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SERIA A

ANUL XXIX(CVIII) Nr. 1 – 2/ 2011

ARTICOLE

On some stability concepts for real functions
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Abstract. In this paper we investigate some asymptotic properties for
real functions defined on R+ as exponential stability, uniform exponential
stability, polynomial stability and uniform polynomial stability. Our main
objectives are to give characterizations for these concepts and to establish
connections between them.
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1. Exponential stability

The exponential stability property plays a central role in the theory of
asymptotic behaviors for differential equations. In this section we consider
two concepts of exponential stability for the particular case of real functions
defined on R+.

Let ∆0 be the set defined by

∆0 = {(y, x) ∈ R2
+ with y ≥ x}.

Definition 1. A real function F : R+ → R is called

(i) uniformly exponentially stable (and denote u.e.s), if there are N ≥ 1
and α > 0 such that

|F (y)| ≤ Ne−α(y−x)|F (x)|, for all (y, x) ∈ ∆0;
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(ii) (nonuniformly) exponentially stable (and denote e.s), if there exist
α > 0 and a nondecreasing function N : R+ → [1,∞) such that

|F (y)| ≤ N(x)e−α(y−x)|F (x)|, for all (y, x) ∈ ∆0.

Remark 1. It is obvious that u.e.s ⇒ e.s. The converse implication is not
true, as shown in

Example 1. Let F : R+ → R be the function defined by

F (x) = ex cosx−3x.

We observe that for all (y, x) ∈ ∆0, we have

|F (y)| = F (y) = ey cos y−3y−x cosx+3x|F (x)| ≤
≤ e−2y+4x|F (x)| ≤ e2xe−2(y−x)|F (x)|

and hence F is e.s.
If we suppose that if F is u.e.s, then there exist N ≥ 1 and α > 0 such

that

ey cos y−3y ≤ Ne−α(y−x)ex cosx−3x, for all (y, x) ∈ ∆0.

In particular, for y = 2nπ and x = 2nπ − π/2, we obtain

e2nπ ≤ Ne(3−α)π/2,

which for n→ ∞, leads to a contradiction.
A necessary and sufficient condition for uniform exponential stability is

given by

Proposition 1. A function F : R+ → R is uniformly exponentially stable
if and only if there exists a decreasing function f : R+ → R∗

+ = (0,∞) with
lim
x→∞

f(x) = 0 and

|F (y)| ≤ f(y − x)|F (x)|, for all (y, x) ∈ ∆0.

Proof. Necessity. It is an immediate verification.
Sufficiency. Let δ > 1 with f(δ) < 1. Then for all (y, x) ∈ ∆0 there

exist n ∈ N and r ∈ [0, δ) such that y = x+ nδ + r. Then

|F (y)| ≤ f(r)|F (x+ nδ)| ≤ f(0)|F (x+ nδ)| ≤
≤ f(0)f(δ)|F (x+ (n− 1)δ)| ≤ · · · ≤ f(0)fn(δ)|F (x)| =
= f(0)en ln f(δ)|F (x)| = f(0)eαre−α(y−x)|F (x)| ≤
≤ f(0)eαδe−α(y−x)|F (x)| ≤ Ne−α(y−x)|F (x)|,

where α = − ln δ

f(δ)
and N = 1 + f(0)eαδ. 2
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Definition 2. A function F : R+ → R with the property that there are
M ≥ 1 and ω > 0 such that

|F (y)| ≤Meω(y−x)|F (x)|, for all (y, x) ∈ ∆0,

is called with exponential growth (and we denote e.g).

Remark 2. It is obvious that u.e.s ⇒ e.g and the converse implication is
not true.

Proposition 2. A function F : R+ → R is with exponential growth if and
only if there exists a nondecreasing function ϕ : R+ → R∗

+ with lim
x→∞

ϕ(x) =

= ∞ and

|F (y)| ≤ ϕ(y − x)|F (x)|, for all (y, x) ∈ ∆0.

Proof. It is similar with the proof of Proposition 1. 2

Another characterization of the u.e.s property is given by

Proposition 3. Let F : R+ → R be an integrable function on each compact
interval [a, b] ⊂ R+ (i.e., F is locally integrable on R+) with exponential
growth. Then F is uniformly exponentially stable if and only if there exists
D ≥ 1 with

∞∫

x

|F (y)|dy ≤ D|F (x)|, for all x ∈ R+.

Proof. Necessity. It is an immediate verification.
Sufficiency. Because F is with e.g, it follows that there is a nondecreas-

ing function ϕ : R+ → [1,∞) with

|F (y)| ≤ ϕ(y − x)|F (x)|, for all (y, x) ∈ ∆0.

Then for all (y, x) ∈ ∆0 with y ≥ x+ 1 we have

|F (y)| =
y∫

y−1

|F (y)|dz ≤
y∫

y−1

ϕ(y − z)|F (z)|dz ≤

≤ ϕ(1)

∞∫

x

|F (z)|dz ≤ Dϕ(1)|F (x)|.

If (y, x) ∈ ∆0 with y ∈ [x, x+ 1), then

|F (y)| ≤ ϕ(y − x)|F (x)| ≤ Dϕ(1)|F (x)|

and hence

|F (y)| ≤ Dϕ(1)|F (x)|, for all (y, x) ∈ ∆0.
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Thus we obtain

(y − x)|F (y)| =
y∫

x

|F (y)|dz ≤ Dϕ(1)

y∫

x

|F (z)|dz ≤ D2ϕ(1)|F (x)|,

for all (y, x) ∈ ∆0 and

|F (y)| ≤ f(y − x)|F (x)|, for all (y, x) ∈ ∆0,

where

f(z) =
D2ϕ(1)

z + 1
.

Using the preceding proposition we conclude that F is u.e.s. 2

A generalization of the preceding result for the nonuniform case is given
by

Proposition 4. Let F : R+ → R be a locally integrable function on R+ with
exponential growth. Then F is exponentially stable if and only if there are
β > 0 and D : R+ → [1,∞) such that

∞∫

x

eβy|F (y)|dy ≤ D(x)eβx|F (x)|, for all x ≥ 0.

Proof. Necessity. It is a simple verification for β ∈ (0, α), where α is given
by Definition 1 (ii).

Sufficiency. If (y, x) ∈ ∆0 with y ≥ x+ 1 then

eβy|F (y)| =
y∫

y−1

eβy|F (y)|dz ≤
y∫

y−1

ϕ(y − z)eβy|F (z)| ≤

≤ ϕ(1)

y∫

y−1

eβ(y−z)eβz|F (z)|dz ≤ ϕ(1)eβ
∞∫

x

eβz|F (z)|dz ≤

≤ D(x)eβϕ(1)eβx|F (x)|.
If (y, x) ∈ ∆0 with y ∈ [x, x+ 1) then

eβy|F (y)| ≤ eβ(y−x)eβxϕ(y − x)|F (x)| ≤
≤ eβϕ(1)eβx|F (x)| ≤ D(x)eβϕ(1)eβx|F (x)|.

Finally, we obtain

|F (y)| ≤ N(x)e−β(y−x)|F (x)|, for all (y, x) ∈ ∆0,

where
N(x) = ϕ(1)eβD(x).

2

In the particular case of u.e.s property we obtain:
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Corollary 1. Let F : R+ → R be a locally integrable function on R+ with
exponential growth. Then F is uniformly exponentially stable if and only if
there exist D ≥ 1 and β > 0 such that

∞∫

x

eβy|F (y)|dy ≤ Deβx|F (x)|, for all x ≥ 0.

2. Polynomial stability

In this section we consider two concepts of polynomial stability for
real functions. Our approach is based on the extension of techniques of
exponential stability to the case of polynomial stability. Two illustrating
examples clarify the relations between the stability concepts considered in
this paper.

Let ∆1 be the set defined by

∆1 = {(y, x) ∈ R2 with y ≥ x ≥ 1}.

Definition 3. A real function F : R+ → R is called

(i) uniformly polynomially stable (and denote u.p.s) if there exist N ≥ 1
and α > 0 such that

yα|F (y)| ≤ Nxα|F (x)|, for all (y, x) ∈ ∆1;

(ii) (nonuniformly) polynomially stable (and denote p.s) if there are a
nondecreasing function N : R+ → [1,∞) and α > 0 such that

yα|F (y)| ≤ N(x)xα|F (x)|, for all (y, x) ∈ ∆1.

Remark 3. If the function F : R+ → R is u.e.s then it is u.p.s. Indeed, if
F is u.e.s then using the monotony of the function

f : [1,∞) → [e,∞), f(t) =
et

t

we obtain

yα|F (y)| ≤ xαeα(y−x)|F (x)| ≤ Nxα|F (x)|,
for all (y, x) ∈ ∆1 and hence F is u.p.s. The converse is not true, phenome-
non illustrated by

Example 2.The function F : R+ → R, F (x) =
1

x3 + 1
, satisfies the inequa-

lity

y3|F (y)| = y3

y3 + 1
≤ 2x3

x3 + 1
= 2x3|F (x)|,

for all (y, x) ∈ ∆1. This shows that F is u.p.s. We show that F is not e.s
and hence it is not u.e.s. Indeed, if we suppose that F is e.s then there are
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α > 0 and N : R+ → [1,∞) such that

eαy

y3 + 1
≤ N(x)

eαx

x3 + 1
, for all (y, x) ∈ ∆0.

For x = 0 and y → ∞ we obtain a contradiction which proves that F is not
e.s.

Remark 4. Similarly, as in Remark 3 we can prove that if F : R+ → R is
e.s then it is p.s.

The function considered in Example 2 shows that the converse is not
true.

Remark 5. It is obvious that if the function F : R+ → R is u.p.s then
it is p.s. The function F considered in Example 1 shows that the converse
implication is not true. Indeed, F is e.s. and by Remark 4 it is p.s.

If we suppose that F is u.p.s then there are α > 0 and N ≥ 1 such that

yαey cos y−3y ≤ Nxαex cosx−3x, for all (y, x) ∈ ∆1.

Then for x = 2nπ − π/2, y = 2nπ and n→ ∞ we obtain a contradiction.

Remark 6. The preceding considerations prove that between the asymptotic
behaviors defined in this paper we have the following implications:

e.g ⇐ u.e.s ⇒ e.s
⇓ ⇓ ⇓
p.g ⇐ u.p.s ⇒ p.s

Definition 4. A function F : R+ → R with the property that there are
M ≥ 1 and p > 0 such that

xp|F (y)| ≤Myp|F (x)|, for all (y, x) ∈ ∆1

is called with polynomial growth (and denote p.g).

A necessary and sufficient condition for polynomial stability is given by

Proposition 5. Let F : R+ → R be a locally integrable function on R+ with
polynomial growth. Then F is polynomially stable with α > 1 if and only if
there exists β > 0 and D : [1,∞) → [1,∞) such that

∞∫

x

yβ |F (y)|dy ≤ D(x)xβ+1|F (x)|, for all x ≥ 1.

Proof. Necessity. If F is p.s with α > 1 then for β ∈ (0, α− 1) we have
∞∫

x

yβ |F (y)|dy ≤ N(x)|F (x)|xα
∞∫

x

yβ−αdy ≤

≤ N(x)

α− 1− β
xβ+1|F (x)| ≤ D(x)xβ+1|F (x)|, for all x ≥ 1,
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where

D(x) = 1 +
N(x)

α− 1− β
.

Sufficiency. If (y, x) ∈ ∆1 and y ∈ [x, 2x) then

yβ+1|F (y)| ≤Myβ+1
(y
x

)p
|F (x)| ≤Mxβ+1

(y
x

)p+β+1
|F (x)| ≤

≤M2p+β+1xβ+1|F (x)|,

where M and p are given by Definition 4.
If (y, x) ∈ ∆1 with y ≥ 2x and

C =

2∫

1

dz

zp+β+2
=

1

yp+β+1

y∫

y

2

tp+βdt,

then

Cyβ+1|F (y)| = 1

yp

y∫

y

2

tp+β|F (y)|dt ≤

≤M

∞∫

x

tβ |F (t)|dt ≤MD(x)xβ+1|F (x)|.

Finally, we obtain

yα|F (y)| ≤ N(x)xα|F (x)|, for all (y, x) ∈ ∆1,

where α = β + 1 > 1 and

N(x) =M(2p+β+1 +D(x)) ≥ 1,

which shows that F is p.s. with α > 1. 2

From the proof of the preceding result we obtain

Corollary 2. Let F : R+ → R be a locally integrable function on R+ with
polynomial growth. Then F is uniformly polynomially stable with α > 1 if
and only if there are D ≥ 1 and β > 0 such that

∞∫

x

yβ |F (y)|dy ≤ Dxβ+1|F (x)|, for all x ≥ 1.
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Some inequalities about certain arithmetic functions which
use the e-divisors and the e-unitary divisors

Nicuşor Minculete1)

Abstract. The purpose of this paper is to present several inequa-
lities about the arithmetic functions σ(e), τ (e), σ(e)∗, τ (e)∗ and other
well-known arithmetic functions. Among these, we have the following:
τ(n)

τ∗(n)
≥

τ (e)(n)

τ (e)∗(n)
,

σ(n)

σ∗(n)
≥

σ(e)(n)

σ(e)∗(n)
, τ(n) + 1 ≥ τ (e)(n) + τ∗(n) and

σ(n) + n ≥ σ(e)(n) + σ∗(n), for any n ≥ 1, where τ(n) is the number of
natural divisors of n, τ∗(n) is the number of natural divisors of n, σ(n) is
the sum of the divisors of n, τ∗(n) is the number of unitary divisors of n,
σ∗(n) is the sum of the unitary divisors of n and γ is the ,,core“ of n.

Keywords: arithmetic function, exponential divisor, exponential unitary
divisor.

MSC : 11A25

1. Introduction

First we have to mention that the notion of ,,exponential divisor“ was
introduced by M. V. Subbarao in [9], in the following way: if n > 1 is an

integer of canonical form n = pa11 p
a2
2 · · · parr , then the integer d =

r∏

i=1

pbii is

called an exponential divisor (or e-divisors) of n =
r∏

i=1

paii > 1, if bi|ai for

every i = 1, r. We note d|(e)n. Let σ(e)(n) denote the sum of the exponential

divisors of n and τ (e)(n) denote the number of exponential divisors of n.

1)Dimitrie Cantemir University of Braşov, minculeten@yahoo.com
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For example, if n = 2432, then the exponential divisors of n are the
following:

2 · 3, 2 · 32, 22 · 3, 22 · 32, 24 · 3 and 24 · 32.
For various properties of the arithmetic functions which use the e-

divisors see the monograph of J. Sándor and B. Crstici [5].
J. Fabrykowski and M. V. Subbarao in [1] study the maximal order and

the average order of the multiplicative function σ(e)(n). E.G. Straus and M.
V. Subbarao in [8] obtained several results concerning e-perfect numbers (n

is an e-perfect number if σ(e)(n) = 2n). They conjecture that there is only a
finite number of e-perfect numbers not divisible by any given prime p.

In [4], J. Sándor showed that, if n is a perfect square, then

2ω(n) ≤ τ (e)(n) ≤ 2Ω(n), (1)

where ω(n) and Ω(n) denote the number of distinct prime factors of n, and
the total number of prime factors of n, respectively. It is easy to see that,
for n = pa11 p

a2
2 · · · parr > 1, we have ω(n) = r and Ω(n) = a1 + a2 + ...+ ar.

