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Abstract. Let f ∈ C[X] with deg f ≥ 2. If A is the generalized Frobenius
companion matrix of f , we apply several matrix inequalities to A2 and A3

to derive new bounds for the roots of f .
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1. Introduction

Let the polynomial

fn(x) = xn − a1x
n−1 − a2x

n−2 − · · · − an−1x− an ∈ C[X]

with an ̸= 0. We suppose that there are complex numbers b1, b2, . . . bn−1,
c1, c2, . . . , cn such that

a1 = c1, a2 = c2b1, a3 = c3b1b2, . . . , an = cnb1b2 · · · bn−1 (1.1)

and consider the matrix

A =


0 bn−1 0 · · · 0
0 0 bn−2 · · · 0
· · · · · · · · · · · · · · ·
cn cn−1 cn−2 · · · c1

 ∈ Mn(C). (1.2)

Then we have the equality (see [5], p. 43)

fn(x) = det(xIn −A),

which shows that the roots of the polynomial fn are exactly the eigenvalues
of matrix A.
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Type (1.1) decompositions are always possible. The simplest decompo-
sition is obtained when we choose

b1 = b2 = · · · = bn−1 = 1, ck = ak, k = 1, n,

and in this case the matrix A is the classical Frobenius companion matrix.
In what follows we call A given in (1.2) the generalized Frobenius companion
matrix corresponding to decomposition (1.1).

Using the standard notation, for A ∈ Mn(C) we denote by σ(A), r(A),
∥A∥ the spectrum, the spectral radius, and the spectral norm of A, respec-
tively. We recall the following well-known properties of the spectrum, spectral
radius, and spectral norm of A (see, e.g., [2]):

σ(A) = {λ ∈ C : λ is eigenvalue of A} ,
r(A) = max {|λ| : λ ∈ σ(A)} ,

∥A∥ = max
{√

λ : λ ∈ σ(A∗A)
}
= r(A∗A)1/2,

where A∗ is the Hermitian adjoint of A. From matrix analysis we have the
well known inequality

r(A) ≤ ∥A∥ .
We need the following result due to Kittaneh ([4], p. 602):

Lemma 1. Let A ∈ Mn(C) be partitioned as

A =

(
A11 A12

A21 A22

)
,

where Aij is an ni × nj matrix with ni + nj = n. If

Ã =

(
∥A11∥ ∥A12∥
∥A21∥ ∥A22∥

)
then we have the inequalities

r(A) ≤ r(Ã),

∥A∥ ≤
∥∥∥Ã∥∥∥ .

2. Main Results

In what follows we use Am, where m ∈ {2, 3}, to give new bounds for
the roots of f.

Case m = 2. Let

A =


0 bn−1 0 · · · 0
0 0 bn−2 · · · 0
· · · · · · · · · · · · · · ·
cn cn−1 cn−2 · · · c1


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be the generalized Frobenius companion matrix corresponding to decompo-
sition (1.1). Calculating, for n ≥ 3 we obtain

A2 =


0 0 bn−2bn−1 0 0 · · · 0
0 0 0 bn−3bn−2 0 · · · 0
· · · · · · · · · · · · · · · · · · · · ·
b1cn b1cn−1 b1cn−2 b1cn−3 b1cn−4 · · · b1c1
αn αn−1 αn−2 αn−3 αn−4 · · · α1

 ,

where αk = c1ck + bkck+1, k = 1, n, and bn = cn+1 = 0.
We write A2 as a sum of three matrices

A2 = R+ S + T,

where

R =


0 0 0 · · · 0
0 0 0 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · 0
αn αn−1 αn−2 · · · α1

 ,

S =


0 0 0 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · 0

b1cn b1cn−1 b1cn−2 · · · b1c1
0 0 0 · · · 0

 ,

T =

(
0 Bn−2
0 0

)
,

and Bn−2 = diag (bn−1bn−2, . . . , b2b1) ∈ Mn−2(C).
An elementary calculation shows that we have

R∗S = R∗T = S∗R = S∗T = T ∗R = T ∗S = 0. (2.3)

From (2.3) we find∥∥A2
∥∥2 =

∥∥∥(A2
)∗

A2
∥∥∥

= ∥(R+ S + T )∗ (R+ S + T∥)
= ∥R∗R+ S∗S + T ∗T∥
≤ ∥R∗R∥+ ∥S∗S∥+ ∥T ∗T∥ .

We calculate and get

∥R∗R∥ = |α1|2 + |α2|2 + · · ·+ |αn|2 ,

∥S∗S∥ = |b1|2
(
|c1|2 + |c2|2 + · · ·+ |cn|2

)
,

∥T ∗T∥ = max
(
|b1b2|2 , |b2b3|2 , . . . , |bn−2bn−1|2

)
.



4 Articole

Using these relations we find the inequality∥∥A2
∥∥2 ≤ max

(
|b1b2|2 , |b2b3|2 , . . . , |bn−2bn−1|2

)
+

n∑
j=1

(
|αj |2 + |b1|2 · |cj |2

)
.

(2.4)

Since for every root z of the polynomial f we have the inequality

|z| ≤
∥∥A2

∥∥1/2 , (2.5)

the next theorem follows from (2.4) and (2.5).

Theorem 2. For every root z of the polynomial f we have the inequality

|z| ≤

max(|b1b2|2 , . . . , |bn−2bn−1|2) +
n∑

j=1

(
|αj |2 + |b1|2 · |cj |2

) 1
4

.

Another way to establish new bounds for roots using A2 is to partition
this matrix for n ≥ 4. We choose b1 = b2 = · · · = bn−1 = b > 0 and partition
A2 as

A2 =

(
A11 A12

A12 A22

)
,

where

A11 =


0 0 b2 0 · · · 0
0 0 0 b2 · · · 0
· · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 0
bcn bcn−1 bcn−2 bcn−3 · · · bc1

 ∈ Mn−1(C),

A12 =


0
0
...
b2

bc1

 ∈ Mn1(C),

A21 = (αn, αn−1, . . . , α2) ∈ Cn−1,

A22 = α1 ∈ C.
From Lemma 1 we obtain

r(A2) ≤ r

(
∥A11∥ ∥A12∥
∥A21∥ ∥A22∥

)
=

=
1

2

(
∥A11∥+ ∥A22∥+

√
(∥A11∥ − ∥A22∥)2 + 4 ∥A12∥ · ∥A21∥

)
.

(2.6)



R. Zamfir, Bounds for polynomial roots 5

Next we need to evaluate all the above norms. Obviously, we have:

∥A12∥ = b

√
b2 + |c1|2, (2.7)

∥A21∥ =

√
|α2|2 + |α3|2 + · · ·+ |αn|2, (2.8)

∥A22∥ = |α1| . (2.9)

We have a little bit more work to do in order to evaluate ∥A11∥. If we
have a Hermitian matrix A1 = (aij) ∈ Mn(C) written in a partitioned form
as follows

A1 =

(
Ã1 x
x∗ ann

)
,

where x ∈ Cn−1, x∗ is the hermitian adjoint of x and Ã1 ∈ Mn−1(C), then
we find

detA1 = ann det Ã1 − x∗
(
adj Ã1

)
x, (2.10)

where adj Ã1 is the classical adjoint of Ã1 (see [2], p. 175).
Using successively relation (2.10) and applying recursive reasoning, we

obtain

det (λIn−1 −A11A
∗
11) =

= λ
(
λ− b4

)n−4 · [λ2 − b2
(
b2 + α

)
λ+ b6

(
|cn−1|2 + |cn|2

)]
,

where

α =

n∑
j=2

|cj |2 .

From the last equation we immediately obtain

∥A11∥2 =
1

2

[
b2
(
b2 + α

)
+ b2

√
(b2 + α)2 − 4b2

(
|cn−1|2 + |cn|2

)]
. (2.11)

We are able to give the next theorem.

Theorem 3. If z is a root of f , β = ∥A11∥, and γ =

 n∑
j=2

|αj |2
1/2

, then

we have the inequality

|z| ≤

[
1

2

(
|α1|+ β +

√
(|α1| − β)2 + 4γb

√
b2 + |c1|2

)]1/2
.
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Proof. Within relation (2.6) we replace the norms provided by (2.7), (2.8),
(2.9), (2.11) and use inequality (2.5). 2

Case m = 3. Let us now consider the third power of the matrix A.
Basic computations will show that for n ≥ 4 we have

A3 =



0 0 0 bn−3bn−2bn−1 0 · · · 0
0 0 0 0 bn−4bn−3bn−2 · · · 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 0 · · · 0

b1b2cn b1b2cn−1 b1b2cn−2 b1b2cn−3 b1b2cn−4 · · · b1b2c1
b1b2αn b1b2αn−1 b1b2αn−2 b1b2αn−3 b1b2αn−4 · · · b1b2α1

βn βn−1 βn−2 βn−3 βn−4 · · · β1


where

αk = c1ck + bkck+1,

βk = b1c2ck + bkbk+1ck+2 + c1αk

for k = 1, n, and bn = bn+1 = cn+1 = cn+2 = 0.
We write A3 as a sum of four matrices

A3 = M +N + P +Q, (2.12)

where

M =


0 0 0 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
βn βn−1 βn−2 · · · β1

 ∈ Mn(C),

N =


0 0 0 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · 0
0 0 0 · · · 0

b1αn b1αn−1 b1αn−2 · · · b1α1

0 0 0 · · · 0

 ∈ Mn(C),

P =


0 0 0 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · 0

b1b2cn b1b2cn−1 b1b2cn−2 · · · b1b2c1
0 0 0 · · · 0
0 0 0 · · · 0

 ∈ Mn(C),

Q =

(
0 Tn−3
0 0

)
∈ Mn(C),
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and Tn−3 = diag (bn−3bn−2bn−1, bn−4bn−3bn−2, . . . , b1b2b3) ∈ Mn−3(C).
We have the equalities

M∗N = M∗P = M∗Q = N∗P = N∗Q = P ∗Q = 0. (2.13)

Using (2.12) and (2.13), we find∥∥A3
∥∥2 = ∥(M +N + P +Q)∗ (M +N + P +Q)∥

= ∥M∗M +N∗N + P ∗P +Q∗Q∥
≤ ∥M∗M∥+ ∥N∗N∥+ ∥P ∗P∥+ ∥Q∗Q∥ .

Next we attempt to evaluate the four norms involving the matrices M ,
N , P , and Q that appear in the last inequality above. We have

∥M∗M∥ = |β1|2 + |β2|2 + · · ·+ |βn|2 ,

∥N∗N∥ = |b1|2
(
|α1|2 + |α2|2 + · · ·+ |αn|2

)
,

∥P ∗P∥ = |b1b2|2
(
|c1|2 + |c2|2 + · · ·+ |cn|2

)
,

∥Q∗Q∥ = max {|bkbk+1bk+2| : 1 ≤ k ≤ n− 3} .

From the last four equalities we deduce now∥∥A3
∥∥2 ≤ max

1≤k≤n−3
{|bkbk+1bk+2|}+

n∑
k=1

(
|βk|2 + |b1|2 |αk|2 + |b1b2|2 |ck|2

)
.

Since for every root z of f we have the inequality

|z| ≤
∥∥A3

∥∥1/3 ,
we have proved the next theorem:

Theorem 4. For every root z of f , we have the inequality

|z| ≤

(
max

1≤k≤n−3
(|bkbk+1bk+2|) +

n∑
k=1

(
|βk|2 + |b1|2 |αk|2 + |b1b2|2 |ck|2

))1/6

.

3. Applications

1) Let the polynomial f(x) = x5 + x4 − 2x2 + 1. Using the package
Mathematica, we find that the roots of f (rounded to 6 digits) are

z1 = −0.915974− 1.071789i,

z2 = z1,

z3 = −0.733892,

z4 = 0.782920− 0.269331i,

z5 = z4,
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therefore max {|z| : k = 1, . . . , 5} ≈ 1.4099. If we choose

b1 = · · · = b4 = b = max
{
|ak|1/k : k = 2, 3, 4, 5

}
and ck =

ak
bk−1

and use Theorem 1, we obtain that for every root z of f holds the inequality

|z| ≤ 4
√
12.23355 ≈ 1.87.

Applying Theorem 1 with b1 = b2 = · · · = bn−1 = 1 we obtain Corollary
2.2 from [4], which, applied to f , gives the weaker bound

|z| ≤ 4
√
18 ≈ 2.0598.

We observe that if we apply Theorem 3 we find the bound

|z| ≤ 6
√
19.31725 ≈ 1.638,

which is better than the bound given by Theorem 1.

2) Let the polynomials

f1 = x5 + 2x4 + 3x3 − x− 1,

f2 = x4 − 2x3 + 4x2 − x+ 1,

f3 = x6 + 2x2 + x+ 1,

f4 = x5 − 4x4 − 3x3 − 2x+ 1,

f5 = x5 − 2x4 + 3x3 − 2x+ 1,

f6 = x4 − 2x3 − 3x2 − 4x+ 1.

In the next table we denote by M1, M2, and M the bound (correct to 3
digits) given by Theorem 1, Theorem 3 (both applied with b1 = · · · = bn−1 =

= b = max{|ak|1/k : k = 2, 3, 4, 5} and ck =
ak
bk−1

) and the maximummodulus

of the roots, respectively.

Polynomial M1 M2 M
f1 2.565 2.298 1.655
f2 2.791 2.575 1.860
f3 1.638 1.550 1.305
f4 4.675 4.671 4.661
f5 2.580 2.305 1.691
f6 2.781 2.715 2.648

We remark that in the case of f4 the bound M2 is very close to M .
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We compare now the bound M2 with some classical bounds. Let

MC = 1 +max

(∣∣∣∣a0an
∣∣∣∣ , ∣∣∣∣a1an

∣∣∣∣ , . . . , ∣∣∣∣an−1an

∣∣∣∣) (Cauchy’s bound),

MCM =

(
1 +

∣∣∣∣a0an
∣∣∣∣2 + ∣∣∣∣a1an

∣∣∣∣2 + · · ·+
∣∣∣∣an−1an

∣∣∣∣2
)1/2

(Carmichael-Mason),

MW =

(
1 +

∣∣∣∣a1 − a0
an

∣∣∣∣2 + ∣∣∣∣a2 − a1
an

∣∣∣∣2 + · · ·+
∣∣∣∣an − an−1

an

∣∣∣∣2
)1/2

(Williams),

MF = 2max

{∣∣∣∣an−1an

∣∣∣∣ , ∣∣∣∣an−2an

∣∣∣∣1/2 , . . . , ∣∣∣∣a1an
∣∣∣∣1/(n−1) , ∣∣∣∣ a02an

∣∣∣∣1/n
}
(Fujiwara [1]),

MJLR =
1

2

(
1 + |a1|+

√
(|a1| − 1)2 + 4δ

)
, where δ = max{|ak| : k = 1, n}

(the bound of Joyal, Labelle and Rahman from [3] which improves the clas-
sical bound of Cauchy).

We have the results given in the table below.

Polynomial M2 MC MCM MW MJLR MF

f1 2.298 4 4 3.741 3.302
f2 2.575 5 4.795 8.717 3.561 4
f3 1.550 3 2.645 2.828 2
f4 4.671 5 5.567 7.071 4.791
f5 2.305 4 4.358 6.928 4.791
f6 2.715 5 5.567 6.164 3.561 3.561

We remark that in every case the bound M2 is the best.
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Several discrete inequalities

D.Şt. Marinescu1), M. Monea2), M. Opincariu3), M. Stroe4)

Abstract. In this paper we present new conclusions for an open problem
proposed by Yu Miao and Feng Qi in [5] and obtain their results under
more general conditions.

Keywords: discrete inequality, Hölder inequality.

MSC: 26D15, 28A25

1. Introduction

In [6] is considered an open question about an integral inequality. This
problem was solved in different ways in [1], [3] and [7]. A complete solution
for this problem can be found in [4]. But in [5], Yu Miao and Feng Qi propose
a discrete form of this problem:

Open Problem 1.1. For n ∈ N∗, let {x1, x2, . . . , xn}, {y1, y2, . . . , yn} be
two sequences of positive real numbers satisfying x1 ≥ x2 ≥ · · · ≥ xn, y1 ≥
y2 ≥ · · · ≥ yn and

m∑
i=1

xi ≤
m∑
i=1

yi for 1 ≤ m ≤ n.

Under what conditions does the inequality

n∑
i=1

xαi y
β
i ≤

m∑
i=1

yα+β
i

hold for α and β?

Several answers to this open problem are presented in the same article
or in [2]. In this paper we show new improvements of this discrete inequality
and find the results from [5] as a consequence of our work.

2. Some useful lemmas

In this section we present and prove some useful results. First, we recall
two well-known lemmas.

1)Colegiul Naţional ,,Iancu de Hunedoara“, Hunedoara, Romania,
marinescuds@gmail.com

2)Colegiul Naţional ,,Decebal“, Deva, Romania, mihaimonea@yahoo.com
3)Colegiul Naţional ,,Avram Iancu“ Brad, Romania, opincariumihai@yahoo.com
4)Colegiul Economic ,,Emanoil Gojdu“, Hunedoara, Romania, maricu stroe@yahoo.com
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Lemma 2.1. (Abel) Let a1, a2, . . . , an, b1, b2, . . . , bn be real numbers. Then

n∑
i=1

aibi =

n−1∑
k=1

(
k∑

i=1

ai

)
(bk − bk+1) + (a1 + a2 + · · ·+ an−1) bn.

Lemma 2.2. (Cauchy) Let x, y be two positive real numbers and a, b ∈ [0, 1]
with a+ b = 1. Then

ax+ by ≥ xayb.

The next lemma is the starting point for all the results which follow in
this paper.

Lemma 2.3. Let a1, a2, . . . , an, b1, b2, . . . , bn be real numbers with

k∑
i=1

ai ≤
k∑

i=1

bi for all k ∈ {1, 2, . . . , n}.

Let t1, t2, . . . , tn be some real numbers with t1 ≥ t2 ≥ · · · ≥ tn ≥ 0. Then

k∑
i=1

aiti ≤
k∑

i=1

biti for all k ∈ {1, 2, . . . , n}.

Proof. We evaluate the difference
k∑

i=1
aiti−

k∑
i=1

biti using Lemma 2.1. We have

k∑
i=1

aiti −
k∑

i=1

biti =

k∑
i=1

(ai − bi) ti

=
k−1∑
j=1

(
j∑

i=1

ai −
j∑

i=1

bi

)
(tj − tj+1) +

(
k∑

i=1

ai −
k∑

i=1

bi

)
tk ≤ 0,

because, by hypotheses,
k∑

i=1
ai ≤

k∑
i=1

bi for all k ∈ {1, 2, . . . , n} and tk ≥ tk+1

for all k ∈ {1, 2, . . . , n− 1}. 2
The next two lemmas are consequences of the previous result.

Lemma 2.4. Let x1, x2, . . . , xn, y1, y2, . . . , yn be positive real numbers with

k∑
i=1

xi ≤
k∑

i=1

yi for all k ∈ {1, 2, . . . , n}.

