For the other statement we use induction on k. When k£ = 0 we have
()0() = Py = 1, so our statement is trivial. We now prove the induction step
k—1 — k. If [l < k then by the induction hypothesis ()l() belongs to the

Zpy-module generated by ()0( ), e (k)f 1) and therefore to IV, so we still have
to prove that ()k() € N. We have k! = p»* g with p { a. Since ()k() and
P have the same degree k£ and their leading coefficients % = m and

eﬂ%!)? respectively, the polynomial a()k() — Pi has degree less than k and it

is also integral valued. Therefore it belongs to the Z-module generated by
()(](),...,(k)_(l). Since ()0(),..., (k)_(l) € N, we get a()k() — P, € N. But pta,
so a~! € Z,. It follows that ()k() =a P+ a_l(a()k() — P;) € N.

Let 0 < < k. We write P, = Y)_q () and () = S5, 8B, with
o € Z and Bj € Z,). When we regard ()l( ) and P; as polynomial functions
7 — K we obtain P, = Zéc:() Qy ()l() €V and ()kf) = Zf:o BlPl e W. O

REFERENCES

[B] C.N. Beli, Linear recursive sequences in arbitrary characteristics, Gaz. Matem. Seria
A 30(109) (2012), 32-36.

367. Give examples of functions f,¢ : R — R such that: f has period v/2, g
has period V3 and f + g has period V5.

Proposed by George Stoica, Department of Mathematical Sciences,
University of New Brunswick, Canada.

Solution by the author. Note that V2, V3 and /5 are linearly indepen-
dent over Q. In particular, if [, m,n € Z are such that [v/2+mv3+nv5 = 0,
thenl =m =n=0.

Let us consider

A= {l\@—l—m\/g—l—n\/g clymyn € Z},
and define:

fx) = mv/3 + nvV5, g(z) = V2 —n5 for z =1vV2+mvV3+nVb € A,
and f(z) =g(z) =0 for z € A.
Note that a non-zero value of f determines uniquely m and n. Thus,

for a fixed pair of integers m and n, not both of which are 0, we have f(z) =
mv3 + nvb only at the points x = V2 +myV3 + n\/g, for arbitrary [ € Z.
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Since f(z) = f(x ++/2) for any z in the complement of A, we conclude that
f has period v/2.

Similar arguments show that g has period v/3 and (f + ¢)(z) = IvV/2 +
mv/3 (z € A) has period /5. O

368. Find all matrices X1,..., X9 € Ma(Z) with the property that det X =
Lforall kand X{+---+ Xg = X? + -+ + X3 + 181.

Proposed by Florin St&nescu, Serban Cioculescu School, Gaesti,
Déambovita, Romania.

Solution by Victor Makanin, Sankt Petersburg, Russia. For X € Ms(Z)
having determinant 1 and trace a € Z we have X? — aX + I, = 05, which
implies X*— X221, = (a®—3a) X —a®I5, therefore the trace of X*— X221,
is

Tr(X* — X2 - 215) = (a® — 3a) Tr(X) — a® Tr(Iy) = a* — 5a?.

Now let ar = Tr(Xy) € Z (for all £ € {1,...,9}). Since the given

equality can be also written as

Xt —X? 2L+ + X5 — X2 — 21, =0,

we infer that
Tr(X] — Xi —2D) + -+ Tr(Xg — X§ — 2I2) =0,
and, by the above observation,
9 9

D (a} —5a;) =0 (2a; —5)* = 225.

k=1 k=1
Now we have the number 225 written as a sum of nine squares of numbers of
the form 2a® — 5, with integer a. One easily sees that the numbers (2a3 — 5)?
smaller than 225 can only be 52 (for ax = 0), 32 (for ap = +1, or ap = £2),
or 132 (when ar = £3). The last one is easily eliminated (if one square is
132, the remaining eight would be either 32, or 52, with sum 225 — 169 = 56),
so all of them need to be either 3%, or 52 — and they are nine, which sum
to 225. Obviously only the possibility (2a; — 5)* = 5% & a; = 0 for all
k€ {1,...,9} remains, so each of the matrices X}, has trace 0. Conversely, if
this happens, then X? = —I» and X,% = I for all k, and the condition from
the enounce is fulfilled.

We conclude that Xi,..., X9 can be any integer matrices with deter-

minant 1 and trace 0. One finds that this means that some integers ag, by, cx
do exist, fulfilling a% + bgcp, = —1, and such that

_ [ ax bk
Xk_(ck _ak> for all ke {1,...,9}.

369. A stick is broken at random at two points (each point is uniformly
distributed relative to the whole stick) and the parts’ lengths are denoted
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by r, s, and t. Show that the probability of the existence of a triangle
encompassing three circles of radii r, s and ¢ each side tangent to two of the
circles and the circles are mutually externally tangent, is equal to %

Eugen J. Ionagcu, Department of Mathematics, Columbus State
University, Columbus, Georgia, U.S.A.

Solution by the author. We are beginning with the simple observation
that a triangle with the sides r + s, s + ¢ and t + r always exists. So, the
three circles externally tangent of radii r, s, and ¢ can be always constructed.
Without loss of generality we may assume that r > s > ¢ > 0 (the probability
that two of the numbers or all three to be equal is zero) and t + s + 7 = /3.
To account for the other possible orders, we will multiply the probability we
obtain in the end by 6. We are denoting the center of the biggest circle by A,
the next smaller circle’s center by B and C for the center of the smallest circle.
Then, the external tangent lines to each two of the circles exist. Basically we
need to characterize when three of them can form a triangle with the circles
in the interior (Figure la). So, let us start with one of the tangent lines,
the one tangent to the smaller circles which does not intersect the big circle.

—
We denote it by DE and let I and J the two points of tangency as in the
Figure 1a.