In [6], J. Sándor and L. Tóth proved the inequality

nk + 1

2
≥ σ∗k(n)

τ∗(n)
≥

√
nk, (2)

for all n ≥ 1 and k ≥ 0, where τ∗(n) is the number of the unitary divisors of
n, σ∗k(n) is the sum of kth powers of the unitary divisors of n.

In [11] L. Tóth and N. Minculete presented the notion of ,,exponential

unitary divisors“ or ,,e-unitary divisors“. The integer d =

r∏

i=1

pbii is called

an e-unitary divisor of n =
r∏

i=1

paii > 1 if bi is a unitary divisor of ai, so

(
bi,
ai
bi

)
= 1, for every i = 1, r. Let σ(e)∗(n) denote the sum of the e-unitary

divisors of n, and τ (e)∗(n) denote the number of the e-unitary divisors of n.
For example, if n = 2432, then the exponential unitary divisors of n are the
following:

2 · 3, 2 · 32, 24 · 3 and 24 · 32.
By convention, 1 is an exponential divisor of itself, so that

σ(e)∗(1) = τ (e)∗(1) = 1.

We notice that 1 is not an e-unitary divisor of n > 1, the smallest
e-unitary divisor of n = pa11 p

a2
2 · · · parr > 1 is p1p2 · · · pr = γ(n) is called the

,,core“ of n.
In [3], it is show that

σ(e)(n) ≤ ψ(n) ≤ σ(n), (3)
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where ψ(n) is the function of Dedekind, and

τ(n) ≤ σ(e)(n)

τ (e)(n)
, (4)

for all integers n ≥ 1.
Other properties of the sum of the exponential divisors of n and of the

number of the exponential divisors of n can be found in the papers [2, 6 and
10].

2. Inequalities for the functions τ e, σe, τ e∗ and σe∗

Lemma 1. For every n ≥ 1, there is the following inequality

nτ∗(n) ≥ σ(n), (5)

and for all n = pa11 p
a2
2 · · · parr > 1, with ai ≥ 2, (∀) i = 1, r, there is the

following inequality
nτ e(n) ≥ σ(n). (6)

Proof. For a ≥ 1 we show that

2pa ≥ pa + pa−1 + ...+ p+ 1.

This inequality is rewritten as

pa ≥ pa−1 + ...+ p+ 1,

which by multiplication with p− 1 becomes

pa+1 + 1 ≥ 2pa,

which is true, because pa+1 ≥ 2pa, for every prime number p and for all
a ≥ 1.

Therefore, paτ∗(pa) = 2pa ≥ pa+pa−1+...+p+1 = σ(pa), so paτ∗(pa) ≥
≥ σ(pa). Because the arithmetic functions τ∗ and σ are multiplicative, we
deduce the inequality

nτ∗(n) ≥ σ(n).

Since a ≥ 2, it follows that τ(a) ≥ 2, so

paτ(a) ≥ 2pa ≥ pa + ...+ p+ 1 = σ(pa),

which is equivalent to paτ e(pa) = paτ(a) ≥ σ(pa). As the arithmetic functions
τ e and σ are multiplicative, we get the inequality of the statement. 2

Remark 1. It may be noted that the lemma readily implies the inequality

n2τ e(n2) ≥ σ(n2), (7)

for all n ≥ 1.

Theorem 2. For every n ≥ 1, there is the inequality

τ(n)

τ∗(n)
≥ τ e(n)

τ e∗(n)
. (8)
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Proof. For n = 1, we have
τ(1)

τ∗(1)
= 1 =

τ e(1)

τ e∗(1)
.

Let’s consider n = pa11 p
a2
2 · · · parr , with ai ≥ 1, (∀) i = 1, r. According to

lemma 1, we deduce the relation

aiτ
∗(ai) ≥ σ(ai), (∀) i = 1, r. (9)

From the inequality of S. Sivaramakrishnan and C. S. Venkataraman [7],
σ(n) ≥ √

nτ(n), (∀) n ≥ 1, we get σ(ai) ≥
√
aiτ(ai), (∀) i = 1, r. This last

inequality combined with inequality (9) implies the inequality

√
ai ≥ τ(ai)

τ∗(ai)
, (∀) i = 1, r, (10)

which means that√√√√
r∏

i=1

ai ≥
τ e(n)

τ e∗(n)
, for all n = pa11 p

a2
2 · · · parr > 1, because (11)

τ e(n) = τ(a1) · ... · τ(ar) and τ e∗(n) = τ∗(a1) · ... · τ∗(ar).
But ai + 1 ≥ 2

√
ai, (∀) i = 1, r, and by taking the product, we obtain

the inequality
r∏

i=1

(ai + 1) ≥ 2r

√√√√
r∏

i=1

ai, which is equivalent to the relation

τ(n) ≥ τ∗(n)

√√√√
r∏

i=1

ai, so

τ(n)

τ∗(n)
≥

√√√√
r∏

i=1

ai for all n = pa11 p
a2
2 ...p

ar
r > 1. (12)

Combining relations (11) and (12), we deduce inequality (8). Finally, the
proof is completed. 2

Theorem 3. For every n ≥ 1, there is the equality

σ(n)

σ∗(n)
≥ σe(n)

σe∗(n)
. (13)

Proof. We distinguish the following cases:

Case I. For n = 1, we have
σ(1)

σ∗(1)
= 1 =

σe(1)

σe∗(1)
.

Case II. If n is squarefree, then σ(n) = σ∗(n), and σe(n) = n = σe∗(n).
Therefore, we obtain the relation of statement.
Case III. Let’s consider n = pa11 p

a2
2 · · · parr > 1, with ai ≥ 2, (∀) i = 1, r, then

σ(pa)

σ∗(pa)
=

1 + p+ p2 + ...+ pa

1 + pa
= 1 +

p+ p2 + ...+ pa−1

1 + pa
(14)
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and, because the exponential unitary divisors pd1 , ..., pdq of pa are among the
exponential divisors pd1 , ..., pds of pa, we have the inequality

σe(pa)

σe∗(pa)
=
pd1 + pd2 + ...+ pds

pd1 + ...+ pdq
= 1 +

pd2 + ...+ pds−1

p+ ...+ pa
≤

≤ 1 +
p2 + p3 + ...+ pa−1

p+ pa
≤ 1 +

p+ ...+ pa−1

1 + pa
.

Therefore, using the inequality (14), we get the relation

σe(pa)

σe∗(pa)
≤ σ(pa)

σ∗(pa)
.

Because the arithmetic functions σe, σe∗, σ and σ∗ are multiplicative, we
deduce the inequality

σ(n)

σ∗(n)
≥ σe(n)

σe∗(n)
, for all n = pa11 p

a2
2 · · · parr > 1, with ai ≥ 2, (∀) i = 1, r.

Case IV. Let’s consider n = n1n2, where n1 is squarefree, and n2 =
∏

p|n2
a≥2

pa.

Since (n1, n2) = 1, we deduce the following relation

σ(n)

σ∗(n)
=

σ(n1)σ(n2)

σ∗(n1)σ∗(n2)
≥ σe(n1)σ

e(n2)

σe∗(n1)σe∗(n2)
=

σe(n)

σe∗(n)
.

Thus, the demonstration is complete. 2

Remark 2. In Theorem 2 and Theorem 3 the equality in relations (8) and
(13) holds when n = 1 or n is squarefree.

Theorem 4. For any n ≥ 1 the following inequality

τ(n) + 1 ≥ τ e(n) + τ∗(n) (15)

holds.

Proof. If n = 1, then we obtain τ(1) + 1 = 2 = τ e(1) + τ∗(1).
We consider n > 1. To prove the above inequality, will have to study several
cases, namely:
Case I. If n = p21p

2
2...p

2
r , then τ(n) = 3r and

τ e(n) = τ(a1) · τ(a2) · ... · τ(ar) = τ r(2) = 2r = τ∗(n),

which means that inequality (15) is equivalent to the inequality 3r + 1 ≥
≥ 2 · 2r, which is true because, by using Jensen’s inequality, we have

3r + 1

2
≥
(
3 + 1

2

)r

= 2r.

Case II. If ak 6= 2, (∀) k = 1, r, then the numbers
n

p1
,
n

p2
, ...,

n

pr
,
n

p1p2
, ...,

n

pipj
, ...,

n

pipjpk
, ...,

n

p1p2 · · · pr
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are not exponential divisors of n, so they are in a total number of 2r − 1,
such that we have the inequality

τ(n) =
∑

d|en

1 +
∑

d∤en

1 = τ e(n) +
∑

d∤en

1 ≥ τ e(n) + 2r − 1.

Therefore, we have

τ(n) ≥ τ e(n) + 2r − 1, so τ(n) + 1 ≥ τ e(n) + τ∗(n).

Case III. If there is at least one aj = 2 and at least one ak 6= 2, where
j, k ∈ {1, 2, ..., r}, then without loss of the generality we renumber the prime
factors from the factorization of n and we obtain

n = p21p
2
2 · · · p2sp

as+1

s+1 · · · parr , with as+1, as+2, ..., ar 6= 2.

Therefore, we write n = n1 ·n2, where n1 = p21p
2
2 · · · p2s and n2 = p

as+1

s+1 · · · parr ,
which means that (n1, n2) = 1, and

τ(n) = τ(n1 ·n2) = τ(n1)·τ(n2) ≥ (τ e(n1)+τ
∗(n1)−1)(τ e(n2)+τ

∗(n2)−1) =

= (τ e(n1) + 2s − 1)(τ e(n2) + 2r−s − 1) =

= τ e(n1)τ
e(n2) + τ e(n1)(2

r−s − 1) + τ e(n2)(2
s − 1) + (2s − 1)(2r−s − 1) ≥

≥ τ e(n)+2r−s−1+2s−1+(2s−1)(2r−s−1) ≥ τ e(n)+2r−1 = τ e(n)+τ∗(n)−1.

Thus, the inequality of the statement is true. 2

Lemma 5. For any xi > 0 with i ∈ {1, 2, ..., n}, there is the following ine-
quality:

n∏

i=1

(1 + xi + x2i ) +
n∏

i=1

x2i ≥
n∏

i=1

(xi + x2i ) +
n∏

i=1

(1 + x2i ). (16)

Proof. We apply the principle of mathematical induction. 2

Theorem 6. For any n ≥ 1, the following inequality:

σ(n) + n ≥ σe(n) + σ∗(n) (17)

holds.

Proof. If n = 1, then we obtain σ(1)+1 = 2 = σe(1)+σ∗(1). Let’s consider
n > 1. To prove the above inequality, we will have to study several cases
namely:

Case I. If n = p21p
2
2 · · · p2r , then we deduce the equalities σ(n) =

r∏

i=1

(1 + pi +

+p2i ), σ
e(n) =

∏r
i=1(pi + p2i ) and σ∗(n) =

r∏

i=1

(1 + p2i ), which means that

inequality (17) implies the inequality
r∏

i=1

(1 + pi + p2i ) +
r∏

i=1

p2i ≥
r∏

i=1

(pi + p2i ) +
r∏

i=1

(1 + p2i ),
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which is true, because we use inequality (16), for n = r and xi = pi.
Case II. If ak 6= 2, (∀) k = 1, r, then the numbers

n

p1
,
n

p2
, ...,

n

pr
,

n

p1p2
, ...,

n

pipj
, ...,

n

pipjpk
, ...,

n

p1p2 · · · pr
are not exponential divisors of n, so they are in a total number of 2r−1, and
their sum is ψ(n)− n, so that as we have the inequality

σ(n) =
∑

d|en

d+
∑

d∤en

d = σe(n) +
∑

d∤en

d ≥ σe(n) + ψ(n)− n.

Since we have the inequality

ψ(n) = n
r∏

i=1

(
1 +

1

pi

)
≥ n

r∏

i=1

(
1 +

1

paii

)
= σ∗(n),

it follows that

σ(n) ≥ σe(n) + σ∗(n)− n, so σ(n) + n ≥ σe(n) + σ∗(n).

Case III. If there is at least one ak 6= 2, and at last one aj = 2, where
j, k ∈ {1, 2, ..., r}, then without loss of generality, we renumber the prime
factors from the factorization of n and we obtain

n = p21p
2
2 · · · p2sp2s+1 · · · parr , with as+1, as+2, ..., ar 6= 2.

Hence, we will write n = n1 ·n2, where n1 = p21p
2
2 · · · p2s and n2 = p

as+1

s+1 · · · parr ,
which means that (n1, n2) = 1, and by simple calculations, it is easy to see
that

σ(n) = σ(n1·n2) = σ(n1)·σ(n2) ≥ (σe(n1)+σ
∗(n1)−n1)(σe(n2)+σ∗(n2)−n2) =

= σe(n1)σ
e(n2)+σ

e(n1)(σ
∗(n2)−n2)+σ∗(n1)(σe(n2)−n2)+σ∗(n1)·σ∗(n2)−

−n1(σe(n2) + σ∗(n2)) + n1n2 ≥ σe(n) + n1(σ
∗(n2)− n2) + n1(σ

e(n2)− n2)+

+σ∗(n)− n1σ
e(n2)− n1σ

∗(n2) + n1n2 ≥ σe(n) + σ∗(n)− n.

Thus, the demonstration is complete. 2

Remark 3. In Theorem 4 and Theorem 6 the equality in relations (15) and
(17) hold, when n = 1 or n is squarefree.
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Harmonic quadrilaterals revisited

Cosmin Pohoaţă1)

Abstract. With a plethora of instruments ranging from harmonic divi-
sions to various geometric transformations, synthetic projective geometry
has become very popular in olympiad geometry problems nowadays. In
this note we expand a bit the literature concerned with applications of
these techniques by discussing a topic of great importance (or better said,
spectacularity) which might not be that covered in usual Euclidean geo-
metry textbooks: harmonic quadrilaterals.

Keywords: harmonic, harmonic division, harmonic quadrilateral, inver-
sion, symmedian.

MSC : 51A05, 51A20, 51A45.

1. Introduction

The name of harmonic quadrilateral dates from the middle of the
nineteenth century, belonging to the famous mathematician R. Tucker [1].
He gives a slightly different definition from the ones popular these days:

Let A, B, C, D, M be five points in plane such that A, B, C, D are
concyclic and M is the midpoint of the segment BD. Denote BD = 2m,
i.e. MB = MD = m. Call vectorial inversion and denote (M,m2, BD)
the transformation which firstly inverts with respect to the pole M with con-
stant m2, and secondly takes the image of the inversed object in BD. Then,
the quadrilateral ABCD is harmonic if and only if each of A, C could be
obtained of the other after a vectorial inversion (M,m2, BD).

Remark. In the above statement it isn’t necessary to firstly point out
the concyclity of A, B, C, D. In fact, if we perform a vectorial inversion

1)Tudor Vianu National College, Bucharest, Romania,
pohoata cosmin2000@yahoo.com
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(M,m2, BD) of a point T in plane, then its image under the transformation,
T ∗, lies on the circumcircle of △TBD.

In the following, we will firstly present the most used characterization
these days, a more synthetic view:

Consider ABCD a cyclic quadrilateral inscribed in C(O) and X a point
on C. Let an arbitrary line d intersect the lines XA, XB, XC, XD at M ,

N , P and Q, respectively. If
NM

NP
=
QM

QP
, then the quadrilateral ABCD

is called harmonic. In addition, ABCD is a harmonic quadrilateral if and
only if AB · CD = BC ·DA.