If x1 ≥ x2 ≥ · · · ≥ xn then

k∑
i=1

xβi ≤
k∑

i=1

yβi for all β ∈ [1,∞) and all k ∈ {1, 2, . . . , n}.
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Proof. For β = 1 it is clear. If β ∈ (1,∞) then there exists α ∈ (1,∞) with

1

α
+

1

β
= 1.

Now
k∑

i=1

xβi =

k∑
i=1

xix
β−1
i ≤

k∑
i=1

yix
β−1
i

from Lemma 2.3. Moreover,

k∑
i=1

yix
β−1
i ≤

(
k∑

i=1

yβi

)1/β ( k∑
i=1

x
α(β−1)
i

)1/α

=

(
k∑

i=1

yβi

)1/β ( k∑
i=1

xβi

)1/α

from Hölder inequality. We thus obtain

k∑
i=1

xβi ≤

(
k∑

i=1

yβi

)1/β ( k∑
i=1

xβi

)1/α

and after simplification(
k∑

i=1

xβi

)1/β

≤

(
k∑

i=1

yβi

)1/β

,

whence the conclusion follows. 2
Remark. This result is more general than Lemma 2.3 from [5] because we
do not use the condition y1 ≥ y2 ≥ · · · ≥ yn.

Lemma 2.5. Let x1, x2, . . . , xn, y1, y2, . . . , yn be positive real numbers with

k∑
i=1

xi ≤
k∑

i=1

yi for all k ∈ {1, 2, . . . , n}.

If y1 ≤ y2 ≤ · · · ≤ yn then

k∑
i=1

xαi ≤
k∑

i=1

yαi for α ∈ (0, 1] and k ∈ {1, 2, . . . , n}.

Proof. For α = 1 it is clear. If α ∈ (0, 1) we apply Lemma 2.3 for ti = yα−1i
and get

k∑
i=1

yαi =

k∑
i=1

yiy
α−1
i ≥

k∑
i=1

xiy
α−1
i .

From Hölder inequality we obtain

k∑
i=1

xαi =
k∑

i=1

xαi

y
α(1−α)
i

y
α(1−α)
i ≤

(
k∑

i=1

xi

y1−αi

)α( k∑
i=1

yαi

)1−α
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and

k∑
i=1

xαi ≤

(
k∑

i=1

xi

y1−αi

)α( k∑
i=1

yαi

)1−α

≤

(
k∑

i=1

yαi

)α( k∑
i=1

yαi

)1−α

=

k∑
i=1

yαi ,

which concludes our proof. 2
3. An answer for the open problem and other improvements

Now we present some discrete inequalities as consequences of the results
from the previous section.

Proposition 3.1. Let x1, x2, . . . , xn, y1, y2, . . . , yn be positive real numbers
with

k∑
i=1

xαi ≤
k∑

i=1

yαi for all k ∈ {1, 2, . . . , n}.

If x1 ≥ x2 ≥ · · · ≥ xn then

k∑
i=1

xβi ≤
k∑

i=1

yβi for all β ≥ α and all k ∈ {1, 2, . . . , n}.

Proof. We apply Lemma 2.4 for xi := xαi , yi := yαi and β :=
β

α
. 2

Proposition 3.2. Let x1, x2, . . . , xn, y1, y2, . . . , yn be positive real numbers
with

k∑
i=1

xi ≤
k∑

i=1

yi for all k ∈ {1, 2, . . . , n}.

If x1 ≥ x2 ≥ · · · ≥ xn then

k∑
i=1

xα+β
i ≤

k∑
i=1

xαi y
β
i for all β ≥ 1, α ≥ 0 and all k ∈ {1, 2, . . . , n}.

Proof. From
k∑

i=1
xi ≤

k∑
i=1

yi we get
k∑

i=1
xβi ≤

k∑
i=1

yβi by using Lemma 2.4. Now

we apply Lemma 2.3 for ai := xβi , bi := yβi and ti := xαi and obtain the
conclusion. 2

Now we are ready to present a more general version of the Open Pro-
blem 1.1. We also give a proof for this result.

Proposition 3.3. Let x1, x2, . . . , xn, y1, y2, . . . , yn be positive real numbers
with

k∑
i=1

xi ≤
k∑

i=1

yi for all k ∈ {1, 2, . . . , n}.
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If x1 ≥ x2 ≥ · · · ≥ xn then

k∑
i=1

xαi y
β
i ≤

k∑
i=1

yα+β
i for all β ≥ 1, α ≥ 0 and all k ∈ {1, 2, . . . , n}.

Proof. From
k∑

i=1
xi ≤

k∑
i=1

yi we obtain
k∑

i=1
xβi ≤

k∑
i=1

yβi by using Lemma 2.4. If

we apply Lemma 2.2 we obtain

α

α+ β
xα+β
i +

β

α+ β
yα+β
i ≥ xαi y

β
i

and

α

α+ β

k∑
i=1

xα+β
i +

β

α+ β

k∑
i=1

yα+β
i ≥

k∑
i=1

xαi y
β
i .

From Proposition 3.2 we have

α

α+ β

k∑
i=1

xαi y
β
i +

β

α+ β

k∑
i=1

yα+β
i

≥ α

α+ β

k∑
i=1

xα+β
i +

β

α+ β

k∑
i=1

yα+β
i ≥

k∑
i=1

xαi y
β
i

and

β

α+ β

k∑
i=1

yα+β
i ≥

(
1− α

α+ β

) k∑
i=1

xαi y
β
i ,

which conclude the proof. 2
Remark. Proposition 3.3 represents a more general result than Theorem
3.1 from [5] because we do not use condition y1 ≥ y2 ≥ · · · ≥ yn.

Finally, we give two more results, similar with Propositions 3.1 and 3.2.

Proposition 3.4. Let β and x1, x2, . . . , xn, y1, y2, . . . , yn be positive real
numbers with

k∑
i=1

xβi ≤
k∑

i=1

yβi for all k ∈ {1, 2, . . . , n}.

If y1 ≤ y2 ≤ · · · ≤ yn then

k∑
i=1

xαi ≤
k∑

i=1

yαi for all α ∈ (0, β) and all k ∈ {1, 2, . . . , n}.

Proof. Apply Lemma 2.5 for xi := xβi , yi := yβi and α := α
β . 2



D.Şt. Marinescu et al., Several Discrete Inequalities 15

Proposition 3.5. Let x1, x2, . . . , xn, y1, y2, . . . , yn be positive real numbers
with

k∑
i=1

xi ≤
k∑

i=1

yi for all k ∈ {1, 2, . . . , n}.

If y1 ≤ y2 ≤ · · · ≤ yn then

k∑
i=1

xαi y
β
i ≤

k∑
i=1

yα+β
i for all α ∈ (0, 1], β ≤ 0 and all k ∈ {1, 2, . . . , n}.

Proof. We are using Lemma 2.5 and the condition
k∑

i=1
xi ≤

k∑
i=1

yi to get

k∑
i=1

xαi ≤
k∑

i=1

yαi for all α ∈ (0, 1] .

For all β ≤ 0 we choose ti := yβi in Lemma 2.3 and obtain the conclusion by

applying this lemma for xi := xαi and yi := yβi . 2
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Problems with lattices defined by equivalence relations

Vasile Pop1)

Abstract. Using some simple theoretical notions, such as equivalence rela-
tion, quotient set, lattice network, measure of a set, some difficult problems
of I.M.O. type are treated in a unitary approach. Some of the problems
presented here are related to Blichfeldt’s Theorem (1914) and Minkowski’s
Convex Body Theorem (1912).

Keywords: equivalence relation, quotient set, planar and spatial lattice

MSC: 11P21

1. Introduction

In the mathematical contests of I.M.O. or I.M.C. type for students, the
difficulties of the problems are not given by the complexity of the theoretical
notions, but by the lack of similarity to other problems and because much
creativity is needed for finding the solution. We give an example of such a
problem from the selection contests of I.M.O. Romanian team in 2008.

On the real line we consider a finite number of intervals with the sum
of their lengths smaller than 1. Prove that there exists a unitary division of
the real line (see Definition 2.15) which has no common points with these
intervals.

A nice solution is presented below: We divide the real line in segments
of length 1, we cut these unit segments and we put all of them over one of
them. The original intervals are, therefore, transposed on this segment and
since the sum of their lengths is smaller than 1, there exist some points on the
segment not covered by any interval. We choose such a point and construct
the unitary division with an extremity at this point. This division has no
common points with the initial intervals.

Some of the problems presented here are inspired by two theorems from
the geometry of numbers.

• Blichfeldt’s Theorem [1]. Any bounded planar region with area
greater than A placed in any position of the unit square lattice can be trans-
lated so that the number of lattice points inside the region will be at least
A+ 1.

• Minkowski Convex Body Theorem [3]. A bounded convex region
symmetric about a lattice point and with area greater than 4 must contain
three lattice points in the interior.

For a detailed discussion about these two theorems see [4], pp. 119–126.
The theorems can be generalized to the n-dimensional case as well:

1)Universitatea Tehnică din Cluj-Napoca, Facultatea de Automatică şi Calculatoare,
Cluj-Napoca, România, vasile.pop@math.utcluj.ro
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• Let V be a bounded region in Rn with volume greater than 1. Then
V contains two distinct points (x1, x2, . . . , xn) and (y1, y2, . . . , yn) such that
the point (x1 − y1, x2 − y2, . . . , xn − yn) is a lattice point in Rn.

• If V is a bounded, convex region in Rn having volume greater than
2n and is symmetric about the origin, then V contains a lattice point other
than the origin.

These two theorems with proofs can be found in [2], pp. 26–28.

The goal of this paper is to present some general ideas which allow a
unitary approach for some problems of I.M.O. or I.M.C. type. The theoretical
aspects which are necessary for solving such problems are simple algebraic
notions, such as: equivalence relation, quotient set, lattice network, measure
of a set, Dirichlet principle. The complexity and the diversity of the chosen
problems prove the efficiency of the proposed model.

2. Theoretical facts

Definition 2.5. If A is a set, then the subset ρ ⊂ A×A is called an equiv-
alence relation on A if the following conditions are satisfied:

(r) (a, a) ∈ ρ, for every a ∈ A (reflexivity)
(t) if (a1, a2) ∈ ρ and (a2, a3) ∈ ρ, then (a1, a3) ∈ ρ (transitivity)
(s) if (a1, a2) ∈ ρ, then (a2, a1) ∈ ρ (symmetry)

In the sequel, let A be a set and ρ an equivalence relation on A. We
will denote by a1 ρ a2 the fact that (a1, a2) ∈ ρ.

Definition 2.6. For every a ∈ A, the set

â = {x ∈ A | x ρ a}
is called the equivalence class of a.

Remark 2.7. If a1, a2 ∈ A then â1 = â2 or â1 ∩ â2 = ∅. We can notice also
that the set of equivalence classes represents a partition of the set on which
the relation is defined.

Definition 2.8. A subset S ⊂ A is called a complete system of representa-
tives (c.s.r.) of the classes of the equivalence ρ if the following conditions are
satisfied:

(a) for every a ∈ A, there exists s ∈ S such that a ∈ ŝ,
(b) if s1, s2 ∈ S, s1 ̸= s2, then ŝ1 ∩ ŝ2 = ∅.

Definition 2.9. Let S be a c.s.r. of ρ, B ⊂ A a subset of A and B̂ = ∪b∈B b̂.

The set SB = S ∩ B̂ is called a system of representatives of classes of the set
B.

Definition 2.10. Let S be a c.s.r. of ρ. The set {ŝ | s ∈ S} is called the
quotient set of A with respect to ρ and is denoted by A/ρ.
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In sections 3 and 4 we will use the following results.

Theorem 2.11. Let ρ be an equivalence relation on A, S a c.s.r. of ρ and
B ⊂ A a subset of A. Then the following conditions are equivalent:

i) There exists a ∈ A such that â ∩B = ∅.
ii) There is no c.s.r. included in B.

iii) A ̸= B̂.
iv) S ̸= SB.

Theorem 2.12. If A is an uncountable set and if each equivalence class is
a countable set, then A/ρ is uncountable.

Corollary 2.13. Let A be an uncountable set with every equivalence class
being a countable set and let B be a countable subset of A. Then there exists
a class â ⊂ A such that â ∩B = ∅.

Theorem 2.14. If B is subset of A which contains strictly a c.s.r. then

there exist b1, b2 ∈ B, b1 ̸= b2, such that b̂1 = b̂2.

Definition 2.15. If the straight line D is identified with the real line, then
every subset of the form {x + k | k ∈ Z}, x ∈ R, is called a unitary division
of D.

Definition 2.16. If the plane P is identified with R2, then the set

{(x, y) ∈ R2 | (x, y) ∈ Z2}
is called a planar lattice. The straight lines x = k and y = k, k ∈ Z, are
called lattice lines and the points (x, y) ∈ Z2 are called lattice points.

Definition 2.17. If the 3-dimensional space is identified with R3, then the
set

{(x, y, z) ∈ R3 | (x, y, z) ∈ Z3}
is called a spatial lattice. The planes x = k or y = k or z = k, k ∈ Z,
are called lattice planes. The straight lines x = k, y = p or x = k, z = p or
y = k, z = p, k, p ∈ Z, are called lattice lines. The points (x, y, z) ∈ Z3 are
called lattice points.

3. Lattices determined by equivalence relations

In this section we present some equivalence relations for which the equiv-
alence classes determine lattices.

Theorem 3.1. The relation ρ ⊂ R× R defined by

x ρ y ⇔ x− y ∈ Z

for every x, y ∈ R is an equivalence relation on R. The equivalence classes
are unitary divisions of the real line and [0, 1) is a c.s.r. of ρ.
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Proof. The properties (r), (t), (s) are easily verified, so ρ is an equivalence
relation. We notice that x ρ y ⇔ {x} = {y}, where {x} denotes the decimal
part of x. For x0 ∈ R the equivalence class of x0 can be represented by the
set {x ∈ R | {x} = {x0}} = {ε0 + k | k ∈ Z}, which is the unitary division of
R which contains the point ε0, ε0 ∈ [0, 1) being the decimal part of all the
elements of this class. In every equivalence class we choose as a representative
the number from the interval [0, 1), and so we obtain that [0, 1) is a c.s.r. of
ρ.

Theorem 3.2. In the plane R2 the relation ρ ⊂ R2 × R2, defined by

(x1, y1) ρ (x2, y2) ⇔ x1 − x2 ∈ Z and y1 − y2 ∈ Z

is an equivalence relation. The equivalence classes are lattice points and the
square [0, 1)× [0, 1) is a c.s.r. of ρ.

Proof. We have (x1, y1) ρ (x2, y2) ⇔ {x1} = {x2} and { y1 } = { y2 }. The

equivalence class of a point (x0, y0) is ̂(x0, y0) = { (x0 + k, y0 + p) | k, p ∈ Z },
which is the plane lattice with the point (x0, y0). The quotient set can be
represented by the complete system of representatives choosing in every class
as a representative the point (x0, y0) ∈ [0, 1)× [0, 1).

Theorem 3.3. In the space R3 the relation ρ ⊂ R3 × R3, defined by

(x1, y1, z1) ρ (x2, y2, z2) ⇔ x1 − x2 ∈ Z, y1 − y2 ∈ Z and z1 − z2 ∈ Z

is an equivalence relation. The equivalence classes are spatial lattices and
one representation of the quotient set is the cube [0, 1)× [0, 1)× [0, 1).

Theorem 3.4. On the unit circle U = { z ∈ C | |z| = 1 } of the complex
plane, the relation ρ ⊂ C×C, defined by z1 ρz2 ⇔ zn1 = zn2 , is an equivalence
relation for every fixed n ∈ N∗. For n ≥ 3, the equivalence classes are the
vertices of regular polygons with n sides inscribed in the circle U and the arc
{ z = cos t+ i sin t | t ∈ [0, 2π/n) } is a c.s.r. of ρ.

Proof. If z0 ∈ U then the equivalence class of z0 is

ẑ0 = { z ∈ C | zn = zn0 } =

{
z ∈ C |

(
z

z0

)n

= 1

}
=

{
z ∈ C | z

z0
∈ Un

}
,

where Un = { z ∈ C | zn = 1 } =
{
εk = cos 2kπ

n + i sin 2kπ
n | 0 ≤ k ≤ n− 1

}
.

So ẑ0 = { zk = z0εk | 0 ≤ k ≤ n− 1 }, which are the vertices of the regular
polygon having z0 as a vertex.

4. Problems

Problem 4.1. Let (xn)n be a sequence of real numbers. Prove that for ev-
ery r ∈ R∗ there is an arithmetic progression (an)n with ratio r such that
{xn | n ∈ N } ∩ { an | n ∈ N } = ∅.
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Solution. Because a0 + kr ̸= xn ⇔ a0
r + k ̸= xn

r ⇔ b0 + k ̸= yn, we can
suppose that r = 1. Every arithmetic progression with ratio r = 1 is a subset
of a unitary division of the real line. It is sufficient to prove that for every
sequence (yn)n there exists a unitary division of the real line which has no
common point with the set B = { yn | n ∈ N }. If { yn } is the decimal part

of yn, then the set B̂ = { { yn } | n ∈ N } ⊂ [0, 1) is a countable subset of the

uncountable interval [0,1). It follows that there exists a ∈ [0, 1) \ B̂. Using
Theorem 2.11 and Corollary 2.13 we have â∩B = ∅, so the progression with
ratio 1 and the first term a has no common points with the sequence (yn)n.

Problem 4.2. Let (An)n be a sequence of points belonging to the circle C.
Prove that for every N ∈ N, N ≥ 3, there exists a regular polygon with N
vertices inscribed in the circle C, with none of the vertices belonging to (An)n.

Solution. We can suppose that the circle C is the unit circle of the complex
plane: U = { z ∈ C | |z| = 1 }. Defining the equivalence relation on U by
z1 ρ z2 ⇔ zN1 = zN2 , we know by Theorem 3.4 that the equivalence classes of
this relation are the regular polygons with N sides inscribed in U . Each class
is a finite set (at most countable) and U is uncountable. Using Theorem 2.12
and Corollary 2.13 for the set B = {An | n ∈ N } we get an a ∈ U such that
its class, â, a regular polygon with N sides, has no common points with B.

Problem 4.3. On the real line we consider a finite number of intervals
having the sum of lengths equal to L. Prove that if L > 1, then there exist
two distinct numbers x1, x2 on these intervals such that x1 − x2 ∈ Z. If
L < 1, prove that there exists a unitary division of the real line which has no
common points with these intervals.

Solution. Considering the relation ρ on R: x ρ y ⇔ x − y ∈ Z, we know
by Theorem 3.1 that the equivalence classes are unitary divisions of R and
S = [0, 1) is a complete system of representatives of the classes. For every
interval Ik consider the set Sk = { {x } | x ∈ Ik }. Consider also B = ∪n

k=1Ik
and SB = ∪n

k=1Sk. If Z ∩ Ik = ∅, the set Sk ⊂ [0, 1) is formed by a single
interval with a length equal to the length of Ik. But if Z ∩ Ik ̸= ∅, then Sk

is formed by a union of two intervals with the sum of lengths equal to the
length of Ik, if this length is strictly less than 1. If the length of Ik is greater
than 1, then Sk = [0, 1).