D

(a)r>s>t>0 (b) s<r,s<4t
Figure 1. The three circles and the enclosing triangle; exceptional situation

<

We consider a parallel line to DE through C and form a rectangle
and a right triangle by splitting the trapezoid BIJC' into two parts. The
Pythagorean Theorem gives us that the length of the common tangent line
segment to both of the smaller circles is equal to: I.J = /(s +1)2 — (s — )2 =
= 24/st. Similarly, the tangent line segment to the circles centered A and C
has length 2v/7t and the third tangent segment is of length 2./7s.

<

First let us show that DFE always intersects the tangent line, m, to the
circles centered at C' and A (we let E be this point of intersection as a result).
The order between 7, s and ¢ tells us that the angle X AC'B is the biggest angle
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of the triangle ABC and so it is more than 60°. The angle between these
tangent lines, say w, is then more than 60° and less than 180° + 60° = 240°
(including the reflex possibility). In order to have a triangle DEF containing
the three circles we need to limit w to be less than 180° which insures the
existence of E. Let us observe (Figure 1 (b)) that w > 180° if ¢ is smaller
than the radius z of a circle tangent to the bigger circles and their common
tangent line. By what we have observed above 2/sx + 2/rz = 24/rs which

rs s S .
> —. So, the first restriction we need

(ﬁ+ﬁf_gﬁ+o24

to have on these numbers is

means r =

t
PO G T P - ©)

5
(V3 + V) (V5 )
We observe that the third tangent, denoted in Figure 1 by n, is insured

by (6) to intersect b_)E so we will let D be the point of intersection. Let L
be the point of intersection of the parallel to m through C' with the radius
corresponding to the tangency point on m and similarly on the other side we
let K be that point.

<
Finally, to insure that m and n intersect, on the same side of DFE as
the circles we need to have

m(xKBA)+ m(xABC) + m(xBCA) + m(LACL) < 180°,

by the original Euclidean fifth postulate. This is equivalent to

arcsin <T — S) + arcsin (r _T_ i) <m(xBAC).

r+s T

y-axis

X-axis

3(1 — 22 1

V3(1 —x )’ ) > +
2 V3

Figure 2. A(1,0), B(—1,0) and C(0,v/3), ON =t, OM = s, OP =r

B(-1,0) A(1,0)

1
(a) O<t<s<r (b)0<a:<§,y<
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Because u — coswu is a decreasing function for u € [0, 180°], using the
law of cosines in the triangle ABC and the formula cos(a+ () = cos accos 5 —
—sin acsin 3, this last inequality translates into

(r+s)?+r+t)2—(s+1)? - (2\/7‘?) <2\/1Tt) _(r=s)(r—1t)
2(r+s)(r+1t) r+s/) \r+t (r+s)(r+t)
After some algebra, one can reduce this to

r < 2V/st. (7)

st

Let us observe that 2v/st < 5 18 equivalent to 2s + 2t — 5v/st < 0

NN

or (2\/3 — 1) (\/f — 2> < 0. This is true under the necessary condition

s < 4t. So, the existence of an encompassing triangle around the three circles
of radii r, s, t satisfying ¢t < s < r is given by (7), and s < 4¢.

From a probabilistic point of view it turns out that we can look at choos-
ing r, s and t as being the distances of a point O(z,y) inside an equilateral
triangle ABC, Figure 2, to the sides of the triangle as in Figure 2 (a). One

V3(1+x)—y V3(1—2)—y
_— = —

The condition ¢ < s is equivalent to 0 < z and the inequality s < r

. . 1+x
implies y > ———

V3
V3 5 . L
— (1 —=x?). Also, let us observe that the last restriction s < 4t is equivalent

2
-5 3 3—
x. It turns out that \2[ (1 - x2) <

which is a restriction already given by the the other inequalities we have
(Figure 2 (b)). This gives

can easily find that r = y and s = ,and t =

(Figure 2 (b)). The restriction (7) is the same as y <

3 1
toy < T is satisfied if < 3

1

6 : V3 1+ B /
P—\/g0/<2(1—x2)— \/§>dx—/(1—2m—3x2)dx

0

3 g

=(t—t*—1%) LT

370. Calculate the improper integral fooo cos? x cos z2dzx.

Proposed by Angel Plaza, Department of Mathematics, Univ. de
Las Palmas de Gran Canaria, Spain.

Solution by Santiago de Luxdn, Fraunhofer Heinrich-Hertz-Institute,
Berlin (Germany). We will calculate the more general integral

/ cos? (az) cos (ba:Q) dz, where a,b € R and b > 0.
0
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First we replace the squared cosine with a non-squared expression

I= / cos? (az) cos (be) dzr = / W cos (be) dz.
0 0

Setting = = t/v/b, we get that

1 b e a
I=— / cos t2dt +/ cos (275) cos tht> .
2v/b < 0 0 Vb

Now taking into account that coszcosy = % (cos(z +y) + cos(y — z)), we
derive the following result:

cos (2;5t> cost? = % <cos (2;575 + t2> + cos <t2 - 25516))
a 2 (12 a 2 (12
:;<COS<<H—\/B> _b>+COS<<t_\/B> —b>>.

On the other hand, cos(x — y) = cosx cosy + sinz siny. Therefore

cos <t+ a>2 — aj = COoSs <t+a)2cosa+sin <t—|—a>2sina
Vb b Vb b2 Vb b2’

2
Applying the same rule to cos ((t — %) — “bg) and simplifying we get that

1 o0
I=— cos t2dt
2\/5/0
+Lcosa—2 /oocos<t+a)2dt+/oocos<t—a>2dt
4v/b b \Jo Vb 0 Vb
4—Lsma—2 /oosin<t+a>2dt+/oosin<t—a>2dt
4\/5 b 0 \/B 0 \/l;

1 2 2

1 a o a
= 27\/500 =+ m (Cosb (Cl + 02) +Sln? (Sl + SQ)) .