Proof. Denote by T the intersection of AC and BD. Since the pencil
X(A,B,C,D) is harmonic, it is clear that the pencil A(A,B,C,D) is har-
monic. Hence, if by S we note the intersection of BD with the tangent in A
w.r.t. C, then the quadruple (SDTB) is harmonic.

Similarly, the division (S′TDB) is harmonic, where by S′ we denoted
the intersection of BD with the tangent in C to C. Therefore, S ≡ S′, i.e.
BD, the tangent in A, respectively the tangent in C w.r.t. C are concurrent.
But since △SAD = △SBA, if follows that SA/SB = AD/BA.

Likewise, △SCD = △SBC, i.e. SD/SC = CD/BC. Hence, AB ·
CD = BC ·DA. 2

2. Another classical property

Consider ABCD a cyclic quadrilateral inscribed in C, having O as the
intersection of its diagonals. Then, BO is the B-symmedian in △ABC and
DO is the D-symmedian in △ADC if and only if ABCD is harmonic.



C. Pohoaţă, Harmonic quadrilaterals revisited 17

Proof. As above, one can notice that a cyclic quadrilateral is harmonic
if and only the tangents in two opposite points w.r.t. the circumscribed circle
concur on the diagonal determined by the other two points, i.e. BB, DD
and AC are concurrent in a point X (where by BB we denote the tangent
in B to the circumcircle of ABC).

On the other hand, it is well-known that in a triangleMNP , havingM1

as the foot of the M -symmedian and M2 as the intersection of the tangent
in M to its circumcircle with the side BC, the quadruple (M2, N,M1, P ) is
a harmonic division. Hence, BO is the B-symmedian in △ABC and DO is
the D-symmedian in △ADC if and only if BB, DD and AC are concurrent.

�

Remark. In the initial statement it isn’t really necessary to stress from
the beginning that ABCD is cyclic. One can give the following enuntiation:

Consider ABCD a convex quadrilateral inscribed in C, having O as the
intersection of its diagonals. Then, BO is the B-symmedian in △ABC and
DO is the D-symmedian in △ADC if and only if ABCD is harmonic.

As probably yet noticed, the condition of BO, DO beeing the sym-
medians in △ABC, respectively △ADC, together with the harmonicity of
(X,A,O,C), imply the coincidence of the polars of X w.r.t. △ABC and
△ADC (the common polar beeing the line BD). Hence, the two circles
coincide as well.

Corollary 1. Consider ABC a triangle and T the intersection of the
tangents at B and C w.r.t. the circumcircle of ABC. Then AT is the A-
symmedian.



18 Articole

Corollary 2. In the initially described configuration, AO, CO are the
A, respectively C-symmedians in △BAD, △BCD.

3. An IMO-type alternative definition

Consider ABC a triangle and D a point on its circumcircle. Draw the
Simson line of D w.r.t. △ABC. This line cuts its sides BC, CA, AB in P ,
Q and R, respectively. Then, the quadrilateral ABCD is harmonic if and
only if PQ = QR.

The above statement is slightly modifying the original one from IMO
2003, problem 4:

Let ABCD be a cyclic quadrilateral. Let P , Q and R be the feet of the
perpendiculars from D to the lines BC, CA and AB, respectively. Show that
PQ = QR if and only if the bisectors of �ABC and �ADC meet on AC.

First proof. As we first stated, it is well-known that P , Q, R are collinear
on the Simson line of D. Moreover, since �DPC and �DQC are right
angles, the points D, P , Q, C are concyclic and so �DCA = �DPQ =
�DPR. Similarly, sinceD, Q, R, A are concyclic, we have �DAC = �DRP .
Therefore, △DCA ∼ △DPR.

Likewise, △DAB ∼ △DQP and △DBC ∼ △DRQ. Then

DA

DC
=
DR

DP
=
DB · QR

BC

DB · PQ
BA

=
QR

PQ
· BA
BC

.

Thus PQ = QR if and only if DA/DC = BA/BC, whence by the
converse of the bisector theorem, we deduce that it is equivalent with the
concurrence of the bisectors of �ABC and �ADC on AC. �
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Second proof. Because DP ⊥ BC, DQ ⊥ AC, DR ⊥ AB, the circles
with diameters DC and DA contain the pairs of points P , Q and Q, R,
respectively. It follows that �PDQ is equal to γ or 180◦ − γ, where γ =
�ACB.

Similarly, �QDR is equal to α or 180◦ − α, where α = �CAB. Then,
by the law of sines, we have PQ = CD sin γ and QR = AD sinα. Hence the
condition PQ = QR is equivalent with CD/AD = sinα/ sin γ.

On the other hand, sinα/ sin γ = CB/AB by the law of sines again,.
Thus PQ = QR if and only if CD/AD = CB/AB, i.e. AB ·CD = CB ·AD.

�

4. A probably new non-standard characterization

Let C(O) be a given circle and X, Y two points in its plane. It is well-
known that there exist exactly two circles, ρ1 and ρ2, passing through X, Y
tangent to the initial circle C. Consider A1 and A2 the mentioned tangency
points. Draw a third mobile circle, ρ3, through X, Y touching the reference
circle C at B1 and B2, respectively. Then, the quadrilateral A1B1A2B2 is
harmonic.

Proof. For example, perform an inversion with pole X. Hence, C is
mapped into an other circle C∗ and ρ1, ρ2 into the lines ρ

∗
1 and ρ

∗
2, respectively,

not passing through X, representing the tangents from Y ∗ to C∗, i.e. A∗
1, A

∗
2

are the tangency points of C∗ with ρ∗1, ρ
∗
2.

Since ρ3 is mapped into the line ρ∗3 through Y
∗ cutting C∗ at B∗

1 , B
∗
2 , we

deduce that the harmonicity of A1B1A2B2 is equivalent with the harmonicity
of A∗

1B
∗
1A

∗
2B

∗
2 , which is clear, because A∗

1A
∗
2 is the polar of Y ∗ w.r.t. C∗. �
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If in the above configuration we consider C a circle centered at infinity,
we deduce the following consequence:

Corollary. Consider d a line and X, Y two points in its plane. Denote
by A1, A2 the points where the two circles passing through X, Y and tangent
to d, touch the respective line. Let ω be an arbitrary circle through X, Y ,
which touches d at B1 and B2. Then, the quadruple (A1, B1, A2, B2) forms
a harmonic division.

Their converses are also true. Precisely, if we consider A1, A2 similarly
as above and this time B1, B2 are two points on C such that A1B1A2B2 is a
harmonic quadrilateral (degenerated or not), then the points X, Y , B1, B2

lie on a same circle.

5. The Brocard points of a harmonic quadrilateral

In this section we present the existence of the Brocard points of a har-
monic quadrilateral, proved by F. G. W. Brown [2], more as an other cha-
racterization of this particular cyclic quadrilateral.
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Consider ABCD a cyclic quadrilateral. If there exists a point X such
that the angles �XAD, �XBA, �XCB, �XDC are equal, then quadrila-
teral ABCD is harmonic.

Proof. Denote the sides BC, CD, DA, AB by a, b, c, d; the diagonals
DB, AC by e, f ; the area of the quadrilateral by Q; the circumradius by R
and each of the angles XAD, XBA, XCB, XDC by ω. Then

�AXB = π − ω − (A− ω) = π −A.

Similarly, �BXC = π −B, �CXD = π − C, �DXA = π −D.
Now, since

AX

sinω
=

d

sinAXB
=

d

sin (π −A)
=

d

sinA

and
AX

sin (D − ω)
=

c

sinAXD
=

c

sin (π −D)
=

c

sinD
,

we deduce that
sin (D − ω)

sinω
=
d sinD

c sinA
,

or

cotω =
d

c sinA
+ cotD.

Similarly,

cotw =
c

b sinD
+ cotC, (∗)

and the cyclic analogues.
Hence,

cotw =
d

c sinA
+cotD =

c

b sinD
+cotC =

b

a sinC
+cotB =

a

d sinB
+cotA

or

d

c sinA
− a

d sinB
+

b

a sinC
− c

b sinD
= cotA− cotB + cotC − cotD.

Since ABCD is cyclic, 1/ sinA = 1/ sinC, cotA = − cotC, etc; there-
fore (

d

c
+
b

a

)
1

sinA
=
(c
b
+
a

d

) 1

sinB
.

But

(ab+ cd) sinA = (ad+ bc) sinB = 2Q;

hence ac = bd, i.e. ABCD is harmonic. �

Its converse is also valid and can be proved on the same idea. More-
over, there is a second Brocard point X ′, such that �X ′AB = �X ′BC =
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= �X ′CD = �X ′DA = ω′. By simple manipulations on (⋆) and using
Ptolemy ’s theorem, we obtain

cotω =
8R2Q

e2f2
.

Similarly, we deduce that

cotω′ =
8R2Q

e2f2
.

Hence, ω = ω′.
Further, we will compute the distance XX ′. For this, let P be the foot

of the perpendicular from X to BC and CP = x, PX = y. Then

x = CX cosω =
b sinω cosω

sinC
=
b(ab+ cd) cotω

2Q(1 + cot2 ω)
=
bR

c
· sin 2ω

and

y = x tanω =
b(ab+ cd)

2Q(1 + cot2 ω)
=

2bR

c
sin2 ω.

Similarly, if x′ = P ′B, y′ = P ′X ′, where P ′ is the foot of the perpen-
dicular from X ′ to BC, then

x′ =
d(ad+ bc) cotω

2Q(1 + cot2 ω)

and

y′ =
d(ad+ bc)

2Q(1 + cot2 ω)
.

Since by the law of cosinesXX ′2 = XB2+X ′B2−2XB ·X ′B ·cosXBX ′

and by

sinB =
ab+ cd

2bd
tanω =

a2 + d2

2ad
· tanω,

using that ac = bd, i.e. ef = 2ac = 2bd, it follows that

XX ′ =
efbd cosω ·

√
cos 2ω

2RQ
=
b2d2 cosω ·

√
cos 2ω

RQ
.

6. Remarks on an Iranian concurrence problem

This problem firstly became popular on the Mathlinks forum for its
difficulty. It is a nice result involving a concurrence of three lines in triangle.

Let ABC be a triangle. The incircle of △ABC touches the side BC at
A′, and the line AA′ meets the incircle again at a point P . Let the lines CP
and BP meet the incircle of triangle ABC again at N and M , respectively.
Prove that the lines AA′, BN and CM are concurrent.

Iran National Olympiad 2002
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Proof. Consider Q the intersection of MN with BC. By Ceva and
Menelaus theorem, it is clear that PA′, BN and CM concur if and only if
the quadruple (Q,B,A′, C) is harmonic. So, the problem reduces to proving
that Q ≡ Q′, where Q′ is the intersection of the tangent in P to the incircle
with BC.

Since (Q′, B,D,C) is a harmonic division, we deduce that the pencil
P (Q′, B,D,C) is harmonic and by intersecting it with the incircle, it follows
that the quadrilateral PMA′N is harmonic. Hence, the lines MN , the tan-
gent in P , respectively, the tangent in A′ to the incircle are concurrent, i.e.
Q ≡ Q′. �

We leave the readers a more difficult extended result (Figure 8.):

I. Suppose that in the configuration described above the lines AA′, BN
and CM are concurrent in a point X. Similarly, one can prove the excircle
related problem, meaning, the lines AA′′, BN1, CM1 are concurrent in a
point X1, where by A′′ we denoted the tangency point of the A-excircle with
the side BC and by N1, M1 the second intersections of CP ′, respectively BP ′

with the A-excircle, where P ′ is the second intersection of the line AA′′ with
the A-excircle. Prove that the lines PP ′, BC and XY are concurrent.

Moreover, we can go further and observe the next concurrence, which
remains as an other proposed problem for those who are interested (Figure
9.):

II. Consider that in the above configuration the lines PP ′, BC and XY
concur in a point Xa. Similarly, we deduce the existence of points Yb, Zc,
with same right as Xa, on the lines CA, respectively AB. Then, the triangles
ABC and XaYbZc are perspective (i.e. the lines AXa, BYb, CZc concur);
their perspector is X(75), i.e. the isotomic conjugate of the incenter.

The last remark, regarding the determination of the perspector, was
communicated by Darij Grinberg, using computer dynamic geometry.
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Figure 8.

Figure 9.

In the following we leave again the readers, this time, a slightly more
general statement of the original problem:

III. Let ABC be a triangle. The incircle of △ABC touches the side
BC at A′, and let P be an arbitrary point on (AA′). Let the lines
CP and BP meet the incircle of triangle ABC again at N , N ′ and M , M ′,
respectively. Prove that the lines AA′, BN and CM , respectively AA′, BN ′,
CM ′, are concurrent. (i.e. the lines BC, MN , M ′N ′, B′C ′ are concurrent,
where B′, C ′ are the tangency points of the incircle with CA, respectively
AB.)
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Figure 10

As a remark, it is clear that an extension similar to II of the above
result is usually not true.

7. On a perpendicularity deduced projectively

This problem is a result involving a perpendicularity as a consequence
of a projective fact. Moreover, we will give a pure by synthetic proof, based
on a simple angle chasing.

Figure 11

Let ρ(O) be a circle and A a point outside it. Denote by B, C the
points where the tangents from A w.r.t to ρ(O) meet the circle, D the point
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on ρ(O) for which O ∈ (AD), X the foot of the perpendicular from B to CD,
Y the midpoint of the line segment BX and by Z the second intersection of
DY with ρ(O). Prove that ZA ⊥ ZC (Figure 11).

BMO Shortlist 2007, proposed by the author of this paper

First proof. Let H the second intersection of CO with ρ(O). Thus
DC ⊥ DH, so DH‖BX.

Because Y is the midpoint of (BX), we deduce that the division
(B, Y,X,∞) is harmonic, so also is the pencil D(B, Y,X,H), and by in-
tersecting it with ρ(O), it follows that the quadrilateral HBZC is harmonic.

Hence the pencil C(HBZC) is harmonic, so by intersecting it with the
line HZ, it follows that the division (A′ZTH) is harmonic, where A′, T are
the intersections of HZ with the tangent in C, respectively with BC.

So, the line CH is the polar of A′ w.r.t. ρ(O), but CH ≡ BC is the
polar of A as well, so A ≡ A′, hence the pointsH, Z, A are collinear, therefore
ZA ⊥ ZC. �

Second proof. Let E be the midpoint of BC. So EY ‖ CD and
EY ⊥ BX. Since �Y EB = �DCB = �DZB, we deduce that Y , E,
Z, B lie on a same circle. Thus �ZBC = �ZEA (OA is tangent to the
circle Y EZB).

But because �ZBC = �ZCA, we have that �ZCA = �ZEA, i.e.
the points C, A, Z, E are concyclic. Hence �CZA = �CEA = 90, i.e.
ZA ⊥ ZC. �

On the idea of the second solution, we give a more general statement:

IV. The tangents from a point A to the circle ρ(O) touch it at the
points B, C. For a point E ∈ (BC) denote: the point D on ρ for which
E ∈ (AD); the second intersection X of the line CD with the circumcircle
of the triangle BED; the point Y on the line BX for which EY ‖ CD; the
second intersection Z of DY with the circle ρ; the intersection T of the line
AC with BX; the second intersection H of the line AZ with the circle ρ.
Prove that the quadrilaterals AZEC, AZY T are cyclic and BH ‖ AED.
(Figure 12)

Proof. Since �ZBE = �ZBC = �ZDC = �ZY E, we have that
�ZBE = �ZY E, i.e. the quadrilateral ZBY E is cyclic. Hence �EBY =
= �EBX = �EDX = �EDC = �Y ED. So �EBY = �Y ED, meaning
that the line AED is tangent to the circumcircle of the quadrilateral ZBY E.