Suppose L > 1. In this case there are points in [0, 1) covered at least
twice by the sets Sk. For such a point ε0 ∈ [0, 1), there are distinct points
x1, x2 ∈ B with {x1 } = {x2 } = ε0, so x1 − x2 ∈ Z.

Suppose L < 1. Because
∑n

k=1 ℓ(Ik) =
∑n

k=1 ℓ(Sk) < 1 = ℓ([0, 1)), we
can find a ∈ [0, 1)\SB. So S = [0, 1) ̸= SB. By Theorem 2.11, â∩B = ∅, i.e.,
the unitary division â has no common points with the intervals considered.

Problem 4.4. On a circle of radius 1 we consider a finite numbers of arcs
having the sum of lengths equal to L. Prove that:
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a) If L > 2π/n, n ∈ N, n ≥ 3, then there exists a regular polygon with n
vertices, inscribed in the circle, for which at least two of its vertices lie on
the given arcs.
b) If L < 2π/n, n ∈ N, n ≥ 3, prove that there exists a regular polygon with
n vertices for which none of its vertices lies on the given arcs.

Solution. Consider all arcs obtained by rotations with 2kπ/n with k =
0, 1, . . . , n − 1. We have obtained a set of arcs having the sum of lengths
L′ = nL.

If L > 2π/n then L′ > 2π. Since L′ exceeds the length of the circle,
there are points which are covered by two arcs. A point C with this property
comes from points A and B by rotation with 2k1π/n and 2k2π/n. A regular
polygon with n vertices having C as a vertex has also A and B as vertices.

If L < 2π/n then L′ < 2π, so there is a point D which has remained
uncovered by the initial arcs and their rotations. A regular polygon with n
vertices having D as a vertex does not have common points with the arcs.

Remark 4.5. Considering the relation on the unit circle in the complex
plane: z1 ρ z2 ⇔ zn1 = zn2 , we know by Theorem 3.4 that the equivalence
classes are regular polygons with n vertices, inscribed in the circle. We can
solve this problem using Theorem 2.14 for the first part and Theorem 2.11
for the second part of the problem.

Problem 4.6. Let (an)n be a sequence of real numbers. Prove that there
exists a ∈ R such that an − a is irrational for every n ∈ N.

Solution. We consider on R the equivalence relation: xρy ⇔ x−y ∈ Q. The
equivalence classes have the form â = a + Q, so they are countable. Using
Theorem 2.12 we deduce that the quotient set is uncountable. Taking the set
B = { an | n ∈ N } it follows from Corollary 2.13 that there is a class â such
that â ∩ B = ∅. This is equivalent with a + q ̸= an for every q ∈ Q and for
every n ∈ N. So an − a ∈ R \Q, for every n ∈ N.

Problem 4.7. Let (an)n be a sequence of real numbers. Prove that there
exists a ∈ R such that for every polynomial P ∈ Q[X] and for every n ∈ N
we have P (an − a) ̸= 0.

Solution. A real number b is called algebraic if there is a polynomial P ∈ Q[X]
such that P (b) = 0. The set of algebraic numbers A is a field which includes
Q. Because Q[X] is countable and each polynomial from Q[X] has a finite
number of roots (algebraic numbers), we deduce that A is countable.

Let ρ ⊂ R×R be the equivalence relation defined by xρy ⇔ x−y ∈ A.
The equivalence classes have the form x̂ = x + A, so they are countable.
Using Theorem 2.12 and Corollary 2.13 we find a class â = a+A which has
no common points with the countable set { an | n ∈ N }. It follows an−a /∈ A,
for all n ∈ N.



22 Articole

Problem 4.8. Let (an)n be a sequence of nonzero real numbers. Prove that
there exists a ∈ R such that for every polynomial P ∈ Q[X] and for every
n ∈ N we have P (ana) ̸= 0.

Solution. Because the set of algebraic numbers A has the algebraic structure
of a field, we deduce that ρ ⊂ R∗ × R∗ defined by x ρ y ⇔ x/y ∈ A∗ is
an equivalence relation. The equivalence classes have the form x̂ = xA, so
they are countable. Using Theorem 2.12 and Corollary 2.13 we find a class

b̂ = b · A which has no common points with the countable set { an | n ∈ N }.
It follows an/b /∈ A, for every n ∈ N. Taking a = 1/b the conclusion follows.

Problem 4.9. [1] In the plane, consider a finite number of polygons with the
sum of areas equal to S. Prove that:
a) If S > 1, then there is a planar lattice with at least two lattice points
contained in the given polygons.
b) If S < 1, then there is a planar lattice with all its points in the exterior of
the given polygons.

Solution 1. Suppose we cut the lattice through the lattice lines. We overlap
completely the obtained unit squares with the [0, 1] × [0, 1] square. Some
of the initial polygons have been cut but they are transformed in a finite
number of polygons included in [0, 1] × [0, 1]. The sum of areas of all these
new polygons is the same with the sum of areas of the original polygons.

If S > 1, there are in the unit square [0, 1]×[0, 1] points that are covered
more than once by the new polygons. If (x0, y0) is a point with this property
and it is covered by the translation of the polygons Pi and Pj , then the lattice
(x0, y0) + Z× Z has at least two common points with the polygons.

If S < 1, there are uncovered points in [0, 1] × [0, 1] by the translated
polygons. Let (x0, y0) be such a point. The lattice (x0, y0) + Z × Z has no
common points with the polygons.

Solution 2. If we consider the equivalence relation from Theorem 3.2 we know
that the classes of equivalence are planar lattices and a complete system of
representatives of the classes is the square [0, 1]× [0, 1] with area 1. We apply
Theorem 2.14 for a) and Theorem 2.11 for b).

Problem 4.10. [4] Let R be a bounded convex region in R2 having area
greater than 4. If R is symmetric about the origin then R contains a lattice
point other than the origin.

Solution. Consider the region R′ = {x/2 | x ∈ R} which is convex having
area greater than 1. From Blichfeldt result (Problem 4.9) there are distinct

points
(x1
2
,
y1
2

)
,
(x2
2
,
y2
2

)
such that

(
x1 − x2

2
,
y1 − y2

2

)
∈ Z2, (x1, y1) ∈ R,

(x2, y2) ∈ R. Since R is symmetric about the origin (−x2,−y2) ∈ R. The
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fact that R is convex ensures that every point on the line segment between

(x1, y1) and (−x2,−y2) is in R. Therefore
1

2
(x1, y1)+

1

2
(−x2,−y2) ∈ R∩Z2.

Problem 4.11. [5] We consider in the plane a finite number of segments
having the sum of lengths S <

√
2. Prove that there is a planar lattice with

lattice lines not intersecting any of the given segments.

Solution. We chose in the plane a rectangular system of coordinates. Let
Pxi and Pyi be the projections of the segment Li on the Ox and Oy axis.
If pxi , pyi and li are the corresponding lengths, then pxi = li · | cosαi| and
pyi = li · | sinαi|, where αi is the angle between the segment Li and the axis

Ox. Using the inequality (a+ b)2 ≤ 2(a2 + b2) we get pxi + pyi ≤
√
2 · li. If

px is the sum of all projections of the segments on Ox and py is the sum of

all projections on Oy, then px + py ≤
√
2 ·
∑

li <
√
2 ·

√
2 = 2.

If we rotate the rectangular system by the angle t ∈ [0, π/2] and we set
px(t) and py(t) to be the sum of the projections on the axis of the rotated
system of coordinates, we have px(0) = py(π/2) and py(0) = px(π/2). So
there is a t ∈ [0, π/2] such that px(t) = py(t) < 1. Let x′Oy′ be this new
system. By Problem 4.3, there exists a unitary division x0+Z of the axis Ox′,
having no common points with the segments Px′

i
. Similarly, there is y0 + Z,

a unitary division of Oy′, having no common points with the projections
Py′i

. The lattice (x0, y0) + Z × Z has the property that the segments aren’t
intersected by the lattice lines.

Problem 4.12. Prove that for every function f : R → R there is a real
number a such that the graph of the function g = f − a does not contain
points with both coordinates rational numbers.

Solution. The set A = { f(q) | q ∈ Q } is countable, so it can be written
as A = {xn | n ∈ N }. Consider B = ∪n∈N(xn + Q) = A + Q, which is a
countable union of countable sets, so is countable. We can choose a ∈ R \B.
We prove that g = f − a satisfies the desired property.

Suppose (q, g(q)) has both coordinates rational numbers. It follows
q ∈ Q and f(q) − a ∈ Q. Then a ∈ f(q) + Q ⊂ B, which contradicts the
choice of a.

Problem 4.13. [6] For every point from the space which has rational coor-
dinates it can be obtained a spatial lattice which has this point as a lattice
point. Prove that no matter what direction these lattices have, we can obtain
another lattice with its lines passing between the lines of the other lattices.

Solution. The set Q3 is countable and for every spatial lattice the set of
its lines is countable. So the set of all lines of all lattices we can draw is
countable. Let D = { dn | n ∈ N } be this set. Consider now an arbitrarily
chosen lattice. We cut this lattice into cubes with side length 1 and overlap
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all this cubes with the unit cube V = [0, 1]× [0, 1]× [0, 1]. The lines of D are
transformed in a countable set of segments, D′, from the cube V . If we prove
that there is a point M(x0, y0, z0) ∈ V such that the lines parallel to lattice
lines, passing through M , do not intersect the lines from D′, then a lattice
containing M and with lines parallel to the lines of the lattice arbitrarily
chosen will not intersect the lines of D.

There exists a set, which is at most countable, having as elements per-
pendicular planes with Ox, containing segments from D′. But there exists an
uncountably infinity of planes x = x0 ∈ [0, 1] which do not contain segments
from D′. Such a plane is intersected by segments from D′ in a countable set
of points. Let Pz and Py the projections of the segments of D′ on the planes
z = 0 and y = 0. These projections will cut the segments x = x0, z = 0 and
x = x0, y = 0 in countable sets of points. Let (x0, yn, 0) and (x0, 0, z

′
n) be

these points.
We choose y0 ∈ [0, 1] \ { yn | n ∈ N } such that the plane y = y0 does

not contain segments from D′. The projection Px of the lines from D′ on
the plane x = 0 cuts the line y = y0, x = 0 in a countable set of points
{ (0, y0, z′′n) | n ∈ N }.

Because the sets { z′n | n ∈ N } and { z′′n | n ∈ N } are countable, there
exists z0 ∈ [0, 1] \ { z′n, z′′n | n ∈ N }. The segments

{ (x0, y0, t) | t ∈ [0, 1] } , { (x0, t, z0) | t ∈ [0, 1] } and { (t, y0, z0) | t ∈ [0, 1] }
do not intersect segments from D′.
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107 (2001), Nr. 5–6, 193–198.
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Concursul naţional studenţesc de matematică

,,Traian Lalescu“, ediţia 2013

Gabriel Mincu1) şi Vasile Pop2)

Abstract. This note deals with the problems of the 2013 edition of the
,,Traian Lalescu” mathematical contest for university students, hosted by
the University of Alba Iulia between May 20 and May 22, 2013.

Keywords: eigenvalue, eigenvector, continue function, minimal polyno-
mial

MSC: 11C08; 11C20; 26A15; 26A42

În perioada 20-22 mai 2013 s-a desfăşurat la Alba Iulia etapa naţională
a concursului studenţesc ,,Traian Lalescu”.

La concurs au participat peste 60 de studenţi, reprezentând 10 uni-
versităţi din cinci centre universitare: Bucureşti, Cluj, Constanţa, Iaşi şi
Timişoara.

Concursul s-a desfăşurat pe patru secţiuni: A - facultăţi de matematică,
B - ı̂nvăţământ tehnic, profil electric anul I, C - ı̂nvăţământ tehnic, profil
mecanic şi construcţii, anul I, D - ı̂nvăţământ tehnic, anul II.

Subiectele au fost propuse, discutate şi alese ı̂n dimineaţa concursului
de câte o comisie la fiecare secţiune, ı̂n care fiecare universitate a avut câte
un reprezentant.

La organizarea concursului, pe lângă Universitatea ,,1 Decembrie 1918”
din Alba Iulia, care a oferit condiţii optime de concurs, cazare şi masă, au
contribuit Ministerul Educaţiei şi Cercetării şi Fundaţia ,,Traian Lalescu”.

Prezentăm ı̂n cele ce urmează enunţurile şi soluţiile problemelor date la
secţiunile A şi B ale concursului. Pentru soluţiile oficiale facem trimitere la
http://www.uab.ro/ctl.

Secţiunea A

Problema 1. Fie A ∈ Mn(C) o matrice, λ o valoare proprie a matricei
An, iar v ∈ Cn un vector propriu asociat lui λ. Să se arate că dacă vectorii
v,Av, . . . , An−1v sunt liniar independenţi, atunci An = λIn.

Vasile Pop

Această problemă a fost considerată uşoară de către juriu. Prezentăm
două soluţii date de studenţi ı̂n concurs.

Soluţia 1. Fie u : Cn→ Cn, u(x)=Anx. Observăm că v,Av,. . ., An−1v
sunt vectori proprii pentru u; fiind ı̂n număr de n şi liniar independenţi, ei
constituie o bază de vectori proprii pentru u. Matricea lui u ı̂n această bază

1)Universitatea din Bucureşti, Facultatea de Matematică şi Informatică, RO-010014
Bucureşti, România, gamin@fmi.unibuc.ro

2)Universitatea Tehnică din Cluj-Napoca, Facultatea de Automatică şi Calculatoare,
Cluj-Napoca, România, vasile.pop@math.utcluj.ro
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este λIn. În consecinţă, există S ∈ GLn(C) astfel ı̂ncât An = SλInS
−1, deci

An = λIn. �
Soluţia 2. Notând cu PA = Xn+an−1X

n−1+ · · ·+a1X+a0 polinomul
caracteristic al matricei A şi aplicând teorema Hamilton-Cayley obţinem

An + an−1A
n−1 + · · ·+ a1A+ a0In = 0,

de unde
Anv + an−1A

n−1v + · · ·+ a1Av + a0v = 0,

sau ı̂ncă
λv + an−1A

n−1v + · · ·+ a1Av + a0v = 0;

ţinând cont de independenţa liniară din enunţ, deducem

an−1 = an−2 = · · · = a1 = a0 + λ = 0.

Rezultă PA = Xn − λIn, de unde, aplicând din nou teorema Hamilton-
Cayley, An = λIn. �

Problema 2. Să se determine funcţiile continue f : R → R cu
proprietatea că pentru orice x, y ∈ R pentru care x − y ∈ R \ Q avem
f(x)− f(y) ∈ R \Q.

Vasile Pop

Aceasta a fost considerată de juriu drept o problemă de dificultate medie.
Studenţii care au rezolvat problema au procedat ı̂n spiritul soluţiei pe care o
prezentăm mai jos.

Soluţie. Fie α ∈ R \Q fixat. Din condiţia dată rezultă

f(x+ α)− f(x) ∈ R \Q, ∀ x ∈ R
deci funcţia continuă gα : R → R, gα(x) = f(x + α) − f(x) ia numai valori
numere iraţionale. Din continuitate rezultă că această funcţie este constantă,
deci

gα(x) = gα(0), ∀ x ∈ R ⇔
f(x+ α)− f(x) = f(α)− f(0), ∀ x ∈ R, ∀ α ∈ R \Q. (1)

Pentru x0 fixat şi α variabil ı̂n R \Q rezultă

f(x0 + α)− f(α) = f(x0)− f(0). (2)

Funcţia hx0 : R → R, hx0(α) = f(x0 + α) − f(α), este continuă pe R
şi constantă pe R \Q, deci constantă pe R. Astfel, relaţia (2) are loc pentru
orice α ∈ R, deci şi relaţia (1) este valabilă pentru orice x ∈ R şi α ∈ R.

Avem aşadar de determinat funcţiile f : R → R pentru care

f(x+ y)− f(x) = f(y)− f(0), ∀ x, y ∈ R.
Funcţia A : R → R, A(x) = f(x)− f(0), verifică ecuaţia lui Cauchy

A(x+ y) = A(x) +A(y), ∀ x, y ∈ R,
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pentru care soluţiile continue sunt A(x) = ax, x ∈ R. Deci f(x) = ax + b,
∀ x ∈ R, cu care revenind obţinem a(x − y) ∈ R \ Q, ∀ x − y ∈ R \ Q, fapt

echivalent cu a ∈ Q (dacă a ∈ R \Q, pentru x− y =
1

a
∈ R \Q s-ar obţine

a · 1
a
= 1 ̸∈ R \Q).

Funcţiile cerute sunt prin urmare f : R → R, f(x) = ax+ b, a ∈ Q, b ∈
R. �

Problema 3. Fie k ∈ N∗. Demonstraţi că valoarea minimă a lui n ∈ N∗
pentru care există matrice A ∈ Mn(Q) cu proprietatea A2k = −In este 2k.

Gabriel Mincu

Aceasta a fost considerată de juriu drept o problemă de dificultate me-
die. Concurenţii au dat mai multe soluţii, care au diferit ı̂nsă numai la
nivelul unor detalii tehnice. Soluţia prezentată mai jos urmează ideile din
demonstraţiile apărute ı̂n concurs.

Soluţie. Fie n ∈ N∗ pentru care există matrice A ∈ Mn(Q) cu propri-

etatea A2k = −In şi fie A o astfel de matrice. Atunci A anulează polinomul

f = X2k + 1, deci µA | f , unde µA este polinomul minimal al matricei
A. Cum polinomul f este ireductibil peste Q (lucru care se poate constata
aplicând criteriul lui Eisenstein polinomului f(X + 1)), deducem că µA = f .
Conform teoremei lui Frobenius, PA este o putere a lui f . Prin urmare, val-
oarea minimă cerută este cel puţin 2k. Este ı̂nsă uşor de văzut că matricea
companion

A =


0 0 0 . . . 0 0 −1
1 0 0 . . . 0 0 0
0 1 0 . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 0 0
0 0 0 . . . 0 1 0

 ∈ M2k(Q)

verifică A2k = −I2k . Aşadar valoarea minimă cerută este 2k. �

Problema 4. Să se demonstreze că

lim
n→∞

n

lnn

1∫
0

n2x2 − [nx]2

(1 + x2)(1 + [nx]2)
dx = 1.

Tiberiu Trif

Aceasta a fost considerată de juriu drept o problemă dificilă. Aprecierea
s-a dovedit a fi corectă, doar un singur concurent abordând problema, fără a
reuşi ı̂nsă finalizarea soluţiei. Abordarea sa este prezentată ı̂n soluţia 2, ı̂n
timp ce soluţia 1 este cea propusă de autorul problemei.
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Soluţia 1. Notăm In =

1∫
0

n2x2 − [nx]2

(1 + x2)(1 + [nx]2)
dx şi l = lim

n→∞

n

lnn
In.