Now, setting ¢ + % =qaandt— % = [ we get that

%) 2 a4 00
C) = / cos <t + a) dt = — /ﬂ cos o’da +/ cos a’da,
0 Vb 0 0
0o a 2 % 0
S1 = / sin <t + ) dt = —/ sin a?da + / sin a?day,
0 Vb 0 0
00 a 2 0 ) 0o )
ng/ cos (t—) dt:/ cos 3 dﬂ—i—/ cos 3“dg,
0 Vb - 0
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00 2 0 %)
522/0 sin <t—\%> dt:/ ) sin52d5+/0 sin 42d8.

Vb
Since cosx? and sinz? are even functions, C; + Cy = 2 fooo cosy?dy and
S1+ S2 =2 ;" siny?dy. Therefore,

I—l/oocos 2d +1(Cosaz/oocos 24 —|—sina2/oosin 2 )

b Jo yrdy W A Yoy A yrdy
1 a? a?

=——|C(c0) |14+ cos— | + S(c0)sin— |,
2\/5< ( )< b> (c0) b>

where C(o0) = [[¥ cosy?dy = 3,/F and S(o0) = [[¥siny2dy = 3,/F are
the Cosine and Sine Fresnel Integrals, respectively, evaluated at oo. Hence,

b b
and the proof is completed. [l

371. Let [ABCD] be a Crelle tetrahedron and let M, N, P,Q, R, S be the
contact points of the sphere tangent to its edges. Prove that Viyrnpors) <

1 2 2
IZE 2% <1+cosa—|—sina)

% [ABCD]- (By Vx we denote the volume of the polyhedron X.)
Proposed by Marius Olteanu, S.C. Hidroconstructia S.A.,
Sucursala 0lt-Superior, Rm. V&lcea, Romania.

Solution by the author. We denote
AN =AP=AQ =2, BM =BP=BR=y,
CM=CN=CS=z2 DQ=DR=DS=t.

Since [MNPQRS] is obtained from [ABC D] by removing four smaller
tetrahedra, the inequality we want to prove is equivalent to

1
Vianpq) + ViBmpr) + Viemns) + Vipgrs) > §V[ABCD]-

The tetrahedra [ABC D] and [AN PQ)] share the same solid angle at A,

)
Vianpg)  AP-AN-AQ x3

Viapcp) AB-AC-AD  (z+y)(z+2z)(z+1)
Hence we must prove that

.’133
DD e s o

cyc

—_

(Here chc denotes the sum of all terms obtained by applying a cyclic per-
mutation to expression under the sum sign.)

By multiplying both sides with 2(z +y)(z+2)(x+1t)(y+2)(y+1t)(2+1),
the result to prove becomes

2> Py+2)y+t)+1) > (@ +y) (@ +2) @+ 1)y +2)(y+ ) (z+1).
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The left hand side equals 2 Y 23 (y2 2 +y%t + 22y + 22t +t2y +12 2+ 2y2t) =
25" 23y?2+4> " x3yzt. In the right hand side no variable appears at a power
> 3 and we don’t have terms similar to 23y3. One proves that the right hand
side equals >_ 3y2z + 23 w3yzt + 2> 229?22 + 45 22y?2t. (It is obvious
that 23y%2 appears only once in the right hand side. The term z3yzt appears
the same number of times as in x3(y + 2)(y +t)(z +1), i.e., the same number
of times yzt appears in (y + z)(y + t)(z + t), which is 2. The term z%y?22
appears the same number of times as in (z + y)(z + 2)z(y + 2)yz, i.e., the
same number of times xyz appears in (x + y)(z + 2)(y + z), which is 2. The
sum Y. 2%y%2 + 23 23yzt + 23" 229?22 has 24 +2-4 +2-4 = 40 terms. But
the right hand side has 26 = 64 terms. The remaing 24 terms are of the form
x?y?zt. Since there are 6 such products, each will appear 4 times.)

In conclusion, we must prove that 23" z3y?z + 45 a3yzt > > 23?2 +

25 wyzt + 23" 2%y?22 + 43 x?y2et, e,

Z 23y?z + 2 Z wdyzt > 2 Z w2y?22 +4 Z z2y?zt.

In the following we denote S1 = >_ 23y%2, Sy = 3" 23yzt, S5 = > 22y?22
and Sy = Y 2?y?zt.

We have 23922 + 23y%x > 24/x3y22 - 23122 = 2222, so Zsym(az?’yQZ +
2y%x) > 2 Zsym 22y%22. Both sides of this equality are symmetric polyno-
mials which evaluated at (z,y,z,t) = (1,1,1,1) give 48. The left hand side
contains only terms of the form 23y?z and the right hand side only terms of

the form 2%y%22, so they can be written as aS; and bS3, respectively. But

S1(1,1,1,1) = 24 and S5(1,1,1,1) = 4, 50 a = 48/24 = 2 and b = 48/4 = 12.
Hence 257 > 1253, i.e., S1 > 6553.

Similarly, z3y?z + 23t%z > 2\/a3y2z - 23120 = 22%2%yt. It follows
that Zsym(fc?’yzz + 234%7) > 2> sym 222%yt. Since Si(1,1,1,1) = 24 and
S4(1,1,1,1) = 6 this writes as 257 > 89y, i.e., S1 > 45,.