Thus, �ZEA = �ZBE = �ZBC = �ZCA, i.e. the quadrilateral
AZEC is cyclic. So, �ZY B = �ZEB = �ZAC = �ZAT , whence the
quadrilateral AZY T is also cyclic.

Finally, we have �AEC = �AZC = �CDH. Hence, BH‖AED. �



C. Pohoaţă, Harmonic quadrilaterals revisited 27

Figure 12

Observe that when E is the midpoint of the segment BC we obtain the
original proposed problem.

8. On a classic locus problem as a recent IMO Team Preparation
Test exercise

Consider the isosceles triangle ABC with AB = AC, and M the mid-
point of BC. Find the locus of the points P interior to the triangle, for which
�BPM + �CPA = π.

IMAR Contest 2006

Figure 13
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First proof (by Dan Schwarz). We will start with the following claim:

Lemma. Prove that if, for a point P interior to the triangle, �ABP =
= �BCP , then �BPM + �CPA = π.

Proof. Notice that the configuration is fully symmetrical:

�ABP = �BCP iff �ACP = �CBP

�BPM + �CPA = π iff �CPM + �BPA = π

and also that P ∈ AM guarantees the result, therefore we may assume w.l.o.g.
(for construction’s sake) that P is interior to the triangle ABM . The given
angle equality is readily seen to be equivalent with P ∈ Γ, where Γ is the arc
interior to ABC of the circumcircle K of triangle BCI, with I the incenter
of ABC. It is also immediately seen that AB and AC are tangent to K.

Consider the Apollonius circle A for points A, M and ratio BA/BM ;
denote by U and V the points where AM meets A. Clearly, B,C ∈ A.
Then BA/BM = UA/UM = V A/VM , from which follows BA2/BM2 =
= UA · V A/UM · VM = UA · V A/BM2, by symmetry and the power of
a point relation, so BA2 = UA · V A, hence AB is tangent to A, again by
the power of a point relation. Therefore the two circles K and A coincide.
Now, prolong AP until it meets K again at Q, and prolong PM until it
meets K again at R. Then BA/BM = PA/PM = QA/QM , therefore
BA2/BM2 = PA · QA/PM · QM = BA2/PM · QM , by the power of a
point relation, so BM2 = PM · QM . But BM2 = PM · RM , again by the
power of a point relation, so QM = RM , hence BQ = CR. It follows that
�BPQ = �CPR, and this is enough to yield �BPM + �CPA = π.

Alternatively, one can calculate ratios using the symmetrical points P ′

and Q′ with respect to AM , and denoting by N the meeting point of PQ′

and P ′Q. It can be obtained that AM = AN , therefore M ≡ N and the rest
easily follows as above.

Returning to the problem, we claim the locus is the arc Γ (defined in
the above), together with the (open) segment (AM). Clearly P ∈ (AM)
fills the bill, so from now on we will assume P /∈ (AM). Also, as above,
we will assume P interior to the triangle ABM (otherwise we work with the
symmetrical relations).

Assume P /∈ Γ, equivalent to �BPC 6= π − �ABC; then AB and AC
are not tangent to K. Take B′ and C ′ to be the tangency points on K from
A, and M ′ to be the midpoint of B′C ′. We are now under the conditions
from the lemma (for triangle AB′C ′), therefore �B′PM ′ + �C ′PA = π.
But �B′PM ′ = �BPM + δ(�B′PB + �MPM ′) and �C ′PA = �CPA −
−δ�C ′PC, where δ = 1 if �BPC < π − �ABC, respectively δ = −1 if
�BPC > π − �ABC. We have �B′PB = �C ′PC from the symmetry of
the configuration, and �BPM +�CPA = π given; these relations therefore
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imply �MPM ′ = 0, which can only happen whenM ,M ′ and P are collinear,
i.e. P ∈ AM , which was ruled out from the start in this part of the proof.
The contradiction thus reached confirms our claim. �

Second proof. Denote the point D as the intersection of the line AP
with the circumcircle of BPC and S = DP ∩BC.

Since �SPC = 180◦ − �CPA, it follows that �BPS = �CPM .
From the Steiner theorem applied to triangle BPC for the isogonals

PS and PM ,
SB

SC
=
PB2

PC2
.

On other hand, using the law of sines, we obtain

SB

SC
=
DB

DC
· sinSDB
sinSDC

=
DB

DC
· sinPCB
sinPBC

=
DB

DC
· PB
PC

.

Thus by the above relations, it follows that DB/DC = PB/PC, i.e.
the quadrilateral PBDC is harmonic. Therefore the point A′ = BB ∩ CC
lies on the line PD (where by XX we denoted the tangent in X to the
circumcircle of BPC).

If A′ = A, then lines AB and AC are always tangent to the circle
BPC, and so the locus of P is the circle BIC, where I is the incenter of
ABC. Otherwise, if A′ 6= A, then A′ = AM ∩PS∩BB∩CC, due to the fact
that A′ lies on PD and A = PS ∩ AM , and by maintaining the condition
that A′ 6= A, we obtain that PS ≡ AM , therefore P lies on (AM). �

Next, after two synthetic approaches, we continue with a direct trigono-
metric solution, actually the one which all three contestants who solved the
problem used.

Third solution. Consider m(�BPM) = α and m(�CPM) = β so
m(�APC) = 180◦ − α and m(�APB) = 180◦ − β. Also let m(�CBP ) = u,
m(�BCP ) = v and denote AB = AC = l.

By the law of sines, applied to triangles ABP and ACP ,
l

sin(180− β)
=

=
AP

sin(B − u)
and

l

sin(180− α)
=

AP

sin(C − v)
. Hence

sinα

sinβ
=

sin (C − v)

sin (B − u)
. (⋆)

Again, by the law of sines, this time applied in to the triangles BPM

and CPM ,
PM

sinu
=
BM

sinα
and

PM

sin v
=
CM

sinβ
. Hence

sinα

sinβ
=

sinu

sin v
. (⋆⋆)
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From (⋆) and (⋆⋆) we deduce that
sinu

sin v
=

sin(C − v)

sin(B − u)
, i.e. cos(B−2u)−

− cosB = cos(C − 2v) − cosC. Since B = C, it follows that cos(B − 2u) =
= cos(B − 2v).

If B − 2u = B − 2v, then we have u = v i.e. P lies on (AM). Alterna-
tively, if B − 2u = 2v − B, then we have B = u + v, i.e. P lies on the arc
BIC. �

9. The orthotransversal line of a triangle refreshed as a Mathema-
tical Reflections problem

Let ABC be a triangle and P be an arbitrary point inside the triangle.
Let A′, B′, C ′ be respectively the intersections of AP and BC, BP and CA,
CP and AB. Through P we draw a line perpendicular to PA that intersects
BC at A1. We defineB1 and C1 analogously. Let P

′ be the isogonal conjugate
of the point P with respect to triangle A′B′C ′. Then A1, B1, C1 all lie on a
same line l that is perpendicular to PP ′.

Math. Reflections, 4/2006, problem O13, proposed by Khoa Lu Nguyen

In [7], Bernard Gibert names the line A1B1C1 the orthotransversal line
of P .

Figure 14

First proof. Given four collinear points X, Y , Z, T , let (X,Y, Z, T )
denote, we mean the cross-ratio of four points X, Y , Z, T . Given four
concurrent lines x, y, z, t, let (x, y, z, t) denote, we mean the cross-ratio of
four lines x, y, z, t. We first introduce the following claim:



C. Pohoaţă, Harmonic quadrilaterals revisited 31

Lemma. Let ABC be a triangle and P ′ be the isogonal conjugate of
an arbitrary point P with respect to ABC. Then the six projections from P
and P ′ to the sides of triangle ABC lie on a circle with center the midpoint
of PP ′.

Proof. Let Pa, Pb, Pc be the projections from P to the sides BC, CA,
AB. Similarly, let P ′

a , P ′
b, P

′
c be the projections from P ′ to the sides BC,

CA, AB. Call O the midpoint of PP ′. We need to show that Pa, Pb, Pc, P
′
a,

P ′
b, P

′
c lie on a circle with center O.
Consider the trapezoid PP ′P ′

aPa that has m(PPaP
′
a) = m(P ′P ′

aPa) =
= 90◦ and O the midpoint of (PP ′). Hence, O must lie on the perpendicular
bisector of PaP

′
a. By a similar argument, we obtain that O also lies on the

perpendicular bisector of PbP
′
b and PcP

′
c.

Because P ′ is the isogonal conjugate of P with respect to ABC, we
have �BAP = �P ′AC, or �PcAP = �P ′AP ′

b. Hence, we obtain �APPc =
= �P ′

bP
′A. On the other hand, since quadrilaterals APcPPb and AP ′

cP
′P ′

b
are cyclic, it follows that �APPc = �APbPc and �P ′

bP
′A = �P ′

bP
′
cA =

= �P ′
bP

′
cPc. Thus, �APbPc = �P ′

bP
′
cPc. This means that PbPcP

′
cP

′
b is

inscribed in a circle. We notice that the center of this circle is the intersection
of the perpendicular bisectors of PbP

′
b and PcP

′
c, which is O. In the same

manner, we obtain that PcPaP
′
cP

′
a is inscribed in a circle with center O. Thus

these two circles are congruent as they have the same center and pass through
a common point Pc. Therefore, these six projections all lie on a circle with
center O.

Back to the problem, let Pa, Pb, Pc be the projections from P to the
sides B′C ′, C ′A′, A′B′ and O be the midpoint of PP ′. Then (O) is the
circumcircle of triangle PaPbPc. We will show a stronger result. In fact, l is
the polar of P w.r.t. the circle (O). We will prove that A1 lies on the polar
of P w.r.t. the circle (O), and by a similar argument so does B1, respectively
C1.

Let B2 and C2 be the intersections of the line PA1 with A′C ′ and A′B′,
respectively. Denote by M and N the intersections of the line PA1 with the
circle (O). It is suffice to prove that (A1, P,M,N) = −1.

ConsiderX the projection from P to BC. Then five points P , Pb, Pc, X,
A′ lie on the circle (a) with diameter PA′. Since (A′A1, A

′A,A′C ′, A′B′) =
= −1, we obtain that PPcXPb is a harmonic quadrilateral. This yields that
PbPc and the tangents at P and X of the circle (a) are concurrent at a
point U . Since the tangent at P of the circle (a) is PA1, it follows that
U is the concurrence point of PbPc, PA1 and the perpendicular bisector of
(PX). Consider the right triangle PXA1 at X. Since U lies on PA1 and the
perpendicular bisector of (PX), we deduce that U is the midpoint of (PA1).
Therefore U lies on the line PbPc.
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Since A′Pb∆ · A′B2 = A′Pc · A′C2 = A′P2, it follows that PbPcC2B2

is cyclic. Hence, UB2 · UC2 = UPb · UPc. On the other hand, we have
UPb · UPc = UM · UN , because PbPcMN is cyclic.

Thus, we obtain UB2 · UC2 = UM · UN .
Again, since (A′A1, A

′, A′C ′, A′B′) = −1, we have (A1, P,B2, C2) =
= −1. But, because U is the midpoint of A1P , it follows that UB2 · UC2 =
= UA2

1. Hence UA
2
1 = UM · UN , i.e. (A1, P,M,N) = −1. �

Second proof for the collinearity of A1, B1, C1. (by Darij Grinberg,
after Jacques Hadamard [6]) Let K be an arbitrary circle centered at P ;
the polars of the points A, B, C, A1, B1, C1 w.r.t. K are called a, b, c, a1,
b1, c1. After the construction of polars, we have a ⊥ PA, b ⊥ PB, c ⊥ PC,
a1 ⊥ PA1, b1 ⊥ PB1 and c1 ⊥ PC1. Since the point A1 lies on BC, the polar
a1 passes through the intersection b∩ c. From a1 ⊥ PA1 and PA1 ⊥ PA, we
have a1‖PA; from a ⊥ PA, thus we get a1 ⊥ a. Hence, a1 is the line passing
through the intersection b ∩ c and orthogonal to a. Analogously, b1 is the
line passing through the intersection c ∩ a and orthogonal to b, and c1 is the
line passing through the intersection a ∩ b and orthogonal to c. Therefore,
a1, b1 and c1 are the altitudes of the triangle formed by the lines a, b and c;
consequently, the lines a1, b1 and c1 concur. From this, we derive that the
points A1, B1 and C1 are collinear. �

Following the ideas presented above, we leave the readers a similar
collinearity:

V. Consider ABC a triangle and P a point in its plane. Let R, S,
T , X, Y , Z be the midpoints of the segments BC, CA, AB, PA, PB and
PC, respectively. Draw the lines through the X, Y , Z, orthogonal to PA,
PB, respectively PC; these lines touch ST , TR, RS at A1, B1 and C1,
respectively. Prove that the points A1, B1, C1 lie on the same line.

Figure 15
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10. Bellavitis’ theorem on balanced quadrilaterals

We call ABCD a balanced [8] quadrilateral if and only if AB · CD =
= BC ·DA. Particulary, if ABCD is cyclic we come back to the harmonic
quadrilateral. However, this class contains other quadrilaterals, for example
all kites.

Let the lengths of the sides AB, BC, CD and DA of a (convex) quadri-
lateral ABCD be denoted by a, b, c and d respectively. Similarly, the lengths
of the quadrilateral’s diagonals AC and BD will be denoted by e and f . Let E
be the point of intersection of the two diagonals. The magnitude of �DAB
will be referred to as α, with similar notation for the other angles of the
quadrilateral. The magnitudes of �DAC, �ADB etc. will be denoted by
αB, δC a.s.o. (see Figure 16.). Finally, the magnitude of �CED will be
referred to as ǫ.

Figure 16.

Theorem. (Bellavitis 1854) If a (convex) quadrilateral ABCD is
balanced, then

αB + βC + γD + δA = βA + γB + δC + αD = 180◦.

Note that the convexity condition is a necessary one. The second equa-
lity sign does not hold for non-convex quadrilaterals.

Proof. (by Eisso J. Atzema [8]) Although in literature it is known
that Giusto Bellavitis himself gave a proof using complex numbers, a trigono-
metric proof of his theorem follows from the observation that by the law of
sines for any balanced quadrilateral we have

sin γB · sinαD = sinαB = sin γD,

or

cos (γB + αD)− cos (γB − αD) = cos (αB + γD)− cos (αB − γD).
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That is,

cos (γB + αD)− cos (γB − α+ αB) = cos (αB + γD)− cos (αB − γ + γB),

or
cos (γB + αD) + cos (δ + α) = cos (αB + γD) + cos (δ + γ).

By cycling through, we also have

cos (δC + βA) + cos (α+ β) = cos (βC + δA) + cos (α+ δ).