Făcând schimbarea de variabilă nx = t, obţinem

In =

1∫
0

t2

n2 + t2
dt+ n

n∫
1

t2 − [t]2

(n2 + t2)(1 + [t]2)
dt.

Notând cu Jn cea de-a doua integrală din membrul drept al relaţiei

anterioare şi ţinând cont de relaţia

1∫
0

t2

n2 + t2
dt = 1− n arctg

1

n
, constatăm

că

l = lim
n→∞

n2

lnn

(
1− n arctg

1

n

)
+ lim

n→∞

n2

lnn
Jn.

Întrucât lim
n→∞

n2

(
1− n arctg

1

n

)
=

1

3
, deducem că

l = lim
n→∞

n2

lnn
Jn. (3)

Notând Jn.k =

k+1∫
k

t2 − k2

(n2 + t2)(k2 + 1)
dt, avem Jn =

n−1∑
k=1

Jn,k şi

Jn,k >
1

(n2 + (k + 1)2)(k2 + 1)

k+1∫
k

(t2 − k2) dt =
1

n2 + (k + 1)2
· 3k + 1

3(k2 + 1)
.

De aici, Jn,k >
1

n2 + (k + 1)2
· 1

k + 1
.

Considerăm funcţiile fn : [1,∞) → (0,∞), fn(t) =
1

t(n2 + t2)
, care sunt

strict descrescătoare pe [1,∞). Avem Jn,k > fn(k + 1) >

k+2∫
k+1

fn(t) dt oricare

ar fi k ∈ {1, 2, . . . , n− 1}. Rezultă de aici că

Jn =
n−1∑
k=1

Jn,k >

n+1∫
2

dt

t(n2 + t2)
=

1

n2
ln

t√
n2 + t2

∣∣∣∣n+1

2

,

deci
n2

lnn
Jn >

1

lnn

(
ln

n+ 1√
2n2 + 2n+ 1

− ln 2 + ln
√

n2 + 4

)
. (4)
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Avem ı̂nsă şi

Jn,k <
1

(n2 + k2)(k2 + 1)

k+1∫
k

(t2 − k2) dt =
1

n2 + k2
· 3k + 1

3(k2 + 1)
.

Deducem că

Jn,k <
3k + 1

(n2 + k2) · 3k2
=

1

k(n2 + k2)
+

1

3k2(n2 + k2)
,

adică pentru orice k ∈ {1, 2, . . . , n − 1} avem Jn,k < fn(k) + gn(k), unde

funcţiile gn : [1,∞) → (0,∞) sunt definite prin gn(t) =
1

3t2(n2 + t2)
.

Întrucât şi funcţiile gn sunt strict descrescătoare pe [1,∞), obţinem ca

mai sus Jn,k <

k∫
k−1

fn(t) dt +

k∫
k−1

gn(t) dt pentru orice k ∈ {2, 3, . . . , n − 1}.

Drept urmare, are loc

Jn <

n∫
1

fn(t) dt+

n∫
1

gn(t) dt+

2∫
1

t2 − 1

2(n2 + t2)
dt,

deci

Jn <
1

n2
ln

t√
n2 + t2

∣∣∣∣n
1

− 1

3n2t

∣∣∣∣n
1

− 1

3n3
arctg

t

n

∣∣∣∣n
1

+
3

2n2
,

de unde
n2

lnn
Jn <

ln
√
n2 + 1

lnn
+

5

6 lnn
+

1

3n lnn
arctg

1

n
. (5)

Cum expresiile din membrii din dreapta ai relaţiilor (4) şi (5) tind la 1

când n tinde către infinit, concluzionăm că l = lim
n→∞

n2

lnn
Jn = 1. �

Soluţia 2. Folosind notaţiile In şi l de la soluţia 1, obţinem succesiv:

l = lim
n→∞

n

lnn

n−1∑
k=0

k+1
n∫

k
n

n2x2 − k2

(1 + x2)(1 + k2)
dx =

= lim
n→∞

n

lnn

n−1∑
k=0

k+1
n∫

k
n

(
n2

1 + k2
− n2 + k2

(1 + k2)(1 + x2)

)
dx =

= lim
n→∞

n

lnn

n−1∑
k=0

(
n

1 + k2
− n2 + k2

1 + k2

(
arctg

k + 1

n
− arctg

k

n

))
dx =
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= lim
n→∞

n

lnn

n−1∑
k=0

(
n

1 + k2
− n2 + k2

1 + k2
arctg

n

n2 + k2 + k

)
dx.

Cum ı̂nsă x− x3

3
< arctg x < x pentru orice x > 0, putem ı̂ncadra l ı̂ntre

lim
n→∞

n

lnn

n−1∑
k=0

(
n

1 + k2
− n2 + k2

1 + k2
· n

n2 + k2 + k

)
şi

lim
n→∞

n

lnn

n−1∑
k=0

(
n

1 + k2
− n2 + k2

1 + k2
· n

n2 + k2 + k
+

n2 + k2

1 + k2
· n3

(n2 + k2 + k)3

)
.

Dar 0 <
n

lnn

n−1∑
k=0

n2 + k2

1 + k2
· n3

(n2 + k2 + k)3
<

1

lnn

n−1∑
k=0

1

1 + k2
−−−→
n→∞

0, deci

l = lim
n→∞

n

lnn

n−1∑
k=0

(
n

1 + k2
· k

n2 + k2 + k

)
.

Cum

1

lnn

n−1∑
k=1

(
n2k

(1+ k2)(n2+ k2+ k)
− 1

k

)
=− 1

lnn

n−1∑
k=1

(
1

k(1+ k2)
+

1

n2+ k2+ k

)
,

iar membrul drept al acestei relaţii tinde la zero când n tinde la infinit,

obţinem l = lim
n→∞

1

lnn

n−1∑
k=1

1

k
= 1. �

Secţiunea B

Problema B1. Punctele M1 şi M2 se mişcă rectiliniu şi uniform
pornind din A1(0, 0, 0), respectiv B1(1, 0, 0), cu vitezele v1 = i + j + k şi
v2 = i+ j − k.

Să se determine ecuaţia suprafeţei generate de dreptele M1M2 şi să se
precizeze forma ei.

Vasile Pop

Soluţie. La momentul arbitrar t vectorii de poziţie ai punctului M1(t)
şi M2(t) sunt rM1 = rA1 + t · v1 şi rM2 = rA2 + t · v2, deci punctele M1 şi M2

au coordonatele:

M1(t) = (t, t, t), M2(t) = (1 + t, t,−t).

Un punct arbitrar de pe dreapta M1M2 are vectorul de poziţie de forma

r = (1− s)rM1 + s · rM2 , s ∈ R,
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deci punctele suprafeţei S au coordonatele (x, y, z) date prin relaţiile:

S :

 x = (1− s)t+ s(1 + t) = t+ s,
y = (1− s)t+ st = t,
z = (1− s)t− st = t− 2st, t, s ∈ R,

(ecuaţiile parametrice).
Din primele două relaţii obţinem t = y şi s = x− y; introducând aceste

valori ı̂n cea de-a treia relaţie, obţinem ecuaţia implicită

S : z = y − 2y(x− y)

sau

S : 2y2 − 2xy + y − z = 0,

care este ecuaţia unei cuadrice.
Matricea formei pătratice este

A =

 0 −1 0
−1 2 0
0 0 0


cu valorile proprii λ1 = 1 +

√
2 > 0, λ2 = 1 −

√
2 < 0 şi λ3 = 0. Suprafaţa

este un paraboloid hiperbolic. �
Deşi juriul a considerat problema uşoară, rezultatele au arătat o slabă

pregătire a studenţilor ı̂n probleme de geometrie aplicată. Acelaşi lucru s-a
observat şi la o problemă asemănătoare, dată la secţiunea C, pe care o lăsăm
spre rezolvare:

Problema C3. Să se determine ecuaţia suprafeţei formată din toate
punctele spaţiului egal depărtate de dreptele D1 : x = y = z, D2 : x − 1 =
= y = −z, şi să se precizeze forma ei. (Răspuns. Suprafaţa este un parab-
oloid hiperbolic de ecuaţie S : 2yz + 2xz − 2x+ y + 1 = 0.)

Problema B2. Fie V un spaţiu vectorial de dimensiune finită peste
corpul K iar F : V × V → K o formă biliniară. Definim subspaţiile:

V1 = {x ∈ V | F (x, y) = 0, ∀ y ∈ V }

V2 = {y ∈ V | F (x, y) = 0, ∀ x ∈ V }.
Să se arate că V1 şi V2 au aceeaşi dimensiune.

Problema este clasică, dar face apel la câteva noţiuni esenţiale cum sunt
matricea unei forme pătratice, matricea unei aplicaţii liniare sau teorema
dimensiunii pentru aplicaţii liniare. Ea s-a dovedit foarte bună ca problemă
de concurs.

Soluţie. Alegem o bază B = {e1, e2, . . . , en} ı̂n V şi considerăm ma-
tricea lui F ı̂n baza B, A = (aij)i,j=1,n, unde aij = F (ei, ej) ∈ K, i = 1, n.
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Avem

F

 n∑
i=1

xiei,

n∑
j=1

yjej

 =

n∑
i=1

n∑
j=1

xiyjF (ei, ej) =

n∑
i,j=1

aijxiyj

şi atunci

• x =

n∑
i=1

xiei ∈ V1 ⇔
n∑

i,j=1

aijxiyj = 0, ∀ j = 1, n ⇔

⇔
n∑

i=1

aijxi = 0, ∀ j = 1, n ⇔ At ·

 x1
...
xn

 =

 0
...
0

 ,

• y =
n∑

j=1

yjej ∈ V2 ⇔
n∑

i,j=1

aijxiyj = 0, ∀ i = 1, n ⇔

⇔
n∑

j=1

aijyj = 0, ∀ i = 1, n ⇔ A ·

 y1
...
yn

 =

 0
...
0

 ,

astfel că V1 = ker At şi V2 = ker A.
Cum rangA = rangAt şi dim kerA = n−rangA, dimkerAt = n−rangAt

rezultă dimV1 = dimV2. �
Problema B3.
a) Să se arate că

1

n+ 1
− 1

n+ 2
+

1

n+ 3
− · · · =

1∫
0

xn

1 + x
dx.

b) Să se calculeze

∞∑
n=0

(
1

n+ 1
− 1

n+ 2
+

1

n+ 3
− · · ·

)2

.

Ovidiu Furdui

Problema consta iniţial doar ı̂n cerinţa de la actualul punct b), dar
juriul a considerat necesară adăugarea punctului a) pentru a oferi ideea de
rezolvare.

Soluţie. a) Fie m ∈ N şi fie

S2m =
1

n+ 1
− 1

n+ 2
+

1

n+ 3
+ · · · − 1

n+ 2m
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suma parţială de ordin 2m asociată seriei din enunţ. Avem că

S2m =
1

n+ 1
− 1

n+ 2
+

1

n+ 3
+ · · · − 1

n+ 2m
=

=

1∫
0

(
xn − xn+1 + xn+2 − · · · − xn+2m−1) dx =

=

1∫
0

xn · 1− x2m

1 + x
dx =

1∫
0

xn

1 + x
dx−

1∫
0

xn+2m

1 + x
dx.

Rezultă că∣∣∣∣ S2m −
1∫

0

xn

1 + x
dx

∣∣∣∣=∣∣∣∣ −
1∫

0

xn+2m

1 + x
dx

∣∣∣∣≤
1∫

0

xn+2mdx =
1

n+ 2m+ 1
.

Deci

lim
m→∞

S2m =

1∫
0

xn

1 + x
dx.

b) Aşadar

∞∑
n=0

(
1

n+ 1
− 1

n+ 2
+

1

n+ 3
− · · ·

)2

=

∞∑
n=0

 1∫
0

xn

1 + x
dx

 1∫
0

yn

1 + y
dy

 =

=

∞∑
n=0

1∫
0

1∫
0

(xy)n

(1 + x)(1 + y)
dxdy

(∗)
=

1∫
0

1∫
0

1

(1 + x)(1 + y)

( ∞∑
n=0

(xy)n

)
dxdy =

=

1∫
0

1∫
0

1

(1 + x)(1 + y)(1− xy)
dxdy =

1∫
0

1

1 + x

 1∫
0

1

(1 + y)(1− xy)
dy

 dx =

=

1∫
0

1

1 + x

(
ln 2− ln(1− x)

1 + x

)
dx =

=

(
(1− x) ln(1− x)

2(1 + x)
+

1

2
ln(1 + x)− ln 2

1 + x

) ∣∣∣∣1
0

= ln 2

şi problema este rezolvată.

Remarcă. Egalitatea (∗), adică ı̂nsumarea termenilor sub semnul in-
tegralei duble, este justificată ı̂n virtutea teoremei:
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Dacă (un)n este un şir de funcţii nenegative măsurabile, atunci∫ ∞∑
n=1

un =

∞∑
n=1

∫
un.

Problema B4.
Să se determine funcţiile continue f : R → R cu proprietatea

f(x)− f(y) ∈ R \Q
pentru orice x, y ∈ R pentru care x− y ∈ R \Q.

Vasile Pop

Este aceeaşi cu problema A2 şi a fost considerată pe bună dreptate de
juriu cea mai grea de la secţiunea B, doar primii doi clasaţi reuşind să o
rezolve parţial.
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PROBLEMS

Authors should submit proposed problems to gmaproblems@rms.unibuc.ro.

Files should be in PDF or DVI format. Once a problem is accepted for publication,

the author will be asked to submit the TeX file also. The referee process will usually

take between several weeks and two months. Solutions may also be submitted to the

same e-mail address. For this issue, solutions should arrive before 15th of June

2014.

PROPOSED PROBLEMS

393. Let A,B,C,D be four distinct points in a plane Π, which are not the
vertices of a parallelogram. Let H be one of the halfspaces bounded by Π.

(i) In H we consider the semicircles of diameters AB and CD that are
orthogonal on Π. Prove that in H there is exactly one semicircle with the
diameter situated on Π that is orthogonal on the two semicircles and on Π.

We denote by C(AB,CD) the semicircle from (i). Similarly we define
C(AC,BD) and C(AD,BC).

(ii) Prove that C(AB,CD), C(AC,BD) and C(AD,BC) pass through
the same point.

(iii) Prove that C(AB,CD), C(AC,BD) and C(AD,BC) are orthogo-
nal on each other.

Proposed by Sergiu Moroianu, Simion Stoilow Institute of

Mathematics of the Romanian Academy, Bucharest, Romania.

394. Find all polynomials P ∈ Z[X] such that a2+b2+c2 | f(a)+f(b)+f(c)
for any a, b, c ∈ Z.

Proposed by Vlad Matei, student, University of Wisconsin,

Madison, USA.

395. Let z1, z2, . . . , zn ≥ 1. Put P =
∏n

i=1 zi, Pi =
∏

j ̸=i zj (1 ≤ i ≤ n).
Prove the following inequality:

n∑
i=1

1

1 + zi
+

n(n− 2)

1 + n
√
P

≥ (n− 1)

n∑
i=1

1

1 + n−1
√
Pi

.

Proposed by Cezar Lupu, University of Pittsburgh, Pittsburgh,

and Ştefan Spătaru, International Computer High School of Bucharest,

Romania.

396. Let F be a field and let V be an F -vector space. We denote, as usual,
by T (V ), S(V ) and Λ(V ) the tensor, symmetric and exterior algebras over
V , respectively.

Let IS′ be the subgroup of T (V ) generated by x1 ⊗ · · · ⊗ xn − xσ(1) ⊗
· · · ⊗ xσ(n) with x1, . . . , xn ∈ V and σ ∈ An. Then IS′ is a homogenous ideal
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in T (V ) and we denote S′(V ) = T (V )/IS′ . Then S′(V ) is a graded algebra,
S′(V ) =

⊕
n≥0 S

′n(V ). We denote by ⊙ the product on S′(V ). Hence if

x1, . . . , xn ∈ V then the image of x1 ⊗ · · · ⊗ xn ∈ T (V ) in S′(V ) = T (V )/IS′

is x1 ⊙ · · · ⊙ xn.
(i) For n ≥ 1 let ρS′n,Sn : S′n(V ) → Sn(V ) be the linear map given by

x1 ⊙ · · · ⊙ xn 7→ x1 · · ·xn. For n ≥ 2 find a linear map ρΛn,S′n : Λn(V ) →
S′n(V ) such that the short sequence

0 → Λn(V )
ρΛn,S′n
−−−−−→ S′n(V )

ρS′n,Sn

−−−−−→ Sn(V ) → 0

is exact.
(ii) If F = F2 prove that for any n ≥ 1 there is a linear map ρSn,Λn :

Sn(V ) → Λn(V ) with x1 · · ·xn 7→ x1 ∧ · · · ∧ xn. If n = 2, 3 find a linear map
ρTn−1,Sn : Tn−1(V ) → Sn(V ) such that the short sequence

0 → Tn−1(V )
ρTn−1,Sn

−−−−−−→ Sn(V )
ρSn,Λn

−−−−→ Λn(V ) → 0

is exact.
Proposed by Constantin-Nicolae Beli, Simion Stoilow Institute of

Mathematics of the Romanian Academy, Bucharest, Romania.

397. Let n ≥ 1 be an integer and let f : Rn → Rn be a function with the
property that the image under f of any sphere S of codimension 1 is a sphere
of codimension 1 of the same radius. Prove that f is an isometry.

Proposed by Marius Cavachi, Ovidius University of Constanţa,

Romania.

398. Let A ∈ Mn(Q) be an invertible matrix.
a) Prove that if for every positive integer k there exists Bk ∈ Mn(Q)

such that Bk
k = A, then all the eigenvalues of A are equal to 1.

b) Is the converse of a) true?
Proposed by Victor Alexandru, Cornel Băeţica, Gabriel Mincu,

University of Bucharest, Romania.

399. Let n ≥ 3 and let P = anX
n+ · · ·+a0 ∈ R[X] with ai > 0 ∀i such that

all the roots of P ′ are real. If 0 ≤ a < b prove that∫ b
a

(
P ′(x)

)−1
dx∫ b

a

(
P ′′(x)

)−1
dx

≥ P ′(b)− P ′(a)

P (b)− P (a)
.

Proposed by Florin Stănescu, Şerban Cioculescu School, Găeşti,

Dâmboviţa, Romania.
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400. Let S(n) :=
∑n

k=0(−2)k
(
n
k

)(
2n−k
n−k

)
. Prove that 4(n + 1)S(n) + (n +

2)S(n+ 2) = 0 and conclude that

Sn =

{
(−1)n/2

(
n

n/2

)
if n is even,

0 if n is odd.

Proposed by Mihai Prunescu, Simion Stoilow Institute of

Mathematics of the Romanian Academy, Bucharest, Romania.

401. Let a and b be positive integers. Prove the following identities:

(i)
∑
p≥0

p

(
2a

a− p

)(
2b

b− p

)
=

ab

2(a+ b)

(
2a

a

)(
2b

b

)
,

(ii)
∑
p≥0

(2p+ 1)

(
2a+ 1

a− p

)(
2b+ 1

b− p

)
=

(2a+ 1)(2b+ 1)

a+ b+ 1

(
2a

a

)(
2b

b

)
,

with the convention that
(
m
n

)
= 0 if n < 0 or n > m.