Finally, 23yzt + y3xzt > 2\/a3yzt - ydxzt = 2x%y%2t. It follows that
Zsym(x3yzt +ydrat) > 2 2 sym x?y?zt. Since we have S3(1,1,1,1) = 4 and
S4(1,1,1,1) = 6, this writes as 1251 > 89y, i.e., S1 > 254

We get S1+28 = £91+251+25, > £-655+2-484+2-25, = 253+484,
e, Yo ady?z + 23 adyat > 23 22222 + 43 2%yt O

Editor’s note. Here is a shorter proof for inequality

3

Z (z+y)(x+2)(x+1)

cyc

[a—y

> —.
-2

Denote  + y + 2z +t = 2s. The arithmetic mean-geometric mean
inequality gives (z + y)(z + 2)(z +t) < (%)3, so it remains to prove
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chc (ﬂci)g > %. This results by noting that one has

3 4xr — s
> >
(x +s)3 27s

cyc

because the numerator of the expression obtained by subtracting the right
side from the left side is (22 — s)?(s% + 3sz — x?), which is nonnegative since
r < 2s. OJ
It is clear that the equality holds if and only if x =y = 2z = ¢.
Yet another proof is given on p. 134 of [HJ.

REFERENCES
[H] P.K. Hung, Secrets in inequalities, vol. 1, Gil, Zaldu, 2007.

n? n" 1
372. Prove that lim e ™™(14+n+ — 4+ -+ — | = —.
n—o0 2! n! 2

Proposed by George Stoica, Department of Mathematical Sciences,
University of New Brunswick, Canada.

Solution by the author. For every n > 1, let X,, be Poisson random
variable with parameter n. The characteristic function (Fourier transform)
of Xn —
Vn
Eexp(it(Xn - n)/\/ﬁ) = exp (n(eit/ﬁ —-1) - ztﬁ) = exp (—t2/2 + 0(1))

-n

NG

n .
is equal to

as n — oo. Hence approaches the normal distribution N(0,1) as

n — oo. In particular,

Vn
where ®(x) is the N (0, 1) distribution function. Then take into account that

2 n 1

P(X,<n)=e (1+n+2!+---+n!> and@(o)—Q.

Solution by Victor Makanin, Sankt Petersburg, Russia. Problem 11353
from The American Mathematical Monthly says that the function

o(s) = /Ooo (1+2) evdr - \/?

decreases on (0,00) and maps this interval onto (2/3,1). We are interested
only in the inequalities

2 o
</ (1+f)se—$dx—,/81<1, Vs > 0,
3 0 S 2

that follow from this enounce, and, actually, we will use their consequence

X, —
P< n§0>—>(13(0)asn—>oo,



PROBLEMS 53

© s
/ (1—|-£> e_mdxwﬁﬂ, 5 — 00
0 S 2

(u(s) ~ v(s) for s — oo means that u(s)/v(s) has limit 1 when s goes to
infinity). Now the equality

- 1—{—E sefxdx: )y’ Ootseftdt
L) ()

can be obtained easily, by changing the variable with = + s = ¢; putting
together these two results we obtain

© s
/ tsetdt ~ (f) ﬂ, 5 — 00.
s e 2

On the other hand, by Stirling’s formula for the Gamma function, we have

o0 S\ S
/ tSetdt ~ (7) V28T, s — 00,
0

e
therefore
> t
tSetdt
A 1
lim & _——— = —

e /Oo petde 2
0

S
/ tfe tdt
0

lim Yog— = .

e / et
0
For s = n (a natural variable) the last equality reads
1 /M 1
lim / thetdt = =,
n—oo n! Jq 2

but, by repeatedly using integration by parts (or by Taylor’s formula for the
exponential with the remainder in integral form), one finds that

which is equivalent to

N | =

1 n 2 n
— [ etdt=1—e"(14n+ g4 D
n! 0 21 n!

and the result from the enounce follows as required. U

Editor’s note. Makanin’s proof relies on the relation

1 /M 1
lim — / t"etdt = -
n—oo n! J, 2
which he proves by using a result from AMM. There is however a direct proof.
Let f(t) = t"e~t. Since f'(t) = (nt"~! —t")e~! is positive on (0,n), f
increases on [0, n]. Also note that by Stirling’s theorem n! ~ v/27n f(n).
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If0 < 2 < ni then fln—2z)=m—2z)"e" " = f(n) (1 - 2)"e". Now
T\ r 2’ 3 z? 3
log<1—a) _n<_n_2n?+0<n3>>__x_2n+0<n2)'

It follows that f(n —z) = J‘"(n)e_gc_%“)(:%)egC = f(n)e_g (1 +0 (%))

2
3,

(We have z < n~ 2<<1)
In particular, 1f 0 <t <n—+2nlogn we get

[(#) < f(n—/2nlogn) = f(n)e” 5" (1 +0 <10g2)) = f(m)(1+o(1))

1
n2

If n is large enough then 0 < f(t) < 2 f(n). It follows that

F(t)dt < (n— \/inogn)%f(n) < 2f(n).

Since n! ~ v2mnf(n), we get limp, o0 27 fo' " 208 £y dt = 0.
On the other hand [” \/Wf( )t = 2nlog"f( x)dz. But
for 0 < z < /2nlogn we have f(n —z) = f(n)e = <1+O< )) =

Fn)e 5 (1 ( Lo (153"»

22
It follows that f(n — z) ~ f(n)e™2n uniformly on [0, y/2nlogn| and so

n—y/2nlogn
o< |

0

1 [V2nlogn 1 1 V2nTlogn *ﬁd
- — ~N — 2n
- e / e 5 da
V2nlogn 2
e mda.

“ v

We take z = /2ny and we get

1 v2nlogn 22 1 Vlogn 9 1 %s) ) 1
/ e_%da::/ e ¥ dyw/ e Vdy=-=.
V2rn Jo VT Jo VT Jo 2

Hence the conclusion. O

373. Let n > 1 and let ®,(X,q) = [[}_;(X —¢**Y) = ap + -+ + a, X",
with a; € R[g]. Prove that

Sy aiaisr  —q(l—g* )

n 2 - 2n+1
D i @ 1 —gt
Proposed by Florin Spinu, Department of Mathematics, Johns
Hopkins University, Baltimore, MD, USA.
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Solution by Constantin-Nicolae Beli. Let W, be the reciprocal of &,
regarded as a polynomial in X, that is, ¥,,(X,q) = [[f_;(1 — ¢**71X) =
bo+ -+ b, X", where b; = ay_;. Let ®,¥,, = co+ -+ o X?". Then ¢, =
Ziﬂ-:k aibj. Hence Y- a? = Y aiby—i = ¢, and Y. a;ai41 = Y. aby_1-; =
¢n—1. Thus we must prove that

Cn—1 _Q(l - q2n>
en 1= q2n+2 :
The relation above is an equality of rational functions in the variable q.