Since cos (α+ β) = cos (δ + γ), adding these two equations gives

cos (γB + αD) + cos (δC + βA) = cos (αB + γD) + cos (βC + δA),

or

cos
1

2
(δC + γB + βA + αD) · cos

1

2
(γB + αD − δC − βA)

= cos
1

2
(αB + βC + γD + δA) · cos

1

2
(αB + γD − βC − δA).

Now, note that

γB + αD − δC − βA = 360◦ − 2ǫ− δ − β

and likewise
αB + γD − βC − δA = 2ǫ− β − δ.

Finally,

1

2
(δC + γB + βA + αD) +

1

2
(αB + βC + γD + δA) = 180◦.

It follows that

cos
1

2
(δC + γB + βA + αD) · cos (ǫ+

1

2
(β + δ)) =

= − cos
1

2
(δC + γB + βA + αD) · cos (ǫ−

1

2
(β + δ)),

or

cos
1

2
(δC + γB + βA + αD) · cos (ǫ) cos

1

2
(δ + β) = 0.

Clearly, if neither of the last two factors is equal to zero, the first factor
has to be zero and we are done. The last factor, however, will be zero if and
only if ABCD is cyclic. It is easy to see that any such quadrilateral has the
angle property of Bellavitis ’ theorem. Therefore, in the case that ABCD is
cyclic, Bellavitis’ theorem is true. Consequently, we may assume that ABCD
is not cyclic and that the third term does not vanish. Likewise, the second
factor only vanishes in case ABCD is orthodiagonal. For such quadrilaterals,
we know that a2 + c2 = b2 + d2. In combination with the initial condition
ac = bd, this implies that each side has to be congruent to an adjacent side.
In other words, ABCD has to be a kite. Again, it is easy to see that in that
case Bellavitis’ theorem is true. We can safely assume that ABCD is not a
kite and that the second term does not vanish either. �
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Moreover, for a synthetic solution one can see Nikolaos Dergiades’ proof
in [9]. Also, a solution using inversion exists. See [11].
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[10] C. Pohoaţă, Harmonic Division and Its Applications, Mathematical Reflections, No.
4 (2007).

[11] See also http://www.faculty.evansville.edu/ck6/encyclopedia/ETC.html;
http://www.mathlinks.ro/viewtopic.php?t=88077, Mathlinks Forum.



36 Articole

Problems and Solutions from SEEMOUS 2011 Competition

Beniamin Bogoşel1), Tania-Luminiţa Costache2) and Cezar Lupu3)

Abstract. In this note, we present the problems with solutions and com-
ments from the 5th South Eastern European Mathematical Olympiad for
University Students, SEEMOUS 2011, organized by the MASEE and Ro-
manian Mathematical Society between March 2 and March 6, 2011.

Keywords: Chebyshef’s integral inequality, eigenvalues of a matrix, char-
acteristic polynomial, vectors, Lagrange multipliers, Riemann sum, Taylor
expansion.

MSC : 15A24, 15A26, 26A42, 26D15, 51D20.

1. Introducere

Cea de-a cincea ediţie a Olimpiadei de Matematică pentru Studenţi
din Sud-Estul Europei, SEEMOUS 2011, a fost organizată de Mathemati-
cal Society of South Eastern Europe (MASSEE) şi de Societatea de Ştiinţe
Matematice din Romania (S.S.M.R.). Gazda competiţiei a fost Universitatea
Politehnica din Bucureşti (U.P.B.). Trebuie menţionat sprijinul pe care con-
ducerea acestei universităţi ı̂l acordă ı̂n mod constant şi eficient concursurilor
studenţeşti de matematică. În acest sens, reamintim faptul că reluarea Con-
cursului de matematică pentru studenţi ,,Traian Lalescu“ acum patru ani
s-a datorat cooperării dintre Ministerul Educaţiei şi Cercetării, Societatea de
Ştiinţe Matematice din România şi Universitatea Politehnica din Bucureşti.
Organizatorii SEEMOUS 2011 au beneficiat şi de ajutorul colegilor din Fa-
cultatea de Matematică şi Informatică din Universitatea Bucureşti şi al celor
din Institutul de Matematică ,,Simion Stoilow“ al Academiei Romane. Ma-
joritatea participanţilor au fost de acord că această ediţie a fost cea mai
bine organizată, atât din punct de vedere ştiinţific cât şi din punct de vedere
logistic.

Concursul propriu-zis s-a bucurat de un număr record de participanţi.
Au participat 85 de studenţi organizaţi ı̂n 20 de echipe de la universităţi
din ţări precum Bulgaria, Columbia, Grecia, Macedonia, Moldova, România,
Rusia şi Ucraina.

Studenţii români au avut din nou o comportarea remarcabilă reuşind
să obţină 2 medalii de aur prin Pădureanu Victor (locul 2 după punctaj)
(Academia Tehnică Militară, Bucureşti) şi Cocalea Andrei (Universitatea din

1)West University of Timişoara, Department of Mathematics, Timişoara, Romania,
beni22sof@yahoo.com

2)University Politehnica of Bucharest, Department of Mathematics, Bucharest, Roma-
nia, lumycos1@yahoo.com

3)University Politehnica of Bucharest, Department of Mathematics, Bucharest and Uni-
versity of Craiova, Faculty of Mathematics, Craiova, Romania, lupucezar@yahoo.com,

lupucezar@gmail.com
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Bucureşti), 14 medalii de argint: Ţiţiu Radu (Universitatea din Bucureşti),
Barzu Mihai (Departamentul de Informatică, Universitatea ,,Alexandru Ioan
Cuza“, Iaşi), Burtea Cosmin (Universitatea ,,Alexandru Ioan Cuza“, Iaşi),
Filip Laurian (Universitatea din Bucureşti), Fodor Dan (Universitatea ,,Ale-
xandru Ioan Cuza“, Iaşi), Hlihor Petru (Universitatea din Bucureşti), Sârbu
Paul (Universitatea Tehnică ,,Gheorghe Asachi“, Iaşi), Popescu Roxana-
Irina (Universitatea din Bucureşti), Mesaros Ionuţ (Universitatea Tehnică,
Cluj-Napoca), Ţucă Laurenţiu (Universitatea Politehnica Bucureşti), Gı̂lcă
Dragoş (Departamentul de Informatică, Universitatea ,,Alexandru Ioan
Cuza“, Iaşi), Beltic Marius Jimy Emanuel (Universitatea ,,Alexandru Ioan
Cuza“, Iaşi), Sasu Robert (Universitatea Politehnica Bucureşti), Pleşca Iu-
lia (Universitatea ,,Alexandru Ioan Cuza“, Iaşi) şi 19 medalii de bronz:
Cervicescu Virgil (Academia Tehnică Militară, Bucureşti), Raicea Marina
(Academia Tehnică Militară, Bucureşti), Mihăilă Ştefan (Departamentul de
Informatică, Universitatea ,,Alexandru Ioan Cuza“, Iaşi), Munteanu Alexan-
dra-Irina (Universitatea din Bucureşti), Vasile Mihaela Andreea (Univer-
sitatea Politehnica Bucureşti), Mocanu Maria-Cristina (Departamentul de
Informatică, Universitatea ,,Alexandru Ioan Cuza“, Iaşi), Petre Luca (Uni-
versitatea Politehnica Bucureşti), Rublea Alina (Universitatea Politehnica
Bucureşti), Bobeş Maria Alexandra (Universitatea ,,Babeş Bolyai“, Cluj-
Napoca), Genes Cristian (Universitatea Tehnică ,,Gheorghe Asachi“, Iaşi),
Kolumban Jozsef (Universitatea ,,Babeş-Bolyai“, Cluj-Napoca), Craus Sabi-
na (Universitatea ,,Alexandru Ioan Cuza“, Iaşi), Damanian Lavinia-Mariana
(Departamentul de Informatică, Universitatea ,,Alexandru Ioan Cuza“, Iaşi),
Moldovan Dorin Vasile (Universitatea Tehnică, Cluj-Napoca), Mincu Di-
ana (Universitatea Politehnica Bucureşti), Birghila Corina (Universitatea
,,Ovidius“, Constanţa), Vlad Ilinca (Universitatea Tehnică ,,Gh. Asachi“,
Iaşi), Sav Adrian-Gabriel (Universitatea ,,Alexandru Ioan Cuza“, Iaşi), Al-
ban Andrei (Universitatea din Bucureşti).

Echipa Universităţii Politehnica din Bucureşti a fost formată din 8
studenţi, dintre care 6 au reuşit să obţină medalii.

Proba de concurs a constat ı̂n rezolvarea a 4 probleme pe durata a 5
ore. Vom prezenta mai jos soluţiile problemelor, precum şi comentariile de
rigoare.

2. Probleme, Soluţii şi Comentarii

Problema 1. Pentru un ı̂ntreg dat n ≥ 1, fie f : [0, 1] → R o funcţie
crescătoare. Demonstraţi că

1∫

0

f(x)dx ≤ (n+ 1)

1∫

0

xnf(x)dx.

Găsiţi toate funcţiile continue crescătoare pentru care egalitatea are loc.



38 Articole

∗ ∗ ∗
Soluţia 1. Pentru n dat şi x, y ∈ [0, 1] integrăm pe intervalul [0, 1] ı̂n

raport cu x şi ı̂n raport cu y inegalitatea evidentă

(xn − yn)(f(x)− f(y)) ≥ 0, (1)

şi obţinem
1∫

0




1∫

0

(xn − yn)(f(x)− f(y))dx


 dy ≥ 0,

sau
1∫

0

xnf(x)dx−
1∫

0

yndy

1∫

0

f(x)dx−
1∫

0

xndx

1∫

0

f(y)dy +

1∫

0

ynf(y)dy ≥ 0,

care ne dă inegalitatea cerută.
Dacă f este continuă, când egalitatea din enunţ are loc, ı̂n (1) are loc

de asemenea egalitate, deci funcţia f trebuie să fie constantă.

Soluţia a 2-a. Prin schimbare de variabilă avem

(n+ 1)

1∫

0

xnf(x)dx =

1∫

0

f(
n+1
√
t)dt.

Cum f este crescătoare, rezultă că f(x) ≤ f( n+1
√
x), x ∈ [0, 1], de unde

prin integrare obţinem inegalitatea cerută.

Soluţia a 3-a. Problema este cazul particular al inegalităţii lui Cebâşev :
Fie f1, f2, . . . , fn : [a, b] → R funcţii integrabile, pozitive, monotone.
1) Dacă f1, f2, . . . , fn sunt fie toate monoton crecătoare, fie toate mono-

ton descrescătoare, atunci

b∫

a

f1(x)dx ·
b∫

a

f2(x)dx ·
b∫

a

fn(x)dx ≤ (b− a)n−1

b∫

a

f1(x)f2(x) . . . fn(x)dx.

2) Dacă f1, f2, . . . , fn sunt de monotonii diferite, atunci inegalitatea este
de semn contrar.

În cazul nostru, pentru n = 2 şi f1(x) = f(x), f2(x) = xn obţinem
concluzia din enunţ.

Soluţia a 4-a. Notăm C =

1∫

0

f(x)dx şi fie g : [0, 1] → R,

g(x) = f(x)− C. Deci

1∫

0

g(x)dx = 0.
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Astfel, inegalitatea noastră este echivalentă cu 0 ≤
1∫

0

xng(x)dx. Cum g

este crescătoare, rezultă că există d = sup{x ∈ [0, 1] : g(x) ≤ 0}. Vom obţine

1∫

0

xng(x)dx = −
d∫

0

xn|g(x)|dx+

1∫

d

xn|g(x)|dx.

Cum

1∫

0

g(x)dx = 0, avem

d∫

0

|g(x)|dx =

1∫

d

|g(x)|dx. Înmulţind cu dn,

rezultă următorul şir de inegalităţi evidente

d∫

0

xn|g(x)|dx ≤
d∫

0

dn|g(x)|dx =

1∫

d

dn|g(x)|dx ≤
1∫

d

xn|g(x)|dx,

de unde concluzia problemei noastre. �

Comentariu. Problema a fost considerată de mulţi concurenţi drept
una foarte uşoară. Cu toate acestea, au existat destui care n-au reuşit să
obţină punctajul maxim. De asemenea trebuie remarcat şi faptul că au exis-
tat concurenţi care nu şi-au mai amintit sau pur şi simplu nu ştiau inegalitatea
lui Cebâşev.

Problema 2. Fie A = (aij) o matrice reală cu n linii şi n coloane
astfel ı̂ncât An 6= 0 şi aijaji ≤ 0 pentru orice i, j. Demonstraţi că există
două numere nereale printre valorile proprii ale lui A.

Ivan Feshchenko, Kiev, Ucraina

Soluţie. Fie λ1, . . . , λn toate valorile proprii ale acestei matrice. Poli-
nomul caracteristic asociat matricei A este

P (λ) = det(λIn −A) = λn − a1λ
n−1 + . . .+ (−1)nan,

unde a1 =
n∑

i=1

aii, an = detA şi ai suma minorilor principali de ordin i ai lui

A ; de exemplu, a2 =
∑

i,j

∣∣∣∣
0 aij
aji 0

∣∣∣∣.

Din ipoteză rezultă că aii = 0, deci
n∑

k=1

λk = 0. Suma
∑

i<j

λiλj = a2, i. e.

∑

i<j

λiλj = −
∑

i<j

aijaji. Aşadar, suma
n∑

k=1

λ2k = 2
∑

i<j

aijaji ≤ 0.

Cum An 6= 0, A are cel puţin o valoarea proprie nenulă, de unde rezultă
că cel puţin o valoare proprie nu este reală. Deoarece polinomul caracteristic
al lui A are coeficienţi reali şi o valoare proprie este complexă, rezultă că şi
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conjugata complexă a acestei valori este valoare proprie pentru A, deci ceea
ce trebuia demonstrat. �

Comentariu. Problema a fost considerată de dificultate medie. Mai
mult de jumătate dintre concurenţi n-au reuşit să o rezolve complet. Din
păcate mulţi dintre studenţii români au ı̂ntâmpinat dificultăţi mari ı̂n abor-
darea acestei probleme. Acest lucru arată că este nevoie de mai multă Algebră
Liniară ı̂n programele noastre din universităţi.

Problema 3. Fie vectorii a, b, c ∈ Rn. Arătaţi că

(||a||
〈
b, c
〉
)2 + (||b|| 〈a, c〉)2 ≤ ||a||||b||(||a||||b||+ |

〈
a, b
〉
|)||c||2,

unde 〈x, y〉 este produsul scalar al vectorilor x, y şi ‖x‖2 = 〈x, x〉.
Dan Schwarz, Bucureşti, România

Soluţia 1. (Soluţia trigonometrică.) Vom demonstra mai ı̂ntâi că, daţi
vectorii u, v ∈ Rn, cu ||u|| = ||v|| = 1 (deci u, v ∈ Sn−1), atunci

sup
||x||=1

(
〈u, x〉2 + 〈v, x〉2

)
= 1 + | 〈u, v〉 |.

Considerăm reprezentarea vectorială unică x = x′+x′′ cu x′ ∈ span(u, v)
şi x′′ ⊥ span(u, v). Atunci

1 = ||x||2 =
〈
x′ + x′′, x′ + x′′

〉
=

= ||x′||2 + 2
〈
x′, x′′

〉
+ ||x′′||2 = ||x′||2 + ||x′′||2 (relaţia lui Pitagora),

deci ||x′|| ≤ 1. Avem | 〈u, x〉 | = | 〈u, x′〉 | ≤ | 〈u, y〉 |, unde y = 0 dacă x′ = 0 şi

y =
x′

||x′|| dacă x
′ 6= 0 (deci ||y|| = 1). Analog | 〈v, x〉 | = | 〈v, x′〉 | ≤ | 〈v, y〉 |.