Proposed by Ionel Popescu, Simion Stoilow Institute of

Mathematics of the Romanian Academy, Bucharest, Romania.

402. Let u : [a, b] → R be a twice differentiable function with u′(a) = u′(b) =
0 and let λ ∈ R.

(1) Prove that u′′(c) = λu(c)u′(c) for some c ∈ (a, b).
(2) If moreover u′′(a) = 0 prove that (d − a)u′′(d) = u′(d)(1 + λ(d −

a)u(d)) for some d ∈ (a, b)
Proposed by Cezar Lupu, University of Pittsburgh, USA.

403. A parabola P has the focus F at distance d from the directrix ∆. Find
the maximum length of an arc of P corresponding to a chord of length L.

Proposed by Gabriel Mincu, University of Bucharest, Romania.

404. Let F : Z× Z → Z be a function satisfying the following conditions:
1) |F (x, y)| ≥ |x|+ |y| ∀x, y ∈ Z.
2) There are m,n ≥ 1 and matrices A = (ai,j), B = (bi,j) ∈ Mm,n(Z)

such that
F (x, y) = max

1≤i≤m
min

1≤j≤n
(ai,jx+ bi,jy) ∀x, y ∈ Z.

Prove that either F (x, y) ≥ 0 ∀x, y ∈ Z or F (x, y) ≤ 0 ∀x, y ∈ Z. Give
an example of a function F for each of these two cases.

Proposed by Şerban Basarab, Simion Stoilow Institute of

Mathematics of the Romanian Academy, Bucharest, Romania.
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SOLUTIONS

365. Let K be a field and let f, g ∈ K[X], f, g /∈ K, such that gn−1 | fn−1
for all n ≥ 1. Then f is a power of g.

Proposed by Marius Cavachi, Ovidius University of Constanţa,

Romania.

Solution by the author. We define several polynomials.

For k ≥ 0, n ≥ 1 we define r
(k)
n ∈ K[X] by r

(0)
n = fn−1

gn−1 and inductively

r
(k+1)
n = gk+1r

(k)
n+1 − fr

(k)
n .

For k ≥ 0 we define p0 = 1 and pk+1 = (1 − gk+1)fpk for k ≥ 0. Thus
pk = (1− g) · · · (1− gk)fk.

For k ≥ 0 we define Qk ∈ K[X,Y ] with degY Qk ≤ k by Q0 = −1 and
Qk+1(Y ) = gk+1(Y − 1)Qk(gY ) − f(gk+1Y − 1)Qk(Y ) for k ≥ 0. (Here we
regard Qk as polynomials in the variable Y with coefficients in K[X], i.e.,
Qk ∈ K[X][Y ].)

By straightforward calculations one verifies by induction on k that

r(k)n =
pkf

n +Qk(g
n)

(gn+k − 1)(gn+k−1 − 1) · · · (gn − 1)
.

Let k ≥ 0 be large enough such that (k + 1) deg g > deg f . Since also
degY Qk ≤ k, we get(

(k + 1)n+
k(k + 1)

2

)
deg g > deg(pkf

n +Qk(g
n)).

Hence the degree of the denominator of the fraction above, which gives r
(k)
n ,

is larger than the degree of the numerator when n is large enough. But

r
(k)
n ∈ K[X] so we must have r

(k)
n = 0, i.e., pkf

n + Qk(g
n) = 0 for n large

enough, say for n ≥ N0.
We write Qk = akY

k + · · ·+ a0 with ai ∈ K[X]. Then we have

pnf
n +

k∑
j=0

ajg
nj = 0, n ≥ N0.

Let m ≥ N0. In the equation above we take n = m,m+1, . . . ,m+k+1.
Hence we get that the homogeneous linear system of k + 2 equations with
k + 2 unknowns

fm+iXk+1 +

k∑
j=0

g(m+i)jXj = 0, 0 ≤ i ≤ m+ 1,

has the solutionXk+1 = pk, Xj = aj for 0 ≤ j ≤ k. This solution is nontrivial

since pk = (1− g) · · · (1− gk) ̸= 0. It follows that ∆, the determinant of the
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system, is 0. One checks that

∆ = fm
k∏

j=0

gmj∆1,

where ∆1 is a Vandermonde determinant, namely

∆1 = ±
∏

0≤j<l≤k
(gj − gl)

k∏
j=0

(f − gj).

Since gj ̸= gl when j ̸= l, we have f = gj for some j. �
A note from the editor. The proof of this result is very ingenious

but it involves a construction, the polynomials r
(k)
n , which the reader might

find very unnatural. We give a possible approach that leads to the definition

of r
(k)
n in a natural way.
The author first used this method to solve the similar problem for Z

instead ofK[X]: determine all a, b ∈ Z with |a|, |b| > 1 such that bn−1 | an−1
∀n ≥ 1.

The idea is to find some linear combination of rn := an−1
bn−1 ∈ Z with

coefficients in Z that is less than 1 in absolute value. Since such linear
combination is an integer, it must be zero. This way we obtain algebraic
relations between a and b.

We have rn = r′n + r′′n, with r′n = an

bn−1 and r′′n = −1
bn−1 . Since |r′′n| ≪ 1

when n ≫ 0 we will focus on r′n. We have bn − 1 = bn(1 + O( 1
bn )), so r′n =

an

bn (1+O( 1
bn )). Similarly, r′n+1 =

an+1

bn+1 (1+O( 1
bn )), so r′n+1 =

a
b r
′
n(1+O( 1

bn )).

Therefore if r′1n := brn+1 − arn then r′1n = O( 1
bn rn) = O( an

b2n
). This way

the order of magnitude was decreased by a factor of bn. One calculates

r
′(1)
n = (1−b)an+1

(bn−1)(bn+1−1) . We have r
′(1)
n = (1−b)an+1

b2n+1 (1+O( 1
bn )). Similarly, r

′(1)
n+1 =

(1−b)an+2

b2n+3 (1+O( 1
bn )), so r

′(1)
n+1 =

a
b2
r
′(1)
n (1+O( 1

bn )). Hence, if r
′(2)
n = b2r

′(1)
n+1 −

ar
′(1)
n then r

′(2)
n = O( 1

bn r
′(2)
n ) = O( an

b3n
), so the order of magnitude decreased

again by bn.

We see a pattern. For k ≥ 0 we define r
′(k)
n recursively by r

′(0)
n = r′n =

an

bn−1 and r
′(k+1)
n = bn+1r

′(k)
n+1 − ar

′(k)
n . And we show inductively that r

′(k)
n =

pka
n

(bn−1)···(bn+k−1) , where pk ∈ Z is some constant satisfying pk+1 = (1−bk+1)apk

so that pk = (1− b) · · · (1− bk)ak. The definition r
′(k+1)
n = bn+1r

′(k)
n+1 − ar

′(k)
n

is justified by the following. We have

r′(k)n = pk
an

bkn+k(k+1)/2
(1 +O(

1

bn
))

and similarly

r′(k)n = pk
an+1

bk(n+1)+k(k+1)/2
(1 +O(

1

bn
)).
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Hence r
′(k)
n+1 = a

bk+1 r
′(k)
n (1 + O( 1

bn )). Therefore when we take r
′(k+1)
n =

bn+1r
′(k)
n+1 − ar

′(k)
n we have r

′(k+1)
n = O( 1

bn r
′(k)
n ). Hence at each step the order

of magnitude decreases by a factor of bn.
We now apply the same linear transformations to rn, i.e., we define

r
(0)
n = rn and r

(k+1)
n = bk+1r

(k)
n+1 − ar

(k)
n . Since rn ∈ Z ∀n we have r

(k)
n ∈ Z

∀k, n. Since rn = r′n+ r′′n we have r
(k)
n = r

′(k)
n + r

′(k)
n , where r

′′(0)
n = r′′n = −1

bn−1
and r

′′(k+1)
n = bk+1r

′′(k)
n+1 − ar

′′(k)
n . It is easy to see, by induction, that r

′′(k)
n is

a linear combination with integer coefficients of r′′n, . . . , r
′′
n+k, r

′′(k)
n = c0r

′′
n +

· · · + ckr
′′
n+k. Since r′′n+i = O( 1

bn ) for 0 ≤ i ≤ k, we have r
′′(k)
n = O( 1

bn ).

Hence, |r′′(k)n | ≪ 1 for n ≫ 0. Also note that r
′(k)
n = O( an

b(k+1)n ). Then if we

take k large enough such that |b|k+1 > |a| we have |r′(k)n | ≪ 1 when n ≫ 0.

Hence for n ≫ 0 we have |r(k)n | ≤ |r′(k)n | + |r′′(k)n | < 1. As r
(k)
n ∈ Z, we get

r
(k)
n = 0.

Now

r′′(k)n =

k∑
i=0

ci
−1

bn+i − 1
=

∑n
i=0−ci(b

n − 1) · · · ̂(bn+i − 1) · · · (bn+k − 1)

(bn − 1) · · · (bn+k − 1)

=
Qk(b

n)

(bn − 1) · · · (bn+k − 1)
,

where Qk(X) =
∑n

i=0−ci(X − 1) · · · ̂(biX − 1) · · · (bkX − 1). (One can prove

that Qk are given by Q0 = −1 and Qk+1(X) = bk+1(X − 1)Qk(bX) −
a(bk+1X − 1)Qk(X), same as in author’s proof.) Together with r

′′(k)
n =

pka
n

(bn−1)···(bn+k−1) this implies 0 = r
(k)
n = pka

n+Qk(b
n)

(bn−1)···(bn+k−1) , so from here the

proof follows as above, with a, b replacing f , g.
The same reasoning may be applied to f, g ∈ K[X] instead of a, b.

The degree function deg : K[X] → Z≥0 ∪ {−∞} extends to deg : K(X) →
Z∪{−∞} by defining deg P

Q = degP −degQ. This extended degree satisfies

the usual properties of the degree: degAB = degA+degB and deg(A+B) ≤
max{degA,degB} ∀A,B ∈ K(X). Then we define a norm |·| : K(X) → R≥0
by |A| = 2degA. We have |A| = 0 iff degA = −∞, i.e., iff A = 0. Then | · | is
a non-archimedian norm, i.e., |A| |B| = |AB| and the triangle inequality |A+
B| ≤ |A|+ |B| is replaced by the stronger inequality |A+B| ≤ max{|A|, |B|}.
The completion of (K(X), | · |) is K(( 1

X )).
Also, same as for Z, if A ∈ K[X] and |A| < 1 then A = 0. (Otherwise

degA ≥ 0 so |A| = 2degA ≥ 1.) The notation A = O(B) means that
|A| ≤ c|B| for some constant c > 0, which is equivalent to degA ≤ c′+degB
for some constant c′ ∈ R (actually, c′ = log2 c).
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With this definition of the norm on K(X), the proof follows almost
verbatim from that on Z, but with a, b replaced by f , g. Note that the
condition |a| < bk+1 translates as |f | < |g|k+1, which is equivalent to deg f ≤
(k + 1) deg g.

We give a possible approach that leads essentially to the same solution.
We will produce linear combinations of the polynomials fn−1

gn−1 with coefficients

in K[f, g] ∈ K[X] that have negative degree, so they must be zero.
Let a = deg f , b = deg g. Let k ≥ 1 with (k + 1)b > a. Then for any

n ≥ 1 we have the identity 1
gn−1 = 1

gn + · · · + 1
gkn

+ 1
gkn(gn−1) . (Note that

1
gn + · · ·+ 1

gkn
is the beginning of the expansion 1

gn−1 =
∑

i≥1
1
gin

, which holds

in K(( 1
X )).) It follows that

fn − 1

gn − 1
=

(
f

g

)n

+ · · ·+
(

f

gk

)n

+
fn

gkn(gn − 1)
− 1

gn − 1
.

Note that deg fn

gkn(gn−1) = −((k + 1)b − a)n and deg 1
gn−1 = −bn are

≪ 0 when n ≫ 0. Therefore in order that a linear combination of the fn−1
gn−1

with n ≫ 0 have negative degree it is enough that in this linear combination

the terms of the type
(

f
gk

)n
cancel each other. To do this we employ the

usual technique from linear recurrence sequences.
Now f

g , . . . ,
f
gk

are the roots of AkY
k+· · ·+A0 = (gY −f) · · · (gkY −f) ∈

K(X)[Y ]. Note that Ai ∈ K[f, g] ⊆ K[X]. In particular, A0 = (−f)n ̸= 0.

Then the sequence xn =
(
f
g

)n
+ · · · +

(
f
gk

)n
satisfies the linear recurrence

A0xn + · · ·+Akxm+k = 0. It follows that

k∑
j=0

Ak
fn+k − 1

gn+k − 1
=

k∑
j=0

Aj

((
f

g

)n+j

+ · · ·+
(

f

gk

)n+j

+
fn+j

gk(n+j)(gn+j − 1)

− 1

gn+j − 1

)
=

k∑
j=0

Aj

(
fn+j

gk(n+j)(gn+j − 1)
− 1

gn+j − 1

)
.

But for n ≫ 0 and 0 ≤ j ≤ k we have degAj
fn+j

gk(n+j)(gn+j−1) = degAj −
((k + 1)b− a)(n+ j) < 0 and degAj

1
gn+j−1 = degAj − (n+ j)b < 0. Hence

the degrees of all the terms in the sum above are negative, thus we have

deg(
∑k

j=0Aj
fn+j−1
gn+j−1 ) < 0, which implies

∑k
j=0Aj

fn+j−1
gn+j−1 = 0. By multiply-

ing with (gn − 1) · · · (gn+k − 1) one gets 0 =
∑k

j=0Aj(g
n − 1) · · · (fn+j −

1) · · · (gn+k − 1) = Pk(g
n, fk), with Pk ∈ K[f, g][Y,Z] ⊆ K[X][Y, Z] given by

Pk(Y,Z) =
k∑

j=0

Aj(Y − 1) · · · (f jZ − 1) · · · (gkY − 1).
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(Here f jZ−1 replaces the factor gjY −1 in the product (Y −1) · · · (gkY −1).)
Since all terms of Pk(Y,Z) but the one corresponding to j = 0 contain the
factor Y − 1, we have Qk(1, Z) = A0(Z − 1)(g − 1) · · · (gk − 1) ̸= 0, so
Pk(Y, Z) ̸= 0. (Recall that A0 ̸= 0.)

We have degY Pk(Y, Z) = k and degZ Pk(Y, Z) = 1, so we write

Pk(Y, Z) =

1∑
i=0

k∑
j=0

Bi,jZ
iY j .

Take n sufficiently large such that Pk(g
n, fn) = · · · = Pk(g

n+2k+1, fn+2k+1) =
0. Then the linear system of 2k + 2 equations with 2k + 2 unknowns

1∑
i=0

k∑
j=0

Xi,jf
i(n+s)gj(n+s) = 0, 0 ≤ s ≤ 2k + 1,

has nontrivial solution, so its determinant is 0. One sees that the determinant

is ∆ =
∏k

j=0 g
jn
∏k

j=0 f
ngjn∆1, where ∆1 is the Vandermonde determinant

∆1 = ±
∏

0≤s<t≤k
(gt − gs)

∏
0≤s<t≤k

(fgt − fgs)
∏

0≤s,t≤k
(gt − fgs).

It follows that gt − fgs = 0 for some s, t and so f = gt−s. �

Our sum
∑k

j=0Aj
fn+j−1
gn+j−1 coincides with r

(k)
n defined by the author. If

(gY −f) · · · (gkY −f) = A
(k)
0 +· · ·+A

(k))
k then, by using the relations A

(k+1)
0 +

· · ·+A
(k+1)
k+1 = (A

(k)
0 + · · ·+A

(k)
k )(gk+1Y − f) and r

(k+1)
n = gk+1r

(k)
n+1 − fr

(k)
n ,

one proves by induction on k that
∑k

j=0A
(k)
j

fn+j−1
gn+j−1 = r

(k)
n .

Also one may prove that B1,0 = pk and B1,1 = · · · = B1,k = 0, so
Pk(Y, Z) can be written as pkZ +Qk(Y ) for some Qk ∈ K[X][Y ]. Therefore
P (gn, fn) = pkf

n +Qk(g
n), same as in the author’s proof.

366. Let K be an algebraically closed field of characteristic p > 0.
For i ≥ 0 we define the polynomials Qi ∈ Q[X] by Q0 = X and Qi+1 =

Qp
i−Qi

p . If k ≥ 0 writes in basis p as k = c0+c1p+· · ·+csp
s with 0 ≤ ci ≤ p−1

then we define Pk ∈ Q[X] by Pk = Qc0
0 Qc1

1 · · ·Qcs
s .

Prove that if f = Xk + ak−1X
k−1 + · · · + a0 ∈ K[X] with a0 ̸= 0 has

the roots α1, . . . , αs with multiplicities k1, . . . , ks then

Vf := {(xn)n≥0 : xn ∈ K, xn+k + ak−1xn+k−1 + · · ·+ a0xn = 0 ∀n ≥ 0}
is a vector space with {(Pj(n)α

n
i )n≥0 : 1 ≤ i ≤ s, 0 ≤ j ≤ ki − 1} as a basis.

(Hint: Use the note “Linear Recursive Sequences in Arbitrary Charac-
teristics” by C.N. Beli from the issue 1-2/2012 of GMA.)

Proposed by Constantin-Nicolae Beli, Simion Stoilow Institute of

Mathematics of the Romanian Academy, Bucharest, Romania.
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Solution by the author. From [B] we know that a basis of VF is given
by {

(
n
j

)
αn
i )n≥0 : 1 ≤ i ≤ s, 0 ≤ j ≤ ki − 1}. It is enough to prove that for

every i (
(
n
j

)
αn
i )n≥0 with 0 ≤ j ≤ ki−1 and (Pj(n)α

n
i )n≥0 with 0 ≤ j ≤ ki−1

are bases for the same K-vector space. Therefore we reduce our problem to
proving that for any k ≥ 0

(
X
0

)
, . . . ,

(
X
k

)
and P1, . . . , Pk are bases for the same

K-vector space. Here
(
X
l

)
and Pl are regarded as polynomial functions from

Z (or merely Z≥0) to K. In fact they are functions from Z to Z but they
take values in K when composed to the left with the ring morphism Z → K.

We need some preliminary results.

Lemma. Qi is a polynomial of degree i with leading coefficient p
− pi−1

p−1

and Qi(Z) ⊆ Z, for all i ≥ 0.
Proof. We use induction on i. For i = 0 the three statements are

obvious. We prove the induction step i → i + 1. Since Qi+1 =
Qp

i−Qi

p and

degQi > 0, we have degQi+1 = p degQi = pi+1. Also, if a, b are the leading

coefficients of Qi and Qi+1, respectively, then b = 1
pa

p. Since a = p
− pi−1

p−1 ,

we have b = p
− pj+1−1

p−1 . Finally, if n ∈ Z then by the induction hypothesis

Qi(n) ∈ Z, so Qi+1(n) =
Qi(n)

p−Qi(n)
p ∈ Z, and therefore Qi+1(Z) ⊆ Z. �

Corollary. Pk is a polynomial of degree k with leading coefficient p−ep(k!)

and Pk(Z) ⊆ Z, for all k ≥ 0. (Here by ep(a) we mean the biggest power of
p dividing a.)