Therefore it is enough to prove it for an infinite number of values of ¢ € C.
; _ _2n
We will prove it for ¢ with |g| = 1, i.e., ¢ = e% with s € R. Then =21707) —

1_q2n+2 -
- qnﬂl :g:n,l =— Sinsézﬁ)s, so we must prove that ¢, sinns+c,_1 sin(n+1)s =
0.
We have
o = P,V (2, q) dz

2 o 2k z’

where C' is the unit cicle. Then the relation ¢, sinns + ¢,—1sin(n + 1)s =0
writes as

1 P, d
i /o ";EZ’S)(sinns + zsin(n + 1)3)5.

We consider the parametrization of the unit circle v : [—m, 7] — C,
y(t) = €'’ = cost + isint.
By using the formula e® — e
for z = y(t) = e’ and q = €% we get:
00 V(2 q) (z =@ (1 —2¢* )
on ett

. a+b a—b . b—a : . atb,. | 1.
b—e2ilezi—ezt)=2ie 2 7’sm"sz

=

=
Il
—

(eti _ 6(2k—1)si)(1 _ et+(2k—1)s)
et

Il
=

T
I

Lt (Rk—1)s . | _ -1 Lt QRk-1)s . . _y_ 1
2ie” 2 ‘sin W -2ie” 2 ‘sin W

I
=

ot

=
Il
—

gp(2k—1)si g T~ 2k —1)s . t+(@2k—1)s

I
—=
[\)
&z
B
|
Q
Kﬁ
=

T
I

2 .
where o« = 2™ %" and

L t—(2k—1)s . t+(2k—1)s L t4+(2k—1)s
ft) = | I sin 5 sin 5 = | | sin ————.
k=1 k=-n+1

Since also d;’(—sf)) = 1dt, the statement we want to prove is equivalent to
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/ f(t)(sinns + sin(n + 1)s(cost + isint))dt = 0.
Note that f is an even function and, same as the mapping
Bu(et, )Wy (e, )

(eli)n ’

it has a period of 27. Since f(t) is even and sint is odd, f(¢)sint is odd and
therefore ["_ f(t)sintdt = 0. So we are left with proving that

t—

f(t)(sinns + sin(n + 1)scost)dt = 0.

—T
By using the formulas sina cosb = %(sin(a+ b) + sin(a — b)) and sinz +

siny = 2sin 23 cos IHY

we get
: . . 1, . )
sinns + sin(n + 1)scost = sinns + i(sm(t +(n+1)s)+sin((n+1)s —t)

= %(sin ns +sin(t 4+ (n + 1)s)) + %(sin ns+sin((n+1)s —t))

L t+(2n+1)s t+S_S,nt7(2n+1)sCOSt75
= sin 5 cos — i 5 5
It follows
f(t)(sinns +sin(n + 1)scost)dt = / (g(t) — h(t))dt,
where
+@n+1)s  t+s t+s T (2k — 1)
g(t) = f(t)sin 5 €08 —— = €08 —— H sin 5
k=—n+1
and
t—(2n+1 t— t e t+ (2k —1
h(t) = f(t)sin ( Z+ )Scos 28:005 +SkH sin—i_(z)s.
=—n

Note that g(t) = cos S [T _, sinw = h(t 4+ 2s). Also note
that f(t) has period 27 and so does sinmcos b2 = é(sin(t —(n+
1)s) — sinns). Hence h(t) has period 27. It follows that [" g(t)dt =

flﬁ‘;s h(t)dt = [T _h(t)dt, whence [T (g(t) — h(t))dt =0, as clalmed. O

374. Let Aq,..., A, be some points in the 3-dimensional Euclidean space.
Prove that on the unit sphere S? there is a point P such that

PA,-PAy---PA, > 1.

Proposed by Marius Cavachi, Ovidius University of Constanta.
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Solution by the author. We may assume that A, ¢ S? for all k. Indeed,
if we prove our statement for points not lying on S? then for m > 1 there
are points Aj pm, ..., Apm ¢ 52 with lim,,—yoe0 Apm = Ay, VE and for each m
there is some P,, € S? such that PpAi - - PpApm > 1. Now there is a
subsequence of (Pp,)m>1 which is convergent to some P € S%. When we take
limit over this subsequence we obtain the inequality PA;--- PA, > 1.

The idea is to prove that for any A ¢ S? we have Jpeg2(log PA)ds > 0.
By taking A = Ay and adding over 1 < k < n one gets

/ log(PA;--- PAy)ds > 0.
pes?

It follows that log(PA;--- PA,) >0, so PA;---PA, > 1 for some P € 52

By choosing a suitable coordinate system we may assume that A has
coordinates (0,0, a) for some a > 0, a # 1. We use the cylindrical coordinates
p, ¢, z given by & = pcos¢, y = psing. For any P € S? of cylindrical
coordinates (p, ¢, z) we have p?+22 = 1, s0 PA% = p?+(2—a)? = 1+a®—2az.
Since also ds = d¢dz, one gets

1 2m 1
E(a) := / log PAds = / / —log(1 + a® — 2az)d¢dz
Pes? —1Jo 2

1
= 7r/ log(1 4 a? — 2az)dz.
-1

Obviously F(0) = 0, so we may assume that a > 0. We use the linear
substitution u = 1 + a? — 2az and we get
(1-a)?
E(a):—i logudu:—L(hlogu—u)
2a (1+a)? —2a (14a)?