Maximul este aşadar obţinut când x ∈ span(u, v).
Deci problema noastră vectorială a fost transferată ı̂n spaţiul de dimen-

siune 2, cu vectorii unitari u, v şi x. Capetele vectorilor ±u şi ±v ı̂mpart cer-
cul S1 ı̂n patru arce, fiecare măsurând cel mult π (şi posibil 0, când u = ±v);
capătul lui x va fi ı̂ntr-unul din ele. Fie ω măsura acelui arc şi α, β, cu
α+β = ω, măsurile arcelor dintre capătul lui x şi capetele acelui arc. Atunci
〈u, x〉2 + 〈v, x〉2 = cos2 α+cos2 β, din binecunoscuta interpretare geometrică
a produsului scalar (independent de dimensiunea spaţiului). Atunci

〈u, x〉2 + 〈v, x〉2 = cos2 α+ cos2 β = 1 +
1

2
(cos 2α+ cos 2β) =

= 1 + cos(α+ β) cos(α− β) ≤ 1 + | cosω| = 1 + | 〈u, v〉 |,
cu egalitate ı̂n cazurile evidente:

• când α = β = ω/2, deci când | 〈u, x〉 | = | 〈v, x〉 |, aşadar
x = (±u± v)/|| ± u± v||,

unde semnele sunt astfel ı̂ncât 0 ≤ ω <
π

2
;
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• când ω = π/2, deci când 〈u, v〉 = 0, i.e. u ⊥ v, pentru orice

x ∈ span(u, v).

Atunci, pentru orice a, b, c nenuli, luăm u =
a

||a|| , v =
b

||b||
, x =

c

||c|| ,
aşadar

〈u, x〉2 =
1

||a|| · ||c||2 〈a, c〉
2, 〈v, x〉2 =

1

||b|| · ||c||2
〈
b, c
〉2
, 〈u, v〉 =

〈
a, b
〉

||a|| · ||b||
,

deci relaţia demonstrată devine

1

||a|| 〈a, c〉
2 +

1

||b||
〈
b, c
〉2 ≤

(
1 +

|
〈
a, b
〉
|

||a|| · ||b||

)
||c||2,

echivalent cu inegalitatea cerută, de asemenea adevărată pentru a, b sau c
egale cu zero.

Soluţia a 2-a.(Soluţie cu forme pătratice) Pentru ||x|| = ||u|| = ||v|| = 1
avem

0 ≤ ||λx+ µu+ νv||2 = 〈λx+ µu+ νv, λx+ µu+ νv〉 =
= λ2 + µ2 + ν2 + 2λµ 〈x, u〉+ 2λν 〈x, v〉+ 2µν 〈u, v〉 ,

o formă pătratică care ia valori pozitive pentru orice parametri reali λ, µ, ν,
deci corespunzând unei matrice pozitiv semidefinită




1 〈x, u〉 〈x, v〉
〈x, u〉 1 〈u, v〉
〈x, v〉 〈u, v〉 1


 .

Minorii principali de ordinul 1 sunt aşadar pozitivi, ceea ce ne dă semi-
pozitivitatea normei; minorii principali de ordinul 2 sunt pozitivi, ceea ce
ne dă inegalitatea Cauchy-Buniakowski-Schwarz, 1 ≥ 〈u, v〉2; de asemenea,
determinatul matricii este pozitiv

∆ = 1− (〈u, v〉2 + 〈x, u〉2 + 〈x, v〉2) + 2 〈u, v〉 〈x, u〉 〈x, v〉 ≥ 0,

care poate fi scris

〈x, u〉2 + 〈x, v〉2 ≤ 1 + | 〈u, v〉 | − | 〈u, v〉 |(1 + | 〈u, v〉 | − 2| 〈x, u〉 〈x, v〉 |).

Dar 〈x, u〉2 + 〈x, v〉2 ≥ 2| 〈x, u〉 〈x, v〉 |, care ı̂nlocuit ı̂n relaţie ne dă

(1− | 〈u, v〉 |)(1 + | 〈u, v〉 | − 2| 〈x, u〉 〈x, v〉 |) ≥ 0.

Apoi, fie 1 = | 〈u, v〉 |, când 1 + | 〈u, v〉 | = 2 ≥ 2| 〈x, u〉 〈x, v〉 | (din
inegalitatea Cauchy-Buniakowski-Schwarz ), fie 1 > | 〈u, v〉 |, ceea ce implică
1 + | 〈u, v〉 | ≥ 2| 〈x, u〉 〈x, v〉 |. Aşadar, ı̂ntotdeauna

〈x, u〉2 + 〈x, v〉2 ≤ 1 + | 〈u, v〉 |.
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Soluţia a 3-a (Soluţia cu multiplicatorii lui Lagrange). Definim

L(x, λ) = 〈u, x〉2 + 〈v, x〉2 − λ(||x||2 − 1)

şi considerăm sistemul
∂L

∂xi
= 2ui 〈u, x〉+ 2vi 〈v, x〉 − 2λxi = 0, pentru 1 ≤ i ≤ n,

şi
∂L

∂λ
= ||x||2 − 1 = 0.

Avem

0 =
1

2

n∑

i=1

xi
∂L

∂xi
= 〈u, x〉

n∑

i=1

uixi + 〈v, x〉
n∑

i=1

vixi − λ
n∑

i=1

x2i =

= 〈u, x〉2 + 〈v, x〉2 − λ||x||2 = 〈u, x〉2 + 〈v, x〉2 − λ.

Pe de altă parte,

0 =
1

2

n∑

i=1

ui
∂L

∂xi
= 〈u, x〉

n∑

i=1

u2i + 〈v, x〉
n∑

i=1

viui − λ
n∑

i=1

xiui =

= 〈u, x〉 ||u||2 + 〈v, x〉 〈u, v〉 − λ 〈u, x〉 = 〈u, x〉+ 〈u, v〉 〈v, x〉 − λ 〈u, x〉 ,
şi analog pentru v, deci obţinem sistemul de două ecuaţii (̂ın variabilele 〈u, x〉
şi 〈v, x〉) {

(1− λ) 〈u, x〉+ 〈u, v〉 〈v, x〉 = 0,

〈u, v〉 〈u, x〉+ (1− λ) 〈v, x〉 = 0.

Determinantul ∆ al matricei acestui sistem este ∆ = (1−λ)2 −〈u, v〉2 ,
şi dacă este nenul, unica soluţie este cea trivială 〈u, x〉 = 〈v, x〉 = 0, când
expresia noastră atinge un minim evident egal cu zero (atunci λ = 0, aceasta
ı̂nseamnă 〈u, v〉 6= ±1, care s-ar traduce ı̂n u 6= ±v şi x ⊥ span(u, v)). Aşadar,
suntem interesaţi de ∆ = 0 (pentru toate celelalte puncte critice), ducând la
λ = 1±〈u, v〉, deci λ = 1+ | 〈u, v〉 | ı̂ntr-un punct de maxim şi λ = 1−| 〈u, v〉 |
ı̂ntr-un punct critic. Există câteva cazuri particulare.

Când u = ±v, deci 〈u, v〉 = ±1, situaţia este simplă. Avem maximul 2
când x = ±u şi minimul 0 când x ⊥ u.

Când u ⊥ v, deci 〈u, v〉 = 0, atunci λ (deci şi expresia) este 1 ı̂n punctele
de maxim, pentru orice x ∈ span(u, v), şi λ (deci şi expresia) este 0 ı̂n punctele
de minim, pentru orice x ⊥ span(u, v).

Soluţia a 4-a. Vom reduce problema la cazul R3. Considerăm o bază
ortonormală pentru care primii trei vectori generează subspaţiul vectorial
generat de

{
a, b, c

}
. O transformare ortogonală păstrează norma şi produsul

scalar, deci este suficient să demonstrăm inegalitatea ı̂n noua bază ı̂n care a,
b, c au primele trei componente nenule.
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În R3 vom folosi un argument de geometrie. Mai ı̂ntâi, observăm că
orice schimbare de semn a vectorilor a, b, c nu schimbă semnul inegalităţii
iniţiale.

Fie α = �(b, c), β = �(c, a) şi γ = �(a, b). Aranjăm semnele astfel

ı̂ncât α, β ∈
[
0,
π

2

]
şi considerăm triedrul OABC având laturile OA, OB,

OC determinate de vectorii a, b, c astfel ı̂ncât proiectând vectorul c pe planul
OAB, proiecţia sa să rămână ı̂n interiorul unghiului OAB.

Este cunoscut faptul că, dacă x, y, z satisfac x + y = z, atunci
cos2 x + cos2 y + cos2 z − 2 cosx cos y cos z = 1. Astfel, avem de arătat că
cos2 α + cos2 β ≤ 1 + | cos γ|. Se observă că, dacă unul dintre unghiurile α

sau β este egal cu
π

2
, atunci inegalitatea este evidentă .

Proiectăm punctul C pe planul OAB ı̂n punctul P şi considerăm α1 =
�POB, β1 = �POA. Proiectăm P pe OA, respectiv OB ı̂n punctele A1,
respectiv B1. În triunghiurile dreptunghice OB1C şi OB1P avem

cos2 α =
OB2

1

OC2
≤ OB2

1

OP 2
= cos2 α1.

Analog avem cos2 β ≤ cos2 β1. Din α1 + β1 = γ obţinem

cos2 α1 + cos2 β1 = 1 + 2 cosα1 cosβ1 cos γ − cos2 γ.

Arătăm că 1 + 2 cosα1 cosβ1 cos γ − cos2 γ ≤ 1 + cos γ.
Dacă cos γ = 0, atunci inegalitatea este evidentă. Dacă cos γ 6= 0,

inegalitatea este echivalentă cu

2 cosα1 cosβ1 ≤ 1 + cos γ = cos(α1 + β1) = 1 + cosα1 cosβ1 − sinα1 sinβ1,

care ı̂n final va da cos(α1 − β1) ≤ 1.

Soluţia a 5-a (Nicolae Beli). Asemănător cu soluţia 4, presupunem

α, β ∈
[
0,
π

2

]
.

Trebuie arătat că

| cos γ| ≥ cos2 α+ cos2 β − 1 =
1

2
(cos 2α+ cos 2β) = cos(α+ β) cos(α− β).

Cum |α−β| ≤ π

2
, avem cos(α−β) ≥ 0. Prin urmare, putem presupune

că cos(α− β), cos(α+ β) > 0. Insă α, β, γ sunt unghiurile triedrului OABC
(care poate fi şi degenerat), deci avem 0 ≤ γ ≤ α + β ≤ π. Rezultă că
0 < cos(α + β) ≤ cos γ, care ı̂mpreună cu 0 < cos(α − β) ≤ 1 implică
cos(α+ β) cos(α− β) ≤ cos γ. �

Comentariu. Această problemă s-a dovedit a fi cea mai grea problemă
din concurs, doar câţiva reuşind să o rezolve complet. Dintre români, doar
Victor Pădureanu a rezolvat problema. În rezolvarea problemei de faţă s-au
folosit aceleaşi ingrediente ca ı̂ntr-o altă problemă, un pic mai veche, dată la



44 Articole

ultimul test de selecţie a lotului olimpic al României din anul 2007. Ea suna
cam aşa:

Problemă ı̂nrudită. Pentru n ≥ 2 ı̂ntreg pozitiv, se consideră nu-
merele reale ai, bi, i = 1, n, astfel ı̂ncât

n∑

i=1

a2i =

n∑

i=1

b2i = 1,

n∑

i=1

aibi = 0.

Să se arate că
(

n∑

i=1

ai

)2

+

(
n∑

i=1

bi

)2

≤ n.

Pentru soluţii şi comentarii recomandăm cititorilor Romanian Mathe-
matical Competitions 2007, paginile 97–100.

Problema 4. Fie f : [0, 1] → R o funcţie crescătoare de clasă C2.

Definim şirurile date de Ln =
1

n

n−1∑

k=0

f

(
k

n

)
şi Un =

1

n

n∑

k=1

f

(
k

n

)
, n ≥ 1.

Intervalul [Ln, Un] se ı̂mparte ı̂n trei segmente egale. Demonstraţi că, pentru

n suficient de mare, numărul I =

1∫

0

f(x)dx aparţine segmentului din mijloc

dintre aceste trei segmente egale.
Alexander Kukush, Kiev, Ucraina

Soluţia 1. Enunţăm şi demonstrăm mai ı̂ntâi următoarea lemă :

Lema. Pentru f ∈ C2[0, 1]: Ln = I− f(1)− f(0)

2n
+O

( 1

n2

)
, n→ ∞.

Demonstraţie. Notăm C = f(1)− f(0). Considerăm

I − Ln =
n−1∑

k=0

k+1
n∫

k
n

(
f(x)− f

(k
n

))
dx =

=
n−1∑

k=0

k+1
n∫

k
n

(
f ′
(k
n

)(
x− k

n

)
+

1

2
f ′′(θxkn)

(
x− k

n

)2)
dx =

=
1

2n2

n−1∑

k=0

f ′
(k
n

)
+ rn, (1)

unde

|rn| ≤
1

2
max|f ′′| ·

n−1∑

k=0

1

3

(
x− k

n

)3∣∣∣∣

k+1
n

k
n

≤ const

n2
.
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Aici θxkn ∈
[
k

n
,
k + 1

n

]
sunt punctele intermediare din teorema lui Taylor

ı̂n vecinătatea punctului
k

n
.

Analog

1∫

0

f ′dx− 1

n

n−1∑

k=0

f ′
(
k

n

)
=

n−1∑

k=0

k+1
n∫

k
n

f ′′(θ̃xkn)

(
x− k

n

)
dx = O

(
1

n

)
.

Deci ı̂n partea dreaptă a relaţiei (1) avem

1

n

n−1∑

k=0

f ′
(k
n

)
→

1∫

0

f ′dx = C, n→ ∞,

şi eroarea ı̂n partea dreaptă a relaţiei (1) este de ordin O

(
1

n2

)
.

Deci din (1) avem

I − Ln =
C

2n
+O

( 1

n2

)
, n→ ∞. �

Acum ne ı̂ntoarcem la soluţia problemei noastre şi avem Un = Ln +
C

n
.

Fie xn = Ln +
kC

3n
, k = 1, 2. Atunci

xn = I +
C

n

(k
3
− 1

2

)
+O

( 1

n2

)
.

Pentru k = 1 avem
k

3
− 1

2
< 0, deci xn < I pentru n suficient de mare;

pentru k = 2 avem
k

3
− 1

2
> 0, deci xn > I pentru n suficient de mare.

Aşadar, pentru n suficient de mare

Ln +
C

3n
< I < Ln +

2C

3N
.