Proof. We write k in base p as k =
∑

j≥0 cjp
j with 0 ≤ cj ≤ p−1. Then

Pk =
∏

j≥0Q
cj
j . It follows that degPk =

∑
j≥0 cj degQj =

∑
j≥0 cjp

j = k

and, since Qj(Z) ⊆ Z, we have Pk(Z) ⊆ Z. For the second statement recall

that ep(k!) =
k−sp(k)
p−1 , where sp(k) is the sum of digits of k written in base p.

Since the leading coefficient of Qj is p
− pj−1

p−1 , the leading coefficient of Pk will

be
∏

j≥0

(
p
− pj−1

p−1

)cj

= p−S , where

S =
∑
j≥0

cj
pj − 1

p− 1
=

∑
j≥0 cjp

j −
∑

j≥0 cj

p− 1
=

k − sp(k)

p− 1
= ep(k!),

so we get the desired result. �
We now start the proof. We already know from [B] that

(
X
0

)
, . . . ,

(
X
k

)
are linearly independent, so they are the basis of a K-vector space V of
dimension k+ 1. Therefore it is enough that W , the k-vector space spanned
by P0, . . . , Pk, coincide with V , i.e., that

(
X
l

)
∈ W and Pl ∈ V for 0 ≤ l ≤ k.

Let a 7→ â be the morphism of rings Z → K. Since K has characteristic
p, the image of this morphism is Zp and it can be extended to Z(p) := {a

b :

a, b ∈ Z, p - b} as â
b = âb̂−1.
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Let M be the Z-module generated by
(
X
0

)
, . . . ,

(
X
k

)
and let N be the

Z(p)-module generated by P0, . . . , Pk. We claim that Pl ∈ M and
(
X
l

)
∈ N

for 0 ≤ l ≤ k. (Here
(
X
l

)
and Pl are just polynomials in Q[X].)

We know that
(
X
l

)
, l ≥ 0, are a Z-basis for the module of all integral

valued polynomials in Q[X]. That is, M = {P ∈ Q[X] : P (Z) ⊆ Z}. Then
Pl ∈ M follows from the Corollary.

For the other statement we use induction on k. When k = 0 we have(
X
0

)
= P0 = 1, so our statement is trivial. We now prove the induction step

k − 1 → k. If l < k then by the induction hypothesis
(
X
l

)
belongs to the

Z(p)-module generated by
(
X
0

)
, . . . ,

(
X
k−1
)
and therefore to N , so we still have

to prove that
(
X
k

)
∈ N . We have k! = pep(k!)a with p - a. Since

(
X
k

)
and

Pk have the same degree k and their leading coefficients 1
k! = 1

ep(k!)a
and

1
ep(k!)

, respectively, the polynomial a
(
X
k

)
− Pk has degree less than k and it

is also integral valued. Therefore it belongs to the Z-module generated by(
X
0

)
, . . . ,

(
X
k−1
)
. Since

(
X
0

)
, . . . ,

(
X
k−1
)
∈ N , we get a

(
X
k

)
− Pk ∈ N . But p - a,

so a−1 ∈ Z(p). It follows that
(
X
k

)
= a−1Pk + a−1(a

(
X
k

)
− Pk) ∈ N .

Let 0 ≤ l ≤ k. We write Pl =
∑k

l=0 αl

(
X
l

)
and

(
X
k

)
=
∑k

l=0 βlPl, with

αl ∈ Z and βl ∈ Z(p). When we regard
(
X
l

)
and Pl as polynomial functions

Z → K we obtain Pl =
∑k

l=0 α̂l

(
X
l

)
∈ V and

(
X
k

)
=
∑k

l=0 β̂lPl ∈ W . �
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367. Give examples of functions f, g : R → R such that: f has period
√
2, g

has period
√
3 and f + g has period

√
5.

Proposed by George Stoica, Department of Mathematical Sciences,

University of New Brunswick, Canada.

Solution by the author. Note that
√
2,

√
3 and

√
5 are linearly indepen-

dent over Q. In particular, if l,m, n ∈ Z are such that l
√
2+m

√
3+n

√
5 = 0,

then l = m = n = 0.
Let us consider

A := {l
√
2 +m

√
3 + n

√
5 : l,m, n ∈ Z},

and define:

f(x) = m
√
3 + n

√
5, g(x) = l

√
2− n

√
5 for x = l

√
2 +m

√
3 + n

√
5 ∈ A,

and f(x) = g(x) = 0 for x ̸∈ A.

Note that a non-zero value of f determines uniquely m and n. Thus,
for a fixed pair of integers m and n, not both of which are 0, we have f(x) =
m
√
3 + n

√
5 only at the points x = l

√
2 +m

√
3 + n

√
5, for arbitrary l ∈ Z.
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Since f(x) = f(x+
√
2) for any x in the complement of A, we conclude that

f has period
√
2.

Similar arguments show that g has period
√
3 and (f + g)(x) = l

√
2 +

m
√
3 (x ∈ A) has period

√
5. �

368. Find all matrices X1, . . . , X9 ∈ M2(Z) with the property that detXk =
1 for all k and X4

1 + · · ·+X4
9 = X2

1 + · · ·+X2
9 + 18I2.

Proposed by Florin Stănescu, Şerban Cioculescu School, Găeşti,

Dâmboviţa, Romania.

Solution by Victor Makanin, Sankt Petersburg, Russia. For X ∈ M2(Z)
having determinant 1 and trace a ∈ Z we have X2 − aX + I2 = 02, which
impliesX4−X2−2I2 = (a3−3a)X−a2I2, therefore the trace ofX

4−X2−2I2
is

Tr(X4 −X2 − 2I2) = (a3 − 3a)Tr(X)− a2Tr(I2) = a4 − 5a2.

Now let ak = Tr(Xk) ∈ Z (for all k ∈ {1, . . . , 9}). Since the given
equality can be also written as

X4
1 −X2

1 − 2I2 + · · ·+X4
9 −X2

9 − 2I2 = 0,

we infer that

Tr(X4
1 −X2

1 − 2I2) + · · ·+Tr(X4
9 −X2

9 − 2I2) = 0,

and, by the above observation,

9∑
k=1

(a4k − 5a2k) = 0 ⇔
9∑

k=1

(2a2k − 5)2 = 225.

Now we have the number 225 written as a sum of nine squares of numbers of
the form 2a2−5, with integer a. One easily sees that the numbers (2a2k−5)2

smaller than 225 can only be 52 (for ak = 0), 32 (for ak = ±1, or ak = ±2),
or 132 (when ak = ±3). The last one is easily eliminated (if one square is
132, the remaining eight would be either 32, or 52, with sum 225−169 = 56),
so all of them need to be either 32, or 52 — and they are nine, which sum
to 225. Obviously only the possibility (2a2k − 5)2 = 52 ⇔ ak = 0 for all
k ∈ {1, . . . , 9} remains, so each of the matrices Xk has trace 0. Conversely, if
this happens, then X2

k = −I2 and X4
k = I2 for all k, and the condition from

the enounce is fulfilled.
We conclude that X1, . . . , X9 can be any integer matrices with deter-

minant 1 and trace 0. One finds that this means that some integers ak, bk, ck
do exist, fulfilling a2k + bkck = −1, and such that

Xk =

(
ak bk
ck −ak

)
for all k ∈ {1, . . . , 9}.

369. A stick is broken at random at two points (each point is uniformly
distributed relative to the whole stick) and the parts’ lengths are denoted
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by r, s, and t. Show that the probability of the existence of a triangle
encompassing three circles of radii r, s and t each side tangent to two of the
circles and the circles are mutually externally tangent, is equal to 5

27 .
Eugen J. Ionaşcu, Department of Mathematics, Columbus State

University, Columbus, Georgia, U.S.A.

Solution by the author. We are beginning with the simple observation
that a triangle with the sides r + s, s + t and t + r always exists. So, the
three circles externally tangent of radii r, s, and t can be always constructed.
Without loss of generality we may assume that r > s > t > 0 (the probability
that two of the numbers or all three to be equal is zero) and t+ s+ r =

√
3.

To account for the other possible orders, we will multiply the probability we
obtain in the end by 6. We are denoting the center of the biggest circle by A,
the next smaller circle’s center by B and C for the center of the smallest circle.
Then, the external tangent lines to each two of the circles exist. Basically we
need to characterize when three of them can form a triangle with the circles
in the interior (Figure 1a). So, let us start with one of the tangent lines,
the one tangent to the smaller circles which does not intersect the big circle.

We denote it by
←→
DE and let I and J the two points of tangency as in the

Figure 1a.

(a) r ≥ s ≥ t > 0 (b) s < r, s < 4t

Figure 1. The three circles and the enclosing triangle; exceptional situation

We consider a parallel line to
←→
DE through C and form a rectangle

and a right triangle by splitting the trapezoid BIJC into two parts. The
Pythagorean Theorem gives us that the length of the common tangent line
segment to both of the smaller circles is equal to: IJ =

√
(s+ t)2 − (s− t)2 =

= 2
√
st. Similarly, the tangent line segment to the circles centered A and C

has length 2
√
rt and the third tangent segment is of length 2

√
rs.

First let us show that
←→
DE always intersects the tangent line, m, to the

circles centered at C and A (we let E be this point of intersection as a result).
The order between r, s and t tells us that the angle �ACB is the biggest angle
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of the triangle ABC and so it is more than 60◦. The angle between these
tangent lines, say ω, is then more than 60◦ and less than 180◦ + 60◦ = 240◦

(including the reflex possibility). In order to have a triangle DEF containing
the three circles we need to limit ω to be less than 180◦ which insures the
existence of E. Let us observe (Figure 1 (b)) that ω ≥ 180◦ if t is smaller
than the radius x of a circle tangent to the bigger circles and their common
tangent line. By what we have observed above 2

√
sx+ 2

√
rx = 2

√
rs which

means x =
rs

(
√
s+

√
r)

2 =
s(√

s

r
+ 1

)2 >
s

4
. So, the first restriction we need

to have on these numbers is

t >
rs

(
√
s+

√
r)

2 >
s

4
, or r <

st(√
s−

√
t
)2 . (6)

We observe that the third tangent, denoted in Figure 1 by n, is insured

by (6) to intersect
←→
DE so we will let D be the point of intersection. Let L

be the point of intersection of the parallel to m through C with the radius
corresponding to the tangency point on m and similarly on the other side we
let K be that point.

Finally, to insure that m and n intersect, on the same side of
←→
DE as

the circles we need to have

m(�KBA) + m(�ABC) + m(�BCA) +m(∠ACL) < 180◦,

by the original Euclidean fifth postulate. This is equivalent to

arcsin

(
r − s

r + s

)
+ arcsin

(
r − t

r + t

)
< m(�BAC).

(a) 0 < t < s < r (b) 0 < x <
1

3
, y <

√
3(1− x2)

2
, y >

1 + x√
3

Figure 2. A(1, 0), B(−1, 0) and C(0,
√
3), ON = t, OM = s, OP = r
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Because u → cosu is a decreasing function for u ∈ [0, 180◦], using the
law of cosines in the triangle ABC and the formula cos(α+β) = cosα cosβ−
− sinα sinβ, this last inequality translates into

(r + s)2 + (r + t)2 − (s+ t)2

2(r + s)(r + t)
<

(
2
√
rs

r + s

)(
2
√
rt

r + t

)
− (r − s)(r − t)

(r + s)(r + t)
.

After some algebra, one can reduce this to

r < 2
√
st. (7)

Let us observe that 2
√
st <

st(√
s−

√
t
)2 is equivalent to 2s+ 2t− 5

√
st < 0

or

(
2

√
s

t
− 1

)(√
s

t
− 2

)
< 0. This is true under the necessary condition

s < 4t. So, the existence of an encompassing triangle around the three circles
of radii r, s, t satisfying t < s < r is given by (7), and s < 4t.

From a probabilistic point of view it turns out that we can look at choos-
ing r, s and t as being the distances of a point O(x, y) inside an equilateral
triangle ABC, Figure 2, to the sides of the triangle as in Figure 2 (a). One

can easily find that r = y and s =

√
3(1 + x)− y

2
, and t =

√
3(1− x)− y

2
.

The condition t < s is equivalent to 0 < x and the inequality s < r

implies y >
1 + x√

3
(Figure 2 (b)). The restriction (7) is the same as y <

√
3

2
(1− x2). Also, let us observe that the last restriction s < 4t is equivalent

to y <
3− 5x√

3
. It turns out that

√
3

2

(
1− x2

)
<

3− 5x√
3

is satisfied if x <
1

3
which is a restriction already given by the the other inequalities we have
(Figure 2 (b)). This gives

P =
6√
3

1
3∫

0

(√
3

2
(1− x2)− 1 + x√

3

)
dx =

1
3∫

0

(
1− 2x− 3x2

)
dx

=
(
t− t2 − t3)

) ∣∣∣∣1/3
0

=
5

27
.

370. Calculate the improper integral
∫∞
0 cos2 x cosx2dx.

Proposed by Ángel Plaza, Department of Mathematics, Univ. de

Las Palmas de Gran Canaria, Spain.

Solution by Santiago de Luxán, Fraunhofer Heinrich-Hertz-Institute,
Berlin (Germany). We will calculate the more general integral∫ ∞

0
cos2 (ax) cos

(
bx2
)
dx, where a, b ∈ R and b > 0.
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First we replace the squared cosine with a non-squared expression

I =

∫ ∞
0

cos2 (ax) cos
(
bx2
)
dx =

∫ ∞
0

1 + cos(2ax)

2
cos
(
bx2
)
dx.

Setting x = t/
√
b, we get that

I =
1

2
√
b

(∫ ∞
0

cos t2dt+

∫ ∞
0

cos

(
2
a√
b
t

)
cos t2dt

)
.

Now taking into account that cosx cos y = 1
2 (cos(x+ y) + cos(y − x)), we

derive the following result:

cos

(
2
a√
b
t

)
cos t2 =

1

2

(
cos

(
2
a√
b
t+ t2

)
+ cos

(
t2 − 2

a√
b
t

))
=

1

2

(
cos

((
t+

a√
b

)2

− a2

b

)
+ cos

((
t− a√

b

)2

− a2

b

))
.

On the other hand, cos(x− y) = cosx cos y + sinx sin y. Therefore

cos

((
t+

a√
b

)2

− a2

b

)
= cos

(
t+

a√
b

)2

cos
a

b2
+ sin

(
t+

a√
b

)2

sin
a

b2
.

Applying the same rule to cos

((
t− a√

b

)2
− a2

b

)
and simplifying we get that

I =
1

2
√
b

∫ ∞
0

cos t2dt

+
1

4
√
b
cos

a2

b

(∫ ∞
0

cos

(
t+

a√
b

)2

dt+

∫ ∞
0

cos

(
t− a√

b

)2

dt

)

+
1

4
√
b
sin

a2

b

(∫ ∞
0

sin

(
t+

a√
b

)2

dt+

∫ ∞
0

sin

(
t− a√

b

)2

dt

)

=
1

2
√
b
C0 +

1

4
√
b

(
cos

a2

b
(C1 + C2) + sin

a2

b
(S1 + S2)

)
.

Now, setting t+ a√
b
= α and t− a√

b
= β we get that

C1 =

∫ ∞
0

cos

(
t+

a√
b

)2

dt = −
∫ a√

b

0
cosα2dα+

∫ ∞
0

cosα2dα,

S1 =

∫ ∞
0

sin

(
t+

a√
b

)2

dt = −
∫ a√

b

0
sinα2dα+

∫ ∞
0

sinα2dα,

C2 =

∫ ∞
0

cos

(
t− a√

b

)2

dt =

∫ 0

− a√
b

cosβ2dβ +

∫ ∞
0

cosβ2dβ,
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S2 =

∫ ∞
0

sin

(
t− a√

b

)2

dt =

∫ 0

− a√
b

sinβ2dβ +

∫ ∞
0

sinβ2dβ.

Since cosx2 and sinx2 are even functions, C1 + C2 = 2
∫∞
0 cos γ2dγ and

S1 + S2 = 2
∫∞
0 sin γ2dγ. Therefore,

I =
1

2
√
b

∫ ∞
0

cos γ2dγ +
1

2
√
b

(
cos

a2

b

∫ ∞
0

cos γ2dγ + sin
a2

b

∫ ∞
0

sin γ2dγ

)
=

1

2
√
b

(
C(∞)

(
1 + cos

a2

b

)
+ S(∞) sin

a2

b

)
,

where C(∞) =
∫∞
0 cos γ2dγ = 1

2

√
π
2 and S(∞) =

∫∞
0 sin γ2dγ = 1

2

√
π
2 are

the Cosine and Sine Fresnel Integrals, respectively, evaluated at ∞. Hence,

I =
1

4

√
π

2b

(
1 + cos

a2

b
+ sin

a2

b

)
and the proof is completed. �
371. Let [ABCD] be a Crelle tetrahedron and let M,N,P,Q,R, S be the
contact points of the sphere tangent to its edges. Prove that V[MNPQRS] ≤
1
2V[ABCD]. (By VX we denote the volume of the polyhedron X.)

Proposed by Marius Olteanu, S.C. Hidroconstrucţia S.A.,

Sucursala Olt-Superior, Rm. Vâlcea, Romania.

Solution by the author. We denote

AN = AP = AQ = x, BM = BP = BR = y,

CM = CN = CS = z, DQ = DR = DS = t.

Since [MNPQRS] is obtained from [ABCD] by removing four smaller
tetrahedra, the inequality we want to prove is equivalent to

V[ANPQ] + V[BMPR] + V[CMNS] + V[DQRS] ≥
1

2
V[ABCD].

The tetrahedra [ABCD] and [ANPQ] share the same solid angle at A,
so

V[ANPQ]

V[ABCD]
=

AP ·AN ·AQ
AB ·AC ·AD

=
x3

(x+ y)(x+ z)(x+ t)
.

Hence we must prove that∑
cyc

x3

(x+ y)(x+ z)(x+ t)
≥ 1

2
.