= g((l +a)*log(1 +a) — (1 —a)?log|l — a| — 2a).

(1-a)?

We consider separately the cases a < 1 and a > 1.
If a < 1 then we use the Taylor expansions of log(1 + a) and we get
2 3 2 3
a

ZE(@):(1+a)2(a—%+§—'--)—(1—a2(—a—%—%—~-)—2a
a/3 0/5 a2 a4 a6
@2t S C ) a2
a3 ad at b
— (2423 (2 + 2= 4+ .Y —da(— + = 1+ ..
(2+207) (5 + - +-0) —da(p + o +--0)
3 4 5 6
But 2 + 2a® > 4a, so 2E(a) > 4a(%4 -4 + % — % +---) > 0.
If a > 1 then

1
gE(a) = (a+1)*log(a+1)—(a—1)*log(a—1)—2a = aQEE(f)—i-élaloga > 0.
77 T a

As L <1, weget E() > 0. O
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Solution by Victor Makanin, Sankt Petersburg, Russia. We start by
proving that the similar property holds in the Euclidian (2-dimensional)
plane. Namely, let C1,...,C), be points in the same plane with a unit cir-
cle C. We show that there exists some point P on this circle such that
PCy---PC, > 1. In order to do that, let ¢1,...,¢c, be the (complex) af-
fixes of C,...,C, respectively in a Cartesian system of coordinates with
origin in the center of C, and consider the complex polynomial f(z) =
(z—c1)- (2 —cp) = 2"+ ap_12"" + --- + ag. Consider yet the poly-
nomial g(z) = apz" + a12" ' + -+ ap_12 + 1 (with coefficients in reverse
order). Observe that g(0) = 1, hence, by the Maximum Modulus Principle,
the maximum of g on C is at least 1. But, if z # 0, f(z) = 2"¢(1/%2), hence

max | f(z)| = max|z"g(1/z)| = max|g(1/z)| = max |g(z)| > 1.

z]=1 |z[=1 |z[=1 |z|=1
Thus, there exists z with |z| = 1 and |f(z)| > 1; if P is the point with affix
z, P belongs to C and PC --- PC,, > 1, which we wanted to prove.

Now we solve the problem. Let m be any plane through the origin (the
center of S?), and let C be the great circle of S? obtained as its intersection
with 7. Let C4,...,C), be the orthogonal projections of Ai,..., A, on .
By the above proved statement (applied in the plane 7) there exists P € C
such that PC; --- PC,, > 1. But we have PAy;, > PCy, for all k € {1,...,n},
therefore PA; --- PA,, > 1 follows (and, of course, P belongs to S?), finishing
the proof.

Note that we proved more than it was required, namely that in any
plane passing through the center of the unit sphere there exists a point P
such that PA;---PA, > 1. O

375. Let n > 3 be an integer. Find effectively the isomorphism class of the
Galois group Gal(Q(cos 22)/Q).

Proposed by Cornel Baetica, Faculty of Mathematics and
Informatics, University of Bucharest, Romania.

Solution by Constantin-Nicolae Beli. Let ( = (, be the primitive nth
root of unity, { = (:os%7r + isin 2% Then (:os%r = ¢+ (¢!, so we must
determine Gal(Q(¢ + ¢71)/Q). Since ¢ + ¢! € Q(¢) is invariant under the
automorphism ¢ — ¢!, we have (@(C)«HC?1> CQ¢C+¢ Y CQ(C). We have
[Q0) = QO] = (¢ = ¢7H)] = 2. Since Q(C + (™) # Q(C) (we have
Q(¢+¢71) € R but Q) ¢ R), we must have Q(¢ +¢™") = Q(¢) ¢
and so Gal(Q(¢ +¢7)/Q) = Gal(Q(¢)/Q)/(¢ = ¢71). But Gal(Q(()/Q) =

U(Zy,) and under this isomorphism ¢ + ¢! corresponds to —1. Therefore

Gal(Q(cos 2%)/Q) > U(Zyn)/(-1).
Let n = 2%p{* ---pSs. Then

U(Zn) = U(Zoe) x U(Zyor) x - x U(Zyas)
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and under this isomorphism —1 corresponds to (—1,—1,...,—1). Thus
U(Zyp)/(—1) =2 (U(Zga) X U(Zpixl) X o X U(Zyos ) /((—1,...,=1)).

Note that if o < 1 then U(Zga) is the trivial group, so it can be
dropped in the product above. If @ > 2 then we have an isomorphism
U(Zaga) =& Zg X Ziga—2 given by (—1)?5° + (a,b). This isomorphism maps —1
to (1,0). For 1 <1i < s we have U(Zp;li) = Zp;xi—l(pi_l) = Log X Lpoi gy, 1y 000
where 2%||p; — 1. This isomorphism maps —1 to the only element of Zga x
Ly (;—1) j20; OF order 2, namely (24-1)0).

In conclusion, if o <1 then U(Z,)/(—1) is isomorphic to

ps(

(Zaer X L 1) pons X+ - X Lgas X L (, _1y720) /{2771, 0, 29771,0))
which is also isomorphic to

(Z2a1 X 'XZQas)/<(2al_1, “e ,2as_1)> XZpal—l X - 'XZpas—l(
1 S

(p1—1)/2%1 ps—1)/2%

Similarly, when o > 2 we get U(Z,,)/{—1) isomorphic to

(ZQ X ZQ“I X oo X Zzas)/<(17 2&1—1’ el 2a5—1)>

X ZQOA72 X chlxlfl(plil)/2al X oo X Zp?sfl(ps_l)/Qas.