Soluţia a 2-a. Fie F (t) =

t∫

0

f(x)dt. Atunci avem

I =

1∫

0

f(x)dx = F (1)− F (0) =

= F (1)− F

(
n− 1

n

)
+ F

(
n− 1

n

)
− F

(
n− 2

n

)
+ . . .+ F

(
1

n

)
− F (0).
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Din formula lui Taylor de ordinul 2, vom obţine (pentru punctele

0,
1

n
,
2

n
, . . . ,

n− 1

n
):

F (x) = F

(
k

n

)
+

(
x− k

n

)
F ′

(
k

n

)
+

1

2

(
x− k

n

)2

F ′′(θ),

cu θ ∈
[
k

n
, x

]
, k = 0, n− 1, sau

F (x) = F

(
k

n

)
+

(
x− k

n

)
f

(
k

n

)
+

1

2

(
x− k

n

)2

f ′(θ).

Pentru x =
1

n
, . . . , 1 avem

F

(
k + 1

n

)
− F

(
k

n

)
=

1

n
f

(
k

n

)
+

1

2n2
f ′(θk),

cu θk ∈
[
k

n
,
k + 1

n

]
, k = 0, n− 1.

Însumând aceste relaţii pentru k = 0, 1, n− 1 obţinem

I = Ln +
1

2n
σn,

unde σn este suma Riemann pentru

1∫

0

f ′(x)dx = f(1)− f(0).

Intervalul din mijloc este

[
2

3
Ln +

1

3
Un,

1

3
Ln +

2

3
Un

]
= [un, vn].

Dacă f(0) = f(1), atunci f este constantă, ceea ce nu se poate.
Presupunem că f(1) > f(0).

Avem n(I−un) =
n

3
(Ln−Un)+

1

2
σn =

1

3
(f(0)−f(1))+ 1

2
σn şi trecând

la limită când n → ∞, obţinem n(I − un) → 1

6
(f(1) − f(0)) > 0, de unde

pentru n suficient de mare, I > un.
În acelaşi mod, avem

n(vn − I) =
2n

3
(Un − Ln)−

1

2
σn → 1

6
(f(1)− f(0)) > 0. �

Remarcă. Relaţia I = Ln +
1

2n
σn mai poate fi dedusă, din următorul

fapt:
Fie f : [0, 1] → R derivabilă cu derivata integrabilă pe [0, 1]. Atunci

lim
n→∞

n




1∫

0

f(x)dx− 1

n

n∑

k=1

f

(
k

n

)
 =

f(0)− f(1)

2
.
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Demonstraţie. Fie ∆ =

(
0,

1

n
,
2

n
, . . . ,

n− 1

n
, 1

)
o diviziune a interva-

lului [0, 1]. Notăm

Mk = sup
x∈[ k−1

n
, k
n ]
f ′(x), mk = inf

x∈[ k−1
n

, k
n ]
f ′(x), k = 1, n.

Atunci avem

En = n

[
I − 1

n

n∑

k=1

f

(
k

n

)]
= n

n∑

k=1




k
n∫

k−1
n

f(x)dx− 1

n
f

(
k

n

)

 =

= n
n∑

k=1




k
n∫

k−1
n

(
f(x)− f

(
k

n

))
dx


 .

Aplicând teorema lui Lagrange pe intervalul

[
x,
k

n

]
, rezultă că există

ck(x) ∈
(
k − 1

n
,
k

n

)
astfel ı̂ncât f(x)− f

(
k

n

)
=

(
x− k

n

)
f ′(ck(x)).

Atunci En = n
n∑

k=1

k
n∫

k−1
n

(
x− k

n

)
f ′(ck(x))dx.

Dar mk ≤ f ′(ck(x)) ≤Mk, deci avem − 1

2n

n∑

k=1

Mk ≤ En ≤ − 1

2n

n∑

k=1

mk.

Trecând la limită obţinem lim
n→∞

En =
f(0)− f(1)

2
.

Comentariu. Problema a fost considerată una foarte dificilă, iar puţini
concurenţi au reuşit să o rezolve ı̂n ı̂ntregime, cu toate că problema putea fi
abordată şi de un elev foarte bine pregătit de clasa a XII-a. Dintre concurenţii
români, doar câţiva au reuşit să obţină mai mult de jumătate din punctaj.

3. Concluzii

Olimpiada pentru studenţi SEEMOUS din acest an a fost o reuşită pen-
tru studenţii români, care s-au descurcat onorabil. Mulţi dintre concurenţi
au arătat destul de bine pregătiţi, dovada fiind medaliile obţinute. Pe de altă
parte trebuie remarcat şi faptul că parcurgerea unor noţiuni din anul I de
facultate ı̂n liceu poate constitui un real avantaj pentru cei care erau foarte
buni la matematică ı̂n liceu.

În ceea ce priveşte studenţii Universităţii Politehnica din Bucureşti,
putem spune că au avut o comportare decentă. Din păcate niciunul dintre ei
n-a reuşit să obţină medalie de aur, cu toate că Laurenţiu Ţucă a fost foarte
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aproape dacă nu ar fi existat abordarea superficială a ultimei probleme. De
asemenea, trebuie tras un semnal de alarmă ı̂n ceea ce priveşte rezultatele
la prima problemă. Doar doi din cei 8 studenţi români şi-au amintit de
inegalitatea lui Cebâşev (forma discretă sau integrală), deşi ea fusese făcută
la una din pregătiri ı̂ntr-o formă sau alta. La prima problemă, o altă soluţie
corectă a fost dată de Alina Rublea, care a obţinut aproape punctajul maxim
având mici scăpări ı̂n tratarea cazului de egalitate.

Problema 2 a fost cea mai abordată de studenţii Politehnicii. Lauren-
ţiu Ţucă a fost cel mai aproape de o soluţie completă. Din păcate, el nu a
văzut un argument simplu care l-ar fi ajutat să finalizeze. Ceilalţi au abordat
problema, ı̂nsă au existat mici deficienţe ı̂n ı̂nţelegerea noţiunilor de polinom
caracteristic şi valoare proprie. Din păcate, trebuie să semnalăm din nou
faptul că din cauza comprimării materiei ı̂n anul I studenţii, fie ei chiar şi
cei mai buni, nu reuşesc să-şi ı̂nsuşească noţiunile importante din anumite
capitole ale algebrei liniare.

Problema 3 a fost cea mai dificilă din concurs şi a fost rezolvată complet
doar de 3 concurenţi, printre care şi Victor Pădureanu, fost component al
lotului olimpic şi al celui lărgit pe perioada liceului. O altă ı̂ncercare, dar
nefinalizată, a avut Robert Sasu. La fel, parcă se pune prea puţin accent
la cursul de Algebră pe aceste noţiuni de vectori, respectiv forme pătratice,
determinanţi Gram, inegalităţile Cauchy-Schwarz, Bessel, etc.

Problema 4 a fost a doua din concurs ca dificultate. Unii dintre studenţii
români s-au descurcat bine, iar dintre cei ai Politehnicii doar Laurenţiu Ţucă
a fost aproape de a lua punctaj maxim, dacă ar fi demonstrat lema de mai
sus.

În concluzie, suntem de părere că, din cauza cantităţii mari de materie
care a fost comprimată aproape ı̂ntr-un singur semestru, studenţii nu mai au
posiblitatea să mai simtă importanţa şi mai ales gustul unor noţiuni peste
care se trece cu mult prea mare uşurinţă la orele de curs şi seminar. Graba
predării materiei nu va avea ca rezultat decât familiarizarea insuficientă chiar
şi a celor mai buni studenţi cu noţiunile noi de la cursurile Analiză Matem-
atică, Algebră Liniară şi Superioară, Geometrie. Din păcate, aceasta este o
meteahnă care datează de mult prea mulţi ani ı̂n ı̂nvăţământul matematic
din România.
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PROBLEMS

Authors should submit proposed problems to office@rms.unibuc.ro or to
gmaproblems@gmail.com. Files shold be in PDF or DVI format. Once a problem
is accepted and considered for publication, the author will be asked to submit the
TeX file also. The referee process will usually take between several weeks and two
months. Solutions may also be submitted to the same e-mail adress. For this issue,
solutions should arrive before November 15, 2011.

Editors: Mihai Cipu, Radu Gologan, Călin Popescu, Dan Radu

Assistant Editor: Cezar Lupu

PROPOSED PROBLEMS

323. Let C be the set of the circles in the plane and L be the set of the
lines in the plane. Show that there exist bijective maps f, g : C → L such
that for any circle C ∈ C, the line f(C) is tangent at C and the line g(C)
contains the center of C.

Proposed by Marius Cavachi, Ovidius University of Constanţa,

Romania.

324. Consider the set

K :=
{
f
(

4
√
20 ,

6
√
500

)
| f(X,Y ) ∈ Q[X,Y ]

}
.

(a) Show that K is a field with respect to the usual addition and multi-
plication of real numbers.

(b) Find all the subfields of K.
(c) If one considers K as a vector space QK over the field Q in the

usual way, find the dimension of QK.
(d) Exhibit a vector space basis of QK.

Proposed by Toma Albu, Simion Stoilow Institute of Mathematics

of the Romanian Academy, Bucharest, Romania.

325. We call toroidal chess board a regular chess board (of arbitrary
dimension) in which the opposite sides are identified in the same direction.
Show that the maximum number of kings on a toroidal chess board of dimen-
sions m × n (m,n ∈ N) such that each king attacks no more than six other

kings is less than or equal to
4mn

5
and the inequality is sharp.

Proposed by Eugen Ionaşcu, Columbus State University, Columbus,

GA, USA.

326. For t > 0 define H(t) =
∞∑

n=0

tn

n!(n+ 1)!
. Show that

lim
t→∞

t3/4H(t)

exp(2
√
t)

=
1

2
√
π
.



50 Problems

Proposed by Moubinool Omarjee, Jean Lurçat High School, Paris,

France.

327. Let f : [a, b] → R be a convex and continuous function. Prove
that:

a) M (a; b) + (b− a)f

(
a+ b

2

)
≥ M

(
3a+ b

4
;
3b+ a

4

)
;

b) 3M
(
2a+ b

3
;
2b+ a

3

)
+M (a; b) ≥ 4M

(
3a+ b

4
;
3b+ a

4

)
.

Here M(x, y) =
1

y − x

y∫

x

f(t)dt.

Proposed by Cezar Lupu, Polytechnic University of Bucharest,

Bucharest, Romania, and Tudorel Lupu, Decebal High School, Constanţa,

Romania.

328. Given any positive integers m, n, prove that the set{
1, 2, 3, . . . ,mn+1

}
can be partitioned into m subsets A1, A2, . . . , Am, each

of size mn, such that
∑

a1∈A1

ak1 =
∑

a2∈A2

ak2 = . . . =
∑

am∈Am

akm, for all k = 1, 2, . . . , n.

Proposed by Cosmin Pohoaţă, student Princeton University,

Princeton, NJ, USA.

329. Let p ≥ 11 be prime number. Show that, if

(p−1)/2∑

j=1

1

j6
=
a

b
,

with a, b relatively prime, then p divides a.
Proposed by Marian Tetiva, Gheorghe Roşca Codreanu National

College, Bârlad, Romania.

330. Determine all nonconstant monic polynomials f ∈ Z[X] such that
ϕ(f(p)) = f(p − 1) for all natural prime numbers p. Here ϕ(n) is the Euler
totient function.

Proposed by Vlad Matei, student Cambridge University, Cambridge,

UK.

331. Let Bn = {(x1, . . . , xn) ∈ Rn | xi ≤ xi+2 for 1 ≤ i ≤ n − 2} and
let B =

⋃
n≥1 Bn. On B we define the relation ≤ as follows. If x, y ∈ B,

x = (x1, . . . , xm) and y = (y1, . . . , yn), we say that x ≤ y if m ≥ n and for
any 1 ≤ i ≤ n we have either xi ≤ yi or 1 < i < m and xi + xi+1 ≤ yi−1 + yi.
Prove that (B,≤) is a partially ordered set.

Proposed by Nicolae Constantin Beli, Simion Stoilow Institute of

Mathematics of the Romanian Academy, Bucharest, Romania.
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332. For a positive integer n =
s∏

i=1

pαi

i denote by Ω(n) :=
s∑

i=1

αi the

total number of prime factors of n (counting multiplicities). Of course, by

default Ω(1) = 0. Define now λ(n) := (−1)Ω(n), and consider the sequence
S := (λ(n))n≥1. You are asked to prove the following claims on S:

a) It contains infinitely many terms λ(n) = −λ(n+ 1);
b) It is not ultimately periodic;
c) It is not ultimately constant over an arithmetic progression;
d) It contains infinitely many pairs λ(n) = λ(n+ 1);
d) It contains infinitely many terms λ(n) = λ(n+ 1) = 1;
e) It contains infinitely many terms λ(n) = λ(n+ 1) = −1.
Proposed by Dan Schwarz, Bucharest, Romania.

333. Show that there do not exist polynomials P,Q ∈ R[X] such that

log logn∫

0

P (x)

Q(x)
dx =

1

p1
+

1

p2
+ . . .+

1

pn
, n ≥ 1,

where pn is the nth prime number.
Proposed by Cezar Lupu, Polytechnic University of Bucharest,

Bucharest and Cristinel Mortici, Valahia University of Târgovişte,

Târgovişte, Romania.

334. Let a, b be two positive integers with a even and b ≡ 3 (mod 4).
Show that am + bm does not divide an − bn for any even m, n ≥ 3.

Proposed by Octavian Ganea, student École Polytechnique Fédérale

de Lausanne, Lausanne, Switzerland.

335. Letm and n be positive integers withm ≤ n and let A ∈ Mm,n(R)
and B ∈ Mn,m(R) be matrices such that rankA = rankB = m. Show that
there exists C ∈ Mn(R) such that A · C · B = Im, where Im denotes the m
by m unit matrix.

Proposed by Vasile Pop, Technical University Cluj-Napoca, Cluj-

Napoca, Romania.

336. Show that the sequence (an)n≥1 defined by an = [2n
√
2]+ [3n

√
3],

n ≥ 1, contains infinitely many odd numbers and infinitely many even num-
bers. Here [x] is the integer part of x.

Proposed by Marius Cavachi, Ovidius University of Constanţa,

Constanţa, Romania.
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SOLUTIONS

295. Determine all nonconstant polynomials P ∈ Z[X] such that P (p)
is square-free for all prime numbers p.

Proposed by Vlad Matei, student University of Bucharest,

Bucharest, Romania.

Solution by the author. We will need the following observation.
Lemma. For all nonconstant polynomials f ∈ Z[X] the set

A = {q prime | ∃ p prime, q|f(p)}

is infinite.
Proof of the lemma. Assume the contrary. Let A = {q1, q2, . . . , qn}

and let M = q1q2 · · · qn. Let k be an arbitrary natural number. According to
Dirichlet ’s theorem, the arithmetic progressionMkr+1 with r ∈ N∗ contains
an infinity of prime numbers.

Let us note that f(Mkr + 1) ≡ f(1)(mod qki ), ∀ i = 1, . . . , n. Below
we will assume that the leading coefficient of f is positive, the other case
is similar considering −f . We know that lim

x→∞
(f(x) − x) = ∞, thus for r

sufficiently large f(Mkr + 1) ≥ Mkr. Since A is finite, it follows that there
is an index j with qkj |f(Mkr + 1). We would have that qkj |f(1). Now for k

sufficiently large qki > |f(1)|, ∀i = 1, . . . , n, and we are done unless f(1) = 0.
In this case the lemma is obvious, since f(p) = (p− 1)g(p), with g ∈ Z[X].