(Here
∑

cyc denotes the sum of all terms obtained by applying a cyclic per-

mutation to expression under the sum sign.)
By multiplying both sides with 2(x+y)(x+z)(x+t)(y+z)(y+t)(z+t),

the result to prove becomes

2
∑

x3(y+ z)(y+ t)(z+ t) ≥ (x+ y)(x+ z)(x+ t)(y+ z)(y+ t)(z+ t).
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The left hand side equals 2
∑

x3(y2z+y2t+z2y+z2t+t2y+t2z+2yzt) =
2
∑

x3y2z+4
∑

x3yzt. In the right hand side no variable appears at a power
> 3 and we don’t have terms similar to x3y3. One proves that the right hand
side equals

∑
x3y2z + 2

∑
x3yzt + 2

∑
x2y2z2 + 4

∑
x2y2zt. (It is obvious

that x3y2z appears only once in the right hand side. The term x3yzt appears
the same number of times as in x3(y+ z)(y+ t)(z+ t), i.e., the same number
of times yzt appears in (y + z)(y + t)(z + t), which is 2. The term x2y2z2

appears the same number of times as in (x + y)(x + z)x(y + z)yz, i.e., the
same number of times xyz appears in (x+ y)(x+ z)(y + z), which is 2. The
sum

∑
x3y2z+2

∑
x3yzt+2

∑
x2y2z2 has 24+ 2 · 4+ 2 · 4 = 40 terms. But

the right hand side has 26 = 64 terms. The remaing 24 terms are of the form
x2y2zt. Since there are 6 such products, each will appear 4 times.)

In conclusion, we must prove that 2
∑

x3y2z + 4
∑

x3yzt ≥
∑

x3y2z +
2
∑

x3yzt+ 2
∑

x2y2z2 + 4
∑

x2y2zt, i.e.,∑
x3y2z + 2

∑
x3yzt ≥ 2

∑
x2y2z2 + 4

∑
x2y2zt.

In the following we denote S1 =
∑

x3y2z, S2 =
∑

x3yzt, S3 =
∑

x2y2z2

and S4 =
∑

x2y2zt.

We have x3y2z+ z3y2x ≥ 2
√

x3y2z · z3y2x = x2y2z2, so
∑

sym(x
3y2z+

z3y2x) ≥ 2
∑

sym x2y2z2. Both sides of this equality are symmetric polyno-

mials which evaluated at (x, y, z, t) = (1, 1, 1, 1) give 48. The left hand side
contains only terms of the form x3y2z and the right hand side only terms of
the form x2y2z2, so they can be written as aS1 and bS3, respectively. But
S1(1, 1, 1, 1) = 24 and S2(1, 1, 1, 1) = 4, so a = 48/24 = 2 and b = 48/4 = 12.
Hence 2S1 ≥ 12S3, i.e., S1 ≥ 6S3.

Similarly, x3y2z + z3t2x ≥ 2
√

x3y2z · z3t2x = 2x2z2yt. It follows
that

∑
sym(x

3y2z + z3t2x) ≥ 2
∑

sym x2z2yt. Since S1(1, 1, 1, 1) = 24 and

S4(1, 1, 1, 1) = 6 this writes as 2S1 ≥ 8S4, i.e., S1 ≥ 4S4.

Finally, x3yzt + y3xzt ≥ 2
√

x3yzt · y3xzt = 2x2y2zt. It follows that∑
sym(x

3yzt + y3xzt) ≥ 2
∑

sym x2y2zt. Since we have S2(1, 1, 1, 1) = 4 and

S4(1, 1, 1, 1) = 6, this writes as 12S1 ≥ 8S4, i.e., S1 ≥ 2
3S4.

We get S1+2S2 =
1
3S1+

2
3S1+2S2 ≥ 1

3 ·6S3+
2
3 ·4S4+2· 23S4 = 2S3+4S4,

i.e.,
∑

x3y2z + 2
∑

x3yzt ≥ 2
∑

x2y2z2 + 4
∑

x2y2zt. �

Editor’s note. Here is a shorter proof for inequality

∑
cyc

x3

(x+ y)(x+ z)(x+ t)
≥ 1

2
.

Denote x + y + z + t = 2s. The arithmetic mean-geometric mean

inequality gives (x + y)(x + z)(x + t) ≤
(
2+2s
3

)3
, so it remains to prove
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∑
cyc

x3

(x+s)3
≥ 4

27 . This results by noting that one has∑
cyc

x3

(x+ s)3
≥ 4x− s

27s

because the numerator of the expression obtained by subtracting the right
side from the left side is (2x− s)2(s2 +3sx− x2), which is nonnegative since
x ≤ 2s. �

It is clear that the equality holds if and only if x = y = z = t.
Yet another proof is given on p. 134 of [H].

References

[H] P.K. Hung, Secrets in inequalities, vol. 1, Gil, Zalău, 2007.

372. Prove that lim
n→∞

e−n
(
1 + n+

n2

2!
+ · · ·+ nn

n!

)
=

1

2
.

Proposed by George Stoica, Department of Mathematical Sciences,

University of New Brunswick, Canada.

Solution by the author. For every n ≥ 1, let Xn be Poisson random
variable with parameter n. The characteristic function (Fourier transform)

of
Xn − n√

n
is equal to

E exp
(
it(Xn − n)/

√
n
)
= exp

(
n(eit/

√
n − 1)− it

√
n
)
= exp

(
−t2/2 + o(1)

)
as n → ∞. Hence

Xn − n√
n

approaches the normal distribution N(0, 1) as

n → ∞. In particular,

P

(
Xn − n√

n
≤ 0

)
→ Φ(0) as n → ∞,

where Φ(x) is the N(0, 1) distribution function. Then take into account that

P (Xn ≤ n) = e−n
(
1 + n+

n2

2!
+ · · ·+ nn

n!

)
and Φ(0) =

1

2
.

Solution by Victor Makanin, Sankt Petersburg, Russia. Problem 11353
from The American Mathematical Monthly says that the function

g(s) =

∫ ∞
0

(
1 +

x

s

)s
e−xdx−

√
sπ

2

decreases on (0,∞) and maps this interval onto (2/3, 1). We are interested
only in the inequalities

2

3
<

∫ ∞
0

(
1 +

x

s

)s
e−xdx−

√
sπ

2
< 1, ∀s > 0,

that follow from this enounce, and, actually, we will use their consequence
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0

(
1 +

x

s

)s
e−xdx ∼

√
sπ

2
, s → ∞

(u(s) ∼ v(s) for s → ∞ means that u(s)/v(s) has limit 1 when s goes to
infinity). Now the equality∫ ∞

0

(
1 +

x

s

)s
e−xdx =

(e
s

)s ∫ ∞
s

tse−tdt

can be obtained easily, by changing the variable with x + s = t; putting
together these two results we obtain∫ ∞

s
tse−tdt ∼

(s
e

)s√sπ

2
, s → ∞.

On the other hand, by Stirling’s formula for the Gamma function, we have∫ ∞
0

tse−tdt ∼
(s
e

)s√
2sπ, s → ∞,

therefore

lim
s→∞

∫ ∞
s

tse−tdt∫ ∞
0

tse−tdt

=
1

2
,

which is equivalent to

lim
s→∞

∫ s

0
tse−tdt∫ ∞

0
tse−tdt

=
1

2
.

For s = n (a natural variable) the last equality reads

lim
n→∞

1

n!

∫ n

0
tne−tdt =

1

2
;

but, by repeatedly using integration by parts (or by Taylor’s formula for the
exponential with the remainder in integral form), one finds that

1

n!

∫ n

0
tne−tdt = 1− e−n

(
1 + n+

n2

2!
+ · · ·+ nn

n!

)
and the result from the enounce follows as required. �

Editor’s note. Makanin’s proof relies on the relation

lim
n→∞

1

n!

∫ n

0
tne−tdt =

1

2

which he proves by using a result from AMM. There is however a direct proof.
Let f(t) = tne−t. Since f ′(t) = (ntn−1 − tn)e−t is positive on (0, n), f

increases on [0, n]. Also note that by Stirling’s theorem n! ∼
√
2πnf(n).
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If 0 ≤ x ≪ n
2
3 then f(n− x) = (n− x)nex−n = f(n)

(
1− x

n

)n
ex. Now

log
(
1− x

n

)n
= n

(
−x

n
− x2

2n2
+O

(
x3

n3

))
= −x− x2

2n
+O

(
x3

n2

)
.

It follows that f(n − x) = f(n)e
−x−x2

2n
+O

(
x3

n2

)
ex = f(n)e−

x2

2n

(
1 +O

(
x3

n2

))
.

(We have x ≪ n−
2
3 , so x3

n2 ≪ 1.)

In particular, if 0 < t ≤ n−
√
2n log n we get

f(t) ≤ f(n−
√

2n log n) = f(n)e− logn

(
1 +O

(
log

3
2

n
1
2

))
=

1

n
f(n)(1+ o(1)).

If n is large enough then 0 < f(t) < 2
nf(n). It follows that

0 <

∫ n−
√
2n logn

0
f(t)dt < (n−

√
2n log n)

2

n
f(n) < 2f(n).

Since n! ∼
√
2πnf(n), we get limn→∞

1
n!

∫ n−
√
2n logn

0 f(t)dt = 0.

On the other hand
∫ n
n−
√
2n logn f(t)dt =

∫ √2n logn
0 f(n − x)dx. But

for 0 < x <
√
2n log n we have f(n − x) = f(n)e−

x2

2n

(
1 +O

(
x3

n2

))
=

f(n)e−
x2

2n

(
1 +O

(
log

3
2 n

n
1
2

))
.

It follows that f(n− x) ∼ f(n)e−
x2

2n uniformly on [0,
√
2n logn] and so

1

n!

∫ √2n logn

0
f(n− x)dx ∼ 1√

2πnf(n)

∫ √2n logn

0
f(n)e−

x2

2ndx

=
1√
2πn

∫ √2n logn

0
e−

x2

2ndx.

We take x =
√
2ny and we get

1√
2πn

∫ √2n logn

0
e−

x2

2ndx =
1√
π

∫ √logn
0

e−y
2
dy ∼ 1√

π

∫ ∞
0

e−y
2
dy =

1

2
.

Hence the conclusion. �

373. Let n ≥ 1 and let Φn(X, q) =
∏n

k=1(X − q2k−1) = a0 + · · · + anX
n,

with ai ∈ R[q]. Prove that∑n−1
i=0 aiai+1∑n

i=0 a
2
i

=
−q(1− q2n−1)

1− q2n+1
.

Proposed by Florin Spı̂nu, Department of Mathematics, Johns

Hopkins University, Baltimore, MD, USA.
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Solution by Constantin-Nicolae Beli. Let Ψn be the reciprocal of Φn

regarded as a polynomial in X, that is, Ψn(X, q) =
∏n

k=1(1 − q2k−1X) =
b0 + · · ·+ bnX

n, where bi = an−i. Let ΦnΨn = c0 + · · ·+ c2nX
2n. Then ck =∑

i+j=k aibj . Hence
∑

a2i =
∑

aibn−i = cn and
∑

aiai+1 =
∑

aibn−1−i =
cn−1. Thus we must prove that

cn−1
cn

=
−q(1− q2n)

1− q2n+2
.

The relation above is an equality of rational functions in the variable q.
Therefore it is enough to prove it for an infinite number of values of q ∈ C.
We will prove it for q with |q| = 1, i.e., q = esi with s ∈ R. Then −q(1−q

2n)
1−q2n+2 =

− qn−q−n

qn+1−q−n−1 = − sinns
sin(n+1)s , so we must prove that cn sinns+cn−1 sin(n+1)s =

0.
We have

ck =
1

2πi

∫
C

ΦnΨn(z, q)

zk
dz

z
,

where C is the unit cicle. Then the relation cn sinns+ cn−1 sin(n+ 1)s = 0
writes as

1

2πi

∫
C

ΦnΨn(z, s)

zn
(sinns+ z sin(n+ 1)s)

dz

z
.

We consider the parametrization of the unit circle γ : [−π, π] → C,
γ(t) = eti = cos t+ i sin t.

By using the formula eai − ebi = e
a+b
2

i(e
a−b
2

i − e
b−a
2

i) = 2ie
a+b
2

i sin a−b
2 i

for z = γ(t) = eti and q = esi we get:

ΦnΨn(z, q)

zn
=

n∏
k=1

(z − q2k−1)(1− zq2k−1)

eti

=

n∏
k=1

(eti − e(2k−1)si)(1− et+(2k−1)s)

eti

=
n∏

k=1

2ie
t+(2k−1)s

2
i sin t−(2k−1)s

2 · 2ie
t+(2k−1)s

2
i sin −t−(2k−1)s2

eti

=

n∏
k=1

2e(2k−1)si sin
t− (2k − 1)s

2
sin

t+ (2k − 1)s

2
= αf(t),

where α = 2nen
2si and

f(t) =

n∏
k=1

sin
t− (2k − 1)s

2
sin

t+ (2k − 1)s

2
=

n∏
k=−n+1

sin
t+ (2k − 1)s

2
.

Since also dγ(t)
γ(t) = idt, the statement we want to prove is equivalent to
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−π
f(t)(sinns+ sin(n+ 1)s(cos t+ i sin t))dt = 0.

Note that f is an even function and, same as the mapping

t 7→ Φn(e
ti, esi)Ψn(e

ti, esi)

(eti)n
,

it has a period of 2π. Since f(t) is even and sin t is odd, f(t) sin t is odd and
therefore

∫ π
−π f(t) sin tdt = 0. So we are left with proving that∫ π

−π
f(t)(sinns+ sin(n+ 1)s cos t)dt = 0.

By using the formulas sin a cos b = 1
2(sin(a+ b)+ sin(a− b)) and sinx+

sin y = 2 sin x+y
2 cos x−y

2 we get

sinns+ sin(n+ 1)s cos t = sinns+
1

2
(sin(t+ (n+ 1)s) + sin((n+ 1)s− t)

=
1

2
(sinns+ sin(t+ (n+ 1)s)) +

1

2
(sinns+ sin((n+ 1)s− t))

= sin
t+ (2n+ 1)s

2
cos

t+ s

2
− sin

t− (2n+ 1)s

2
cos

t− s

2
.

It follows∫ π

−π
f(t)(sinns+ sin(n+ 1)s cos t)dt =

∫ π

−π
(g(t)− h(t))dt,

where

g(t) = f(t) sin
t+ (2n+ 1)s

2
cos

t+ s

2
= cos

t+ s

2

n+1∏
k=−n+1

sin
t+ (2k − 1)s

2

and

h(t) = f(t) sin
t− (2n+ 1)s

2
cos

t− s

2
= cos

t+ s

2

n∏
k=−n

sin
t+ (2k − 1)s

2
.

Note that g(t) = cos t+s
2

∏n
k=−n sin

t+(2k+1)s
2 = h(t + 2s). Also note

that f(t) has period 2π and so does sin t−(2n+1)s
2 cos t−s

2 = 1
2(sin(t − (n +

1)s) − sinns). Hence h(t) has period 2π. It follows that
∫ π
−π g(t)dt =∫ π+2s

−π+2s h(t)dt =
∫ π
−π h(t)dt, whence

∫ π
−π(g(t)− h(t))dt = 0, as claimed. �

374. Let A1, . . . , An be some points in the 3-dimensional Euclidean space.
Prove that on the unit sphere S2 there is a point P such that

PA1 · PA2 · · ·PAn ≥ 1.

Proposed by Marius Cavachi, Ovidius University of Constanţa.
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Solution by the author. We may assume that Ak /∈ S2 for all k. Indeed,
if we prove our statement for points not lying on S2 then for m ≥ 1 there
are points A1,m, . . . , An,m /∈ S2 with limm→∞Ak,m = Ak ∀k and for each m
there is some Pm ∈ S2 such that PmA1,m · · ·PmAn,m ≥ 1. Now there is a
subsequence of (Pm)m≥1 which is convergent to some P ∈ S2. When we take
limit over this subsequence we obtain the inequality PA1 · · ·PAn ≥ 1.

The idea is to prove that for any A /∈ S2 we have
∫
P∈S2(logPA)ds ≥ 0.

By taking A = Ak and adding over 1 ≤ k ≤ n one gets∫
P∈S2

log(PA1 · · ·PAn)ds ≥ 0.

It follows that log(PA1 · · ·PAn) ≥ 0, so PA1 · · ·PAn ≥ 1 for some P ∈ S2.
By choosing a suitable coordinate system we may assume that A has

coordinates (0, 0, a) for some a ≥ 0, a ̸= 1. We use the cylindrical coordinates
ρ, ϕ, z given by x = ρ cosϕ, y = ρ sinϕ. For any P ∈ S2 of cylindrical
coordinates (ρ, ϕ, z) we have ρ2+z2 = 1, so PA2 = ρ2+(z−a)2 = 1+a2−2az.
Since also ds = dϕdz, one gets

E(a) :=

∫
P∈S2

logPAds =

∫ 1

−1

∫ 2π

0

1

2
log(1 + a2 − 2az)dϕdz

= π

∫ 1

−1
log(1 + a2 − 2az)dz.

Obviously E(0) = 0, so we may assume that a > 0. We use the linear
substitution u = 1 + a2 − 2az and we get

E(a) = − π

2a

∫ (1−a)2

(1+a)2
log udu = − π

−2a
(h log u− u)

](1−a)2
(1+a)2

=
π

a
((1 + a)2 log(1 + a)− (1− a)2 log |1− a| − 2a).

We consider separately the cases a < 1 and a > 1.
If a < 1 then we use the Taylor expansions of log(1± a) and we get

a

π
E(a) = (1 + a)2(a− a2

2
+

a3

3
− · · · )− (1− a)2(−a− a2

2
− a3

3
− · · · )− 2a

= (2 + 2a2)(a+
a3

3
+

a5

5
+ · · · )− 4a(

a2

2
+

a4

4
+

a6

6
+ · · · )− 2a

= (2 + 2a2)(
a3

3
+

a5

5
+ · · · )− 4a(

a4

4
+

a6

6
+ · · · ).

But 2 + 2a2 ≥ 4a, so a
πE(a) ≥ 4a(a

3

3 − a4

4 + a5

5 − a6

8 + · · · ) > 0.
If a > 1 then

a

π
E(a) = (a+1)2 log(a+1)−(a−1)2 log(a−1)−2a = a2

a

π
E(

1

a
)+4a log a > 0.

As 1
a < 1, we get E( 1a) ≥ 0. �
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Solution by Victor Makanin, Sankt Petersburg, Russia. We start by
proving that the similar property holds in the Euclidian (2-dimensional)
plane. Namely, let C1, . . . , Cn be points in the same plane with a unit cir-
cle C. We show that there exists some point P on this circle such that
PC1 · · ·PCn ≥ 1. In order to do that, let c1, . . . , cn be the (complex) af-
fixes of C1, . . . , Cn respectively in a Cartesian system of coordinates with
origin in the center of C, and consider the complex polynomial f(z) =
(z − c1) · · · (z − cn) = zn + an−1z

n−1 + · · · + a0. Consider yet the poly-
nomial g(z) = a0z

n + a1z
n−1 + · · · + an−1z + 1 (with coefficients in reverse

order). Observe that g(0) = 1, hence, by the Maximum Modulus Principle,
the maximum of g on C is at least 1. But, if z ̸= 0, f(z) = zng(1/z), hence

max
|z|=1

|f(z)| = max
|z|=1

|zng(1/z)| = max
|z|=1

|g(1/z)| = max
|z|=1

|g(z)| ≥ 1.

Thus, there exists z with |z| = 1 and |f(z)| ≥ 1; if P is the point with affix
z, P belongs to C and PC1 · · ·PCn ≥ 1, which we wanted to prove.