We need the following result:
Lemma. If 1 < aq < --- < ag are integers then
(Zigar X -+ X Zigas ) /(27071 ., 2% 7)) 2 Zigay 1 X Zgag X - -+ X Zinas.
Proof. We consider the mapping
fiZ° = (Zgar X -+ X Tgas)/{(207L, ..., 207 1Y)

given by (z1,...,xs) — (x1,29 + 2927 %z, ..., x5 + 2% z1). Obviously, f
is linear and onto.

If (x1,...,25) € ker f then there is some t € Z such that (z1,z2 +
20270y 20Ty ) — (2007297 = (0 in Zgay X - - - X Zgas, ..,
such that 291 | x1 — 290~ and 2% | x; + 2% % gy — 2%~ 1t = g, + 2079 (7 —
20171¢). The first condition implies that 24171 | 1 and for i > 1 we have
20i | 22791 () — 291714) which, together with 2% | z; + 2% 791 (1) — 2917 1¢),
implies 2% | ;. Thus (z1,...,7s) € 21717 x 2927 x ... x 297,

Conversely, if (z1,...,25) € 21717 x 2927 x .. x 2%7 then write
x1 =271y, and z; = 2%y; for i > 1. Then

flzy,. . @) =21 (1,2027% 2879 4 (0, 29, ..., Ts)
= g2t 90l gasmly (0 292y, L. 2%y,),

which is 0 in (Zger X +++ X Zges) /(2007100 297 1)) . Thus (z1,...,25) €
ker f.
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In conclusion, ker f = 241717 x 2927 x --. x 2%Z, which implies that

(Zigor X - X Lgas ) /(277,297 1)) 2 78 ) ker f 2 Zigay—1 X Zigan X - - - X Ligas .

If @ <1 then let ag = min; a;. By the Lemma we get
(Zgar X - X Zgas) /(2071 ..., 2% 1)) 2 Zgay X -+ X Zigay—1 X -+ X ZLoas.

It follows that

If > 2 then by the Lemma
(ZQ X ZQM X oo X ZQGS)/<(17 2a1—17 RN 2a5—1)> = Z2a1 X oo X Zgas.
It follows that in this case one has

U(Zn)/<—1> = ZQQ72 X Zpizlfl(plil) X - X Zp?sfl(ps_l).

376. (a) Show that the probability of a point P(z,y,z), chosen at random
with uniform distribution in [0,1]3, to be at a distance to the origin of at

. (15—8v/2)
most /2 is At

(b) Prove that

cos3 6 4

/4 cos3/2 20 (4v2 - 5)7
de .
0

Eugen J. Ionagcu, Department of Mathematics, Columbus State
University, Columbus, Georgia, U.S.A.

Solution by Cristo M. Jurado (student) and Angel Plaza, Department of
Mathematics, Universidad de Las Palmas de Gran Canaria, Spain. (a) The
probability is equal to the volume of the subset of the sphere with radius v/2
inside the unit cube having one of its vertices at the center of the sphere.
We may consider the sphere centered at the origin of coordinates, and the
cube at the first octant. The volume may be obtained also considering the
first octant of the sphere with radius v/2, and taking out the part of this
octant that is out of the cube, which is equivalent by symmetry three times
the volume V of the part of the sphere in the first octant over the plane
of equation z = 1. The volume V will be calculated by using the spherical
coordinates (p,«,3), x = pcosfcosa, y = pcosfsina, z = psinfs. We
are interested in the region p < v/2, z = psin > 1, which implies that
sin3 > 1/v2, ie., m/4 <3 <7/2, and p > 1/sin 8. We find
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/2 pm/2 V2 T /2 V2
V = / / / pzcosﬁdpdﬁda:/ / p? cos Bdpdf
0 n/4 J1/sinp 2 w/4 J1/sinf

77/”/2 (2\/50085 cos 3 ) T <2\/§sin5 1 )]
= 5 - . 3 dﬁzi - D)
2 Jra 3 3sin® 3 2 3 6 sin” 3

B 7T<2\/§ 5) ™2 5w
= 5l5 5 Yys_ =0

w/2

w/4

3 6) 3 12
4m(v/2)3
Therefore, the probability we are looking for is P = W?E\/;) -3V =

(15 — 8v2)7

%l%) The value of the proposed integral is obtained by calculating the
probability of part (a) by subtracting from the unit cube the part outside
to the sphere of radius v/2. This time we use the polar coordinates (p,0,2),
where x = pcosf, y = psinf. The points of the unit cube outside the sphere
of radius v/2 are characterized by p2 + 22> 2. Since also 0 < z < 1, we have
p>1land \/2—p2<z<1.

Note that the region we are interested in is symmetric about the half-
plane {# = 7/4}, which divides the cube into two congruent triangular
prisms. So the volume we want to calculate is twice the volume contained
between the half-planes {6 = 0 and {# = w/4}. This region is characterized

by 0 << 7w/4, 2 =pcosh <1,p>1,and \/2 — p? < z < 1. Tts volume W

1S
w/4 rl/cos€ 1
pdzdpdf
/0 /1 /\/Qp2
w/4 rl/cos6
= 1—+/2—p%) pdpdd
I A GRS
w/4 2 1 1/ cos@
p 2\3/2
—+-(2- do
o (Frae-am)]
I

1 1 1 [/ 1 \*?
. )ag-: 29— — ) -1
2cos? 6 2> a9 3/0 << C082(9> a9

W =

1 1 (™4 cos®/220
= tan0]3/4—7r+/ - =
2 8 3/ cos? 12
1 57w n 1 /“/4 cos®/2 20
2 24 3, cos3 0
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This implies

15 — 8v/2 2 [™/* cos?/?2
(15 8\[)71-:1_2W:577_/ cos Hd&
12 12 3/, cos? 6
w/4 3/2 _
and so/ cos i 20 40 — (42 5)7T' 0
0 cos® 6 4

377. Let p > 2 be a prime and let n be a positive integer. Prove that

= e ()

Proposed by Ghiocel Groza, Technical University (TUCEB),
Bucharest, Romania.

Solution by Constantin-Nicolae Beli. Let ¢ = ¢, = e2™/P For any
integer k we have

_1 .
pZCkl _r ifpl|k
Py 0 otherwise

soif f=ap+ -+ a, X" € C[X] then

p—1 p—1 n {%J
A =D ard® = pagk.
=0 1=0 k=0 k=0

In particular, if f = (1 —X)" = Y3 _o(=1)*(}) X" we get Zg:ol(l -

¢Hhn = pS, where S := ZLiJ (—1)’“(;2).

Now the prime p of Q totally ramifies in Q(¢). The only prime of
Q(¢) lying over p is P = (1 — ¢). We denote by v, : Q — Z U {oo} and
wp : Q(() = Z U {oo} the valuation maps corresponding to p and P. Then
ep;p =p— 1,50 wp(a) = (p — 1)vy(a) Va € Q.

We have to prove that v,(S) > L%J But for any [ we have (1—¢)" €
P", so pS € P". It follows that

(P = 1)1 +vp(5)) = (p = Dup(pS) = wp(pS) 2 n>n—1.

Hence, 1+ v,(5) > % > L%J, so vp(S) > L%J O
Editor’s note. An alternative proof which does not use the arithmetics
of Q(¢) was proposed by Victor Makanin. He denotes S,, := ,Ei/g J (—1)F (pr;g)

and proves the same formula S, = %Zf;ll(l —¢H™. (At 1 = 0 the term
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(1 —¢Y™is 0 so it can be ignored.) As (,...,(P~! are the roots of ®,(X) =

))((p:f, it follows that 1 — ¢,...,1 — ¢P~! are the roots of

P,(1-X) = (11__XX)p__11 = XxpPl_ <’1’>Xp—2+ (g)Xp_g—"'—i- (pg).

It follows that the sequence (S,)n>1 satisfies the linear recurrence

P P P B
Sn"<1>5h—1+‘<2>5h—2_”"+'<p__1>5ﬁ—p+1——0

for n > p. From here he uses induction on n.

If n=1,...,p—1 the statement is trivial, as L%J =0. If n > p we

use the recurrence relation above. For 1 < j < p — 1 we have p | (z;) and, by
n—j—1 —j—1

the induction step, pL p—1 J | Sp—j. It follows that pvp—l JH | Sp—;. But

for 1 < j < p—1 we have V;EIIJ +1= L%J > U}‘f_” Therefore

n—1
pb’jJ divides all the terms of the sum in the right side of equation
Sn = @ Sno1 - @ Snz+ = pp— 180 pi1
and hence it divides S,. O

378. Let (zp,)n>1 be a sequence with 0 < z,, < 1. Then the following are
equivalent.

(i) For any convergent series of positive numbers ) -, a, the series
Y n>1 @i is convergent, as well. -

(ii) The series >, -, M~1/(=21) 5 convergent for some M > 1, large
enough.

Proposed by Constantin-Nicolae Beli, Simion Stoilow Institute of
Mathematics of the Romanian Academy, Bucharest, Romania.

Solution by the author. (ii)=(i) We have

S = i Y
n>1 ne€A neB
where A = {n | a, < M~"/(=2)} and B = {n | a, > M~/ =20},
Let S1 = 3,51 an. If n € B then a;~™ > M~ that is, aj» < May,
and so Y cpapt <> 5 Ma, = MS.
Let Sy = 3,5y M~Y/0=20) If n € A then afr < M~=/(=2) —
M - M~V (=) g0
D a < 3 M- MU = S,
ncA n>1
In consequence, ), - ap® < M(S1 + Sz) < o0.
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(i)=(ii) We prove that if > -, M~Y(=2) — o6 for any M > 1 then
there is a sequence (ay,)n>1 of positive numbers such that > -, a, < oo yet
> n>1 0y = 00.

If M > 1 then anl M~Y/(=2n) = o0, so for any integer m > 0 and
any C' > 0 there is an integer m’ > m such that ZZimH M-Y(Q=zn) > .
Therefore we may construct recursively an integer sequence 0 = m; < ma <
mg < --- such that

M1 1
Siv= Y i 0T > o> 1
n=m;-+1 ¢

It follows that i%S; > 1.
We define the sequence (a,)n>1 by

1
an = 5o VA=) i my 1 <n < mypa.
2 SZ
We have
mit1 Mit1
_ 1 /ey L g1
Z ai_iQi Z ! _iQSZ-.Si_ZE'
n=m;+1 n=m;+1

It follows that 3 o1 an =3 5y 3 < 00.
If m; +1 <n < my then i25; > 1 and x, < 1, so (i%S;)*" < i2S;.
Since also §~%/(1=%n) = j.;=1/(0=2n) we get

1 1

1
a¥n = 71'7171/(17:%) > Z‘*xn/(lf"ﬂn) — 72-71/(1790”),
T (d28y)n 25, iS;
whence
A 1 mff 1) _ L 1
S ezl Y e Log L
n=m;+1 i5i n=m;+1 05 t
It follows that 3 o ap® > 375y 1 =00 0

Note. This result generalizes Problem 364 proposed by Cristian Ghibu
in the issue 1-2/2012 of GMA. Unlike our condition (ii), his condition
limsup(1l — z,) logn < oo,
n—oo
is only sufficient but not necessary for (i) to happen. It is not hard to see
that his condition implies (ii) above. If L = limsup,,_,..(1 — z,,)logn then
for n large enough we have (1 — x,)logn < 2L, so 2logn < 4L/(1 — x,).

4L
It follows that n? < eT==n. Therefore if we take M = e*F then, for n large
enough, we have M~1/(1=an) < n—lg Hence Zn21 M~1/(=2n) is convergent.