Now we solve the problem. Let π be any plane through the origin (the
center of S2), and let C be the great circle of S2 obtained as its intersection
with π. Let C1, . . . , Cn be the orthogonal projections of A1, . . . , An on π.
By the above proved statement (applied in the plane π) there exists P ∈ C
such that PC1 · · ·PCn ≥ 1. But we have PAk ≥ PCk for all k ∈ {1, . . . , n},
therefore PA1 · · ·PAn ≥ 1 follows (and, of course, P belongs to S2), finishing
the proof.

Note that we proved more than it was required, namely that in any
plane passing through the center of the unit sphere there exists a point P
such that PA1 · · ·PAn ≥ 1. �

375. Let n ≥ 3 be an integer. Find effectively the isomorphism class of the
Galois group Gal(Q(cos 2π

n )/Q).
Proposed by Cornel Băeţica, Faculty of Mathematics and

Informatics, University of Bucharest, Romania.

Solution by Constantin-Nicolae Beli. Let ζ = ζn be the primitive nth
root of unity, ζ = cos 2π

n + i sin 2π
n . Then cos 2π

n = ζ + ζ−1, so we must

determine Gal(Q(ζ + ζ−1)/Q). Since ζ + ζ−1 ∈ Q(ζ) is invariant under the

automorphism ζ 7→ ζ−1, we have Q(ζ)⟨ζ 7→ζ−1⟩ ⊆ Q(ζ+ζ−1) ⊆ Q(ζ). We have

[Q(ζ) : Q(ζ)⟨ζ 7→ζ−1⟩] = |⟨ζ 7→ ζ−1⟩| = 2. Since Q(ζ + ζ−1) ̸= Q(ζ) (we have

Q(ζ + ζ−1) ⊂ R but Q(ζ) ̸⊂ R), we must have Q(ζ + ζ−1) = Q(ζ)⟨ζ 7→ζ−1⟩

and so Gal(Q(ζ + ζ−1)/Q) ∼= Gal(Q(ζ)/Q)/⟨ζ 7→ ζ−1⟩. But Gal(Q(ζ)/Q) ∼=
U(Zn) and under this isomorphism ζ 7→ ζ−1 corresponds to −1. Therefore
Gal(Q(cos 2π

n )/Q) ∼= U(Zn)/⟨−1⟩.
Let n = 2αpα1

1 · · · pαs
s . Then

U(Zn) ∼= U(Z2α)× U(Zp
α1
1
)× · · · × U(Zpαs

s
)
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and under this isomorphism −1 corresponds to (−1,−1, . . . ,−1). Thus

U(Zn)/⟨−1⟩ ∼= (U(Z2α)× U(Zp
α1
1
)× · · · × U(Zpαs

s
))/⟨(−1, . . . ,−1)⟩.

Note that if α ≤ 1 then U(Z2α) is the trivial group, so it can be
dropped in the product above. If α ≥ 2 then we have an isomorphism
U(Z2α) ∼= Z2 ×Z2α−2 given by (−1)a5b 7→ (a, b). This isomorphism maps −1
to (1, 0). For 1 ≤ i ≤ s we have U(Zp

αi
i
) ∼= Z

p
αi−1
i (pi−1)

∼= Z2ai
×Zp

αi
i (pi−1)/2ai ,

where 2ai∥pi − 1. This isomorphism maps −1 to the only element of Z2ai
×

Zp
αi
i (pi−1)/2ai of order 2, namely (2ai−1, 0).

In conclusion, if α ≤ 1 then U(Zn)/⟨−1⟩ is isomorphic to

(Z2a1×Zp
αi
1 (p1−1)/2ai×· · ·×Z2as×Zpαs

s (ps−1)/2as )/⟨(2
a1−1, 0, . . . , 2a

s−1, 0)⟩

which is also isomorphic to

(Z2a1×· · ·×Z2as )/⟨(2a1−1, . . . , 2as−1)⟩×Z
p
α1−1
1 (p1−1)/2a1

×· · ·×Zpαs−1
s (ps−1)/2as

Similarly, when α ≥ 2 we get U(Zn)/⟨−1⟩ isomorphic to

(Z2 × Z2a1 × · · · × Z2as )/⟨(1, 2a1−1, . . . , 2as−1)⟩
× Z2α−2 × Z

p
α1−1
1 (p1−1)/2a1

× · · · × Zpαs−1
s (ps−1)/2as .

We need the following result:

Lemma. If 1 ≤ a1 ≤ · · · ≤ as are integers then

(Z2a1 × · · · × Z2as )/⟨(2a1−1, . . . , 2as−1)⟩ ∼= Z2a1−1 × Z2a2 × · · · × Z2as .

Proof. We consider the mapping

f : Zs → (Z2a1 × · · · × Z2as )/⟨(2a1−1, . . . , 2as−1)⟩

given by (x1, . . . , xs) 7→ (x1, x2 + 2a2−a1x1, . . . , xs + 2as−a1x1). Obviously, f
is linear and onto.

If (x1, . . . , xs) ∈ ker f then there is some t ∈ Z such that (x1, x2 +
2a2−a1x1, . . . , xs+2as−a1x1)−t(2a1−1, . . . , 2as−1) = 0 in Z2a1 ×· · ·×Z2as , i.e.,
such that 2a1 | x1− 2a1−1t and 2ai | xi+2ai−a1x1− 2ai−1t = xi+2ai−a1(x1−
2a1−1t). The first condition implies that 2a1−1 | x1 and for i > 1 we have
2ai | 2ai−a1(x1 − 2a1−1t), which, together with 2ai | xi + 2ai−a1(x1 − 2a1−1t),
implies 2ai | xi. Thus (x1, . . . , xs) ∈ 2a1−1Z× 2a2Z× · · · × 2asZ.

Conversely, if (x1, . . . , xs) ∈ 2a1−1Z × 2a2Z × · · · × 2asZ then write
x1 = 2a1−1y1 and xi = 2aiyi for i > 1. Then

f(x1, . . . , xn) = x1(1, 2
a2−a1 , . . . , 2as−a1) + (0, x2, . . . , xs)

= y1(2
a1−1, 2a2−1, . . . , 2as−1) + (0, 2a2y2, . . . , 2

asys),

which is 0 in (Z2a1 × · · · × Z2as )/⟨(2a1−1, . . . , 2as−1)⟩. Thus (x1, . . . , xs) ∈
ker f .
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In conclusion, ker f = 2a1−1Z× 2a2Z× · · · × 2asZ, which implies that

(Z2a1×· · ·×Z2as )/⟨(2a1−1, . . . , 2as−1)⟩ ∼= Zs/ ker f ∼= Z2a1−1×Z2a2×· · ·×Z2as .

If α ≤ 1 then let ak = mini ai. By the Lemma we get

(Z2a1 × · · · × Z2as )/⟨(2a1−1, . . . , 2as−1)⟩ ∼= Z2a1 × · · · × Z2ak−1 × · · · × Z2as .

It follows that

U(Zn)/⟨−1⟩ ∼= Z
p
α1−1
1 (p1−1)

× · · · × Z
p
αk−1

k (pk−1)/2
× · · · × Zpαs−1

s (ps−1).

If α ≥ 2 then by the Lemma

(Z2 × Z2a1 × · · · × Z2as )/⟨(1, 2a1−1, . . . , 2as−1)⟩ ∼= Z2a1 × · · · × Z2as .

It follows that in this case one has

U(Zn)/⟨−1⟩ ∼= Z2α−2 × Z
p
α1−1
1 (p1−1)

× · · · × Zpαs−1
s (ps−1).

376. (a) Show that the probability of a point P (x, y, z), chosen at random
with uniform distribution in [0, 1]3, to be at a distance to the origin of at

most
√
2 is (15−8

√
2)π

12 .
(b) Prove that ∫ π/4

0

cos3/2 2θ

cos3 θ
dθ =

(4
√
2− 5)π

4
.

Eugen J. Ionaşcu, Department of Mathematics, Columbus State

University, Columbus, Georgia, U.S.A.

Solution by Cristo M. Jurado (student) and Ángel Plaza, Department of
Mathematics, Universidad de Las Palmas de Gran Canaria, Spain. (a) The
probability is equal to the volume of the subset of the sphere with radius

√
2

inside the unit cube having one of its vertices at the center of the sphere.
We may consider the sphere centered at the origin of coordinates, and the
cube at the first octant. The volume may be obtained also considering the
first octant of the sphere with radius

√
2, and taking out the part of this

octant that is out of the cube, which is equivalent by symmetry three times
the volume V of the part of the sphere in the first octant over the plane
of equation z = 1. The volume V will be calculated by using the spherical
coordinates (ρ, α, β), x = ρ cosβ cosα, y = ρ cosβ sinα, z = ρ sinβ. We
are interested in the region ρ ≤

√
2, z = ρ sinβ ≥ 1, which implies that

sinβ ≥ 1/
√
2, i.e., π/4 ≤ β ≤ π/2, and ρ ≥ 1/ sinβ. We find
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V =

∫ π/2

0

∫ π/2

π/4

∫ √2
1/ sinβ

ρ2 cosβdρdβdα =
π

2

∫ π/2

π/4

∫ √2
1/ sinβ

ρ2 cosβdρdβ

=
π

2

∫ π/2

π/4

(
2
√
2 cosβ

3
− cosβ

3 sin3 β

)
dβ =

π

2

(
2
√
2 sinβ

3
− 1

6 sin2 β

)]π/2
π/4

=
π

2

(
2
√
2

3
− 5

6

)
=

π
√
2

3
− 5π

12
.

Therefore, the probability we are looking for is P =
4π(

√
2)3

3 · 8
− 3V =

(15− 8
√
2)π

12
.

(b) The value of the proposed integral is obtained by calculating the
probability of part (a) by subtracting from the unit cube the part outside
to the sphere of radius

√
2. This time we use the polar coordinates (ρ, θ, z),

where x = ρ cos θ, y = ρ sin θ. The points of the unit cube outside the sphere
of radius

√
2 are characterized by ρ2 + z2 > 2. Since also 0 ≤ z ≤ 1, we have

ρ > 1 and
√

2− ρ2 < z ≤ 1.
Note that the region we are interested in is symmetric about the half-

plane {θ = π/4}, which divides the cube into two congruent triangular
prisms. So the volume we want to calculate is twice the volume contained
between the half-planes {θ = 0 and {θ = π/4}. This region is characterized

by 0 ≤ θ ≤ π/4, x = ρ cos θ ≤ 1, ρ > 1, and
√

2− ρ2 < z ≤ 1. Its volume W
is

W =

∫ π/4

0

∫ 1/ cos θ

1

∫ 1

√
2−ρ2

ρdzdρdθ

=

∫ π/4

0

∫ 1/ cos θ

1

(
1−

√
2− ρ2

)
ρdρdθ

=

∫ π/4

0

(
ρ2

2
+

1

3

(
2− ρ2

)3/2)]1/ cos θ
1

dθ

=

∫ π/4

0

(
1

2 cos2 θ
− 1

2

)
dθ − 1

3

∫ π/4

0

((
2− 1

cos2 θ

)3/2

− 1

)
dθ

=
1

2
tan θ]

π/4
0 − π

8
+

1

3

∫ π/4

0

cos3/2 2θ

cos3 θ
dθ − π

12

=
1

2
− 5π

24
+

1

3

∫ π/4

0

cos3/2 2θ

cos3 θ
dθ.
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This implies

(15− 8
√
2)π

12
= 1− 2W =

5π

12
− 2

3

∫ π/4

0

cos3/2 2θ

cos3 θ
dθ,

and so

∫ π/4

0

cos3/2 2θ

cos3 θ
dθ =

(4
√
2− 5)π

4
. �

377. Let p > 2 be a prime and let n be a positive integer. Prove that

p

⌊
n−1
p−1

⌋
|

⌊
n
p

⌋∑
k=0

(−1)k
(
n

pk

)
.

Proposed by Ghiocel Groza, Technical University (TUCEB),

Bucharest, Romania.

Solution by Constantin-Nicolae Beli. Let ζ = ζp = e2πi/p. For any
integer k we have

p−1∑
l=0

ζkl =

{
p if p | k
0 otherwise

so if f = a0 + · · ·+ anX
n ∈ C[X] then

p−1∑
l=0

f(ζ l) =

p−1∑
l=0

n∑
k=0

akζ
kl =

⌊
n
p

⌋∑
k=0

papk.

In particular, if f = (1 − X)n =
∑n

k=0(−1)k
(
n
k

)
Xk we get

∑p−1
l=0 (1 −

ζ l)n = pS, where S :=
∑⌊

n
p

⌋
k=0(−1)k

(
n
pk

)
.

Now the prime p of Q totally ramifies in Q(ζ). The only prime of
Q(ζ) lying over p is P = (1 − ζ). We denote by vp : Q → Z ∪ {∞} and
wP : Q(ζ) → Z ∪ {∞} the valuation maps corresponding to p and P . Then
eP/p = p− 1, so wP (a) = (p− 1)vp(a) ∀a ∈ Q.

We have to prove that vp(S) ≥
⌊
n−1
p−1

⌋
. But for any l we have (1−ζ l)n ∈

Pn, so pS ∈ Pn. It follows that

(p− 1)(1 + vp(S)) = (p− 1)vp(pS) = wP (pS) ≥ n > n− 1.

Hence, 1 + vp(S) >
n−1
p−1 ≥

⌊
n−1
p−1

⌋
, so vp(S) ≥

⌊
n−1
p−1

⌋
. �

Editor’s note. An alternative proof which does not use the arithmetics

of Q(ζ) was proposed by Victor Makanin. He denotes Sn :=
∑⌊n/p⌋

k=0 (−1)k
(
n
pk

)
and proves the same formula Sn = 1

p

∑p−1
l=1 (1 − ζ l)n. (At l = 0 the term
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(1− ζ l)n is 0 so it can be ignored.) As ζ, . . . , ζp−1 are the roots of Φp(X) =
Xp−1
X−1 , it follows that 1− ζ, . . . , 1− ζp−1 are the roots of

Φp(1−X) =
(1−X)p − 1

1−X − 1
= Xp−1−

(
p

1

)
Xp−2+

(
p

2

)
Xp−3−· · ·+

(
p

p− 1

)
.

It follows that the sequence (Sn)n≥1 satisfies the linear recurrence

Sn −
(
p

1

)
Sn−1 +

(
p

2

)
Sn−2 − · · ·+

(
p

p− 1

)
Sn−p+1 = 0

for n ≥ p. From here he uses induction on n.

If n = 1, . . . , p − 1 the statement is trivial, as
⌊
n−1
p−1

⌋
= 0. If n ≥ p we

use the recurrence relation above. For 1 ≤ j ≤ p− 1 we have p |
(
p
j

)
and, by

the induction step, p

⌊
n−j−1
p−1

⌋
| Sn−j . It follows that p

⌊
n−j−1
p−1

⌋
+1 | Sn−j . But

for 1 ≤ j ≤ p − 1 we have
⌊
n−j−1
p−1

⌋
+ 1 =

⌊
n+p−j−2

p−1

⌋
≥
⌊
n−1
p−1

⌋
. Therefore

p

⌊
n−1
p−1

⌋
divides all the terms of the sum in the right side of equation

Sn =

(
p

1

)
Sn−1 −

(
p

2

)
Sn−2 + · · · − pp− 1Sn−p+1

and hence it divides Sn. �

378. Let (xn)n≥1 be a sequence with 0 < xn < 1. Then the following are
equivalent.

(i) For any convergent series of positive numbers
∑

n≥1 an the series∑
n≥1 a

xn
n is convergent, as well.

(ii) The series
∑

n≥1M
−1/(1−xn) is convergent for some M > 1, large

enough.
Proposed by Constantin-Nicolae Beli, Simion Stoilow Institute of

Mathematics of the Romanian Academy, Bucharest, Romania.

Solution by the author. (ii)⇒(i) We have∑
n≥1

axn
n =

∑
n∈A

axn
n +

∑
n∈B

axn
n ,

where A = {n | an < M−1/(1−xn)} and B = {n | an ≥ M−1/(1−xn)}.
Let S1 =

∑
n≥1 an. If n ∈ B then a1−xn

n ≥ M−1, that is, axn
n ≤ Man,

and so
∑

n∈B axn
n ≤

∑
n≥1Man = MS1.

Let S2 =
∑

n≥1M
−1/(1−xn). If n ∈ A then axn

n < M−xn/(1−xn) =

M ·M−1/(1−xn), so∑
n∈A

axn
n <

∑
n≥1

M ·M−1/(1−xn) = MS2.

In consequence,
∑

n≥1 a
xn
n < M(S1 + S2) < ∞.
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(i)⇒(ii) We prove that if
∑

n≥1M
−1/(1−xn) = ∞ for any M > 1 then

there is a sequence (an)n≥1 of positive numbers such that
∑

n≥1 an < ∞ yet∑
n≥1 a

xn
n = ∞.

If M > 1 then
∑

n≥1M
−1/(1−xn) = ∞, so for any integer m ≥ 0 and

any C > 0 there is an integer m′ > m such that
∑m′

n=m+1M
−1/(1−xn) ≥ C.

Therefore we may construct recursively an integer sequence 0 = m1 < m2 <
m3 < · · · such that

Si :=

mi+1∑
n=mi+1

i−1/(1−xn) ≥ 1

i2
∀i ≥ 1.

It follows that i2Si ≥ 1.
We define the sequence (an)n≥1 by

an =
1

i2Si
i−1/(1−xn) if mi + 1 ≤ n ≤ mi+1.

We have
mi+1∑

n=mi+1

ai =
1

i2Si

mi+1∑
n=mi+1

i−1/(1−xn) =
1

i2Si
· Si =

1

i2
.

It follows that
∑

n≥1 an =
∑

i≥1
1
i2

< ∞.

If mi + 1 ≤ n ≤ mi+1 then i2Si ≥ 1 and xn < 1, so (i2Si)
xn ≤ i2Si.

Since also i−xn/(1−xn) = i · i−1/(1−xn), we get

axn
n =

1

(i2Si)xn
i−xn/(1−xn) ≥ 1

i2Si
i−xn/(1−xn) =

1

iSi
i−1/(1−xn),

whence
mi+1∑

n=mi+1

ai ≥
1

iSi

mi+1∑
n=mi+1

i−1/(1−xn) =
1

iSi
· Si =

1

i
.

It follows that
∑

n≥1 a
xn
n ≥

∑
i≥1

1
i = ∞. �

Note. This result generalizes Problem 364 proposed by Cristian Ghibu
in the issue 1-2/2012 of GMA. Unlike our condition (ii), his condition

lim sup
n→∞

(1− xn) log n < ∞,

is only sufficient but not necessary for (i) to happen. It is not hard to see
that his condition implies (ii) above. If L = lim supn→∞(1 − xn) log n then
for n large enough we have (1 − xn) log n ≤ 2L, so 2 log n ≤ 4L/(1 − xn).

It follows that n2 ≤ e
4L

1−xn . Therefore if we take M = e4L then, for n large
enough, we have M−1/(1−xn) ≤ 1

n2 . Hence
∑

n≥1M
−1/(1−xn) is convergent.