�

First of all, we claim that f(0) = 0. Assume the contrary f(0) 6= 0.
We can choose infinitely many primes q such that f(q) = d · p1p2 · · · pm with
pi 6= pj for 1 ≤ i 6= j ≤ m and (f(0), f(q)) = d. We know from Taylor
expansion of polynomials that

f(q+ tpi) = f(q)+f ′(q) · tpi+f ′′(q) ·
(tpi)

2

2!
+ · · · ≡ f(q)+f ′(q) · tpi (mod p2i )

for 1 ≤ i ≤ m.
If we would have pn ∤ f ′(q) for a certain index n, then we could choose

t such that f(q) + f ′(q) · tpn ≡ 0 (mod p2i ), since this is equivalent to

f ′(q) · t ≡ −f(q)
pn

(mod p2i ) and f ′(q) is invertible modulo pn. This means

that there is m ∈ Z such that p2n|f(m). Now m = q+ tpn, and if (m, pn) > 1
it follows that pn|q. Since f(q) = d · p1p2 . . . pm, we have that pn|f(q), so
pn|(q, f(q)). But (q, f(q))|f(0), and we deduce that pn|d, a contradiction.
Thus (m, pn) = 1, and by Dirichlet’s theorem we could find a prime r in the
arithmetic progression m+ap2n, a ∈ N∗. We would get that f(r) ≡ f(m) ≡ 0
(mod p2i ), in contradiction with the hypothesis.
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Therefore there is no such index and it follows p1p2 · · · pm|f ′(q). This

means |f ′(q)| ≥ |p1p2 · · · pm|, which is equivalent to
|f ′(q)|
|f(q)| ≥ 1

d
≥ 1

f(0)
.

To finish the proof, we make q arbitrarily large and it results that

lim
x→∞

f ′(x)

f(x)
≥ 1

f(0)
. This contradicts the well known fact that lim

x→∞

f ′(x)

f(x)
= 0.

This contradiction proves that our initial claim is true, so that f(0) = 0. If
we write f(X) = Xig(X), g(0) 6= 0, we get immediately from the hypothesis
that i = 1 and g is constant. So f(X) = cX. Morever, if c has a prime factor
l, then f(l) is not square-free. Thus c = ±1.

We conclude that the only such polynomials are f(X) = −X and
f(X) = X. �

296. Let a1, a2,. . . ,an, b1, b2,. . . , bn > 0 and x1, x2, . . . , xn, y1, y2, . . . , yn
be real numbers. Show that



∑

1≤i,j≤n

xixj min(ai, aj)






∑

1≤i,j≤n

yiyj min(bi, bj)


 ≥

∑

1≤i,j≤n

xiyj min(ai, bj).

Proposed by Alin Gălăţan, student University of Bucharest,

Bucharest, Romania.

Solution by the editors. Let λA be the characteristic function of an
arbitrary set A. Consider the functions f, g : [0,∞) → R defined by

f(x) =
n∑

i=1

xiλ[0,ai](x), g(x) =
n∑

i=1

yiλ[0,bi](x).

We have
∞∫

0

f2(x)dx =
∑

1≤i,j≤n

xixj

∞∫

0

λ[0,ai](x)λ[0,bi](x)dx =
∑

1≤i,j≤n

xixj min(ai, aj).

Analogously, we obtain

∞∫

0

g2(x)dx =
∑

1≤i,j≤n

yiyj min(bi, bj),

∞∫

0

f(x)g(x)dx =
∑

1≤i,j≤n

xiyj min(ai, bj).

Finally, our inequality reduces to

∞∫

0

f2(x)dx

∞∫

0

g2(x)dx ≥




∞∫

0

f(x)g(x)dx




2

,

which is nothing else than the celebrated integral version of the Cauchy-
Schwarz inequality. �
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297. Let S2 be the bidimensional sphere and α > 0. Show that for
any positive integer n and A1, A2, . . . , An, B1, B2, . . . , Bn and C1, C2, . . . , Cn

arbitrary points on S2, there exists Pn ∈ S2 such that
n∑

i=1

PnA
α
i =

n∑

i=1

PnB
α
i =

n∑

i=1

PnC
α
i

if and only if α = 2.
Proposed by Marius Cavachi, Ovidius University of Constanţa,

Constanţa, Romania.

Solution by the author. We will divide the proof in two cases α = 2 and
α 6= 2. In the first case let us define the function f : S2 → R2,

f(P ) =

(
n∑

i=1

PA2
i −

n∑

i=1

PB2
i ,

n∑

i=1

PA2
i −

n∑

i=1

PC2
i

)
.

Since f(−P ) = −f(P ), ∀P ∈ S2, according to Borsuk-Ulam’ s Theorem,
there is a Pn ∈ S2 such that f(Pn) = (0, 0).

We can provide an elementary argument for this fact, as it follows.
Let H1, H2 be the geometrical locus of the points P in space for which

n∑

i=1

PA2
i =

n∑

i=1

PB2
i , respectively

n∑

i=1

PA2
i =

n∑

i=1

PC2
i . H1 and H2 are planes

which both pass trough the center of the sphere. In consequence, H1 ∩ H2

contains a line, which passes through the center of the sphere, and we can
choose Pn as one of its intersections with the surface of the sphere.

For the second case, when α 6= 2, we will use standard cartesian coordi-
nates, and let N = (0, 0, 1) and S = (0, 0,−1), the standard north and south
pole of the sphere. We denote with S1 the standard plane section given by
the ecuation z = 0.

For n arbitrary and i ∈ {1, 2, . . . , n} we choose Ai = N , Bi = S, and Ci

are the vertices of a regular polygon with n sides circumscribed around S1.
A point Pn which satisfies the statement of the problem must be on S1 and

satisfies
n∑

i=1

PnC
α
i = n(

√
2)α.

Also, since lim
n→∞

1

n

n∑

i=1

PnC
α
i =

1

2π

∫

P∈S1

QPα ds = I, where Q is for

example the point (1, 0, 0), we deduce that

I = (
√
2)α. (1)

Now

I =
1

2π

2π∫

0

(
2 sin

(
t

2

))α

dt =
2α

π

π∫

0

sinα u du =
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=
2α

π

π
2∫

0

(sinα v + cosα v) dv =
2α

2
(sinα v0 + cosα v0),

using the mean theorem, and v0 ∈
(
0;
π

2

)
.

We deduce that

I

2
α
2

=
1

2

[
(2 sin2(v0))

α
2 + (2 cos2(v0))

α
2

]
=

1

2
[(1 + w)β + (1− w)β ],

unde β =
α

2
, w ∈ (0; 1).

If α > 2, then β > 1, and using the Bernoulli inequality we have

(1 + w)β + (1 − w)β > 1 + βw + 1 − βw > 2. Then
I

2
α
2

>
1

2
· 2 = 1, a

contradiction with (1).

Similarly for α ∈ (0; 2), we obtain the contradiction
I

2
α
2

< 1. �

Remark. Marius Olteanu had a geometrical approach based on Leibniz
relations.

298. Let t be an odd number. Find all monic polynomials P ∈ Z[X]
such that for all integers n there exists an integer m for which

P (m) + P (n) = t.

Proposed by Octavian Ganea, student École Polytechnique Fédérale

de Lausanne, Lausanne, Switzerland and Cristian Tălău, student

Polytechnic University of Bucharest, Bucharest, Romania.

Solution by the authors. Firstly we prove that the degree of P is odd. If
P would have even degree, then it would be bounded from below, but from
our statement taking n→ ∞ we have that lim

n→+∞
P (n) = +∞, it follows that

there is a sequence of values of m for which P (m) → −∞, which contradicts
the fact that P is bounded from below.

So we have proven that degree of P is odd. Now let M be large enough
such that P is strictly increasing on [M,+∞) (it is possible since P ′ has a
finite number of roots and lim

x→+∞
P ′(x) = +∞). So from our hypothesis,

it follows that P is strictly increasing on (−∞, N ] (∗), where N is such
P (M) + P (N) = t.

Let m ≥ M and n ∈ Z such that P (m) + P (−n) = t. From the
hypothesis there is a k ∈ Z such that P (m + 1) + P (−n − k) = t. It is
clear from (∗) that k ≥ 1. Also from the hypothesis there is a r ≥ 1 with
the property that P (m + r) + P (−n − 1) = t. If r ≥ 2 or k ≥ 2, then
P (m + 1) + P (−n − k) < P (m + r) + P (−n − 1), a contradiction. Thus
P (m + 1) + P (−n − 1) = t, so by induction P (m + k) + P (−n − k) = t,
∀k ∈ N.
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Let a = m−n and Q(X) = P
(a
2
+X

)
+P

(a
2
−X

)
− t. Let us notice

that it has infinitely many roots of the form x =
m+ n

2
+ k, ∀ k ∈ N. It

follows that Q = 0. For x = 0 we have P
(a
2

)
=

t

2
/∈ Z, so a is odd. Let

us notice that if we denote k = deg(P ) we have 2k−1P
(a
2

)
= 2k−2t and

for k ≥ 3 we know that 2k−2t ∈ Z, so 2k−1P
(a
2

)
∈ Z and if we write the

expression of P , it would follow that
ak

2
∈ Z, which is in contradiction with

a odd. Thus k = 1 so P (X) = X + b, which verifies the hypothesis. �

299. Find all functions f : {1, 2, . . .} → {1, 2, . . .} satisfying the follow-
ing properties:

i) a− b divides f(a)− f(b) for all a, b ∈ {1, 2, . . .};
ii) if a, b are relatively prime, so are f(a) and f(b).

Proposed by Gabriel Dospinescu, École Normale Supérieure de

Paris, Paris, France and Fedor Nazarov, University of Wisconsin,

Madison, WI, USA.

Solution by the authors. First, we claim that any prime factor of f(n)
divides n. Assume that p divides f(n) and does not divide n. Since p divides
f(n+ p)− f(n), p also divides f(n+ p), so it divides gcd(f(n), f(n+ p)). As
gcd(n, n+p) = 1, we also have gcd(f(n), f(n+p)) = 1, which makes the last
result impossible. The first claim is thus proved.

Write f(p) = pg(p) for each prime p, for some g(p) ≥ 0. We will prove
that g is constant. Fix odd primes p, q and a positive integer m and define

u =
p2

m

+ 1

2
and v =

q2
n

+ 1

2
for some n such that gcd(u, v) = 1 (this is

possible since classically any prime factor of v is at least 2n, so if n is large
enough, v will be relatively prime to u). The Chinese Remainder Theorem
combined with Dirichlet ’s theorem give us a prime r such that r ≡ p (mod u),

r ≡ q (mod v). Therefore, u divides f(r)− f(p) = rg(r) − pg(p). Since u also

divides rg(r) − pg(r), it follows that u divides p|g(r)−g(p)| − 1. Recalling the
definition of u, it immediately follows that 2m+1 divides g(r) − g(p), and
doing the same with v yields that 2m+1 also divides g(q)−g(r), so that 2m+1

divides g(p)− g(q). Since m was arbitrary, we must have that g is constant,
say g(p) = d for any prime p.

Finally, if n is a positive integer we have n− p|f(n)− f(p) = f(n)− pd

and n− p|nd − pd, so that n− p|f(n)− nd. Since this holds for any prime p,
we must have f(n) = nd for all n. Obviously, all these functions are solutions
to the problem. �
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300. Consider the sequence (an)n≥1 defined by a1 = 2 and an+1 =

= 2an +
√
3(a2n − 1), n ≥ 1. Show that the terms of an are positive integers

and any odd prime p divides ap − 2.
Proposed by Alin Gălăţan, student University of Bucharest and

Cezar Lupu, student University of Bucharest, Bucharest, Romania.

Solution by the authors. It is well-known that the function ch : R →
→ [1,∞), defined by ch(x) =

ex + e−x

2
, is onto and thus there exists α ≥ 1

such that ch(α) = 2, which implies that sh(α) =
√
3, with sh : R → [1,∞)

defined by sh(x) =
ex − e−x

2
. It follows that

an+1 = ch(α)an + sh(α)
√
a2n − 1, ∀n ≥ 1.

We shall prove by induction that an = ch(nα), ∀n ≥ 1. The case n = 1
is obvious. We assume that an = ch(nα) for some n ≥ 1 and we prove that
an+1 = ch((n+1)α). Indeed, since ch(nα+α) = chα · ch(nα)+shα · sh(nα),
∀n ≥ 1, we obtain that an = ch(nα), ∀n ≥ 1.

In what follows, we prove by induction that all terms an are positive
integers. Indeed, we assume that for some n ≥ 2 one has ak ∈ N for all
integers 1 ≤ k < n, and we prove that an ∈ N, too. Assume by contradiction
that an /∈ N∗. This means that there exists a square-free number d > 1 such
that an =M +N

√
d, so that an /∈ Q. We have

22n = chn(α) =

(
eα + e−α

2

)n

,

which is equivalent to

22n =
n∑

k=0

(
n

k

)
e(n−k)α−kα =

n∑

k=0

(
n

k

)(
e(n−2k)α + e−(n−2k)α

)
=

n∑

k=0

(
n

k

)
a|n−2k|.

Since ak is integer for all k < n, it follows that an ∈ Q, which contradicts
the initial assumption. Thus we get an ∈ N for all n ≥ 1.

Finally, consider a prime number p > 2. We have

4p =

p∑

k=0

(
k

p

)
·e(p−2k)α =

p−1
2∑

k=0

(
p

k

)(
e(p−2k)α + e−(p−2k)α

)
=

p−1
2∑

k=0

(
p

k

)
·2ap−2k.

Since p divides

(
p

k

)
and, from Fermat ’s Little Theorem, 4p ≡ 4(mod p),

it follows that 2 ≡ ap (mod p) and hence the conclusion follows immediately
having in view that p is odd. �

Solution by Marian Tetiva, Gheorghe Roşca Codreanu National College,
Bârlad, Romania. That an is positive for every n ≥ 1 immediately follows
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by induction, and this readily implies an+1 > an for all n (thus, the sequence
is strictly increasing).

By squaring an+1−2an =
√
3(a2n − 1) one gets a2n+1−4an+1an+a

2
n = −3

for all positive integers n; therefore,

a2n+1 − 4an+1an + a2n = a2n − 4anan−1 + a2n−1, ∀n ≥ 2.

This one can be read as

(an+1 − an−1)(an+1 + an−1 − 4an) = 0,

hence the terms of (an)n≥1 also verify the recurrence

an+1 − 4an + an−1 = 0, ∀n ≥ 2

(as an+1−an−1 is always nonzero – actually positive). A canonical induction
shows now that an is an integer for each n ≥ 1 (as it starts with a1 = 2,
a2 = 7, and an+1 = 4an − an−1, for n ≥ 2).

Also canonical is to find the formula of the general term; we have

an =
1

2

((
2 +

√
3
)n

+
(
2−

√
3
)n)

, ∀n ≥ 1.

Now we have the following general result: if x1, x2, . . . , xm are the zeros
of a monic polynomial with integer coefficients, and p is a positive prime
number, then

(x1 + x2 + · · ·+ xm)p − (xp1 + xp2 + · · ·+ xpm)

is an integer which is divisible by p.
Indeed, the first part follows easily via the fundamental theorem of sym-

metric polynomials. By the multinomial formula and the fact that each multi-

nomial coefficient
p!

i1!i2! · · · im!
is divisible by p whenever none of i1, i2, . . . , im

equals p,
1

p
((x1 + x2 + · · ·+ xm)p − (xp1 + xp2 + · · ·+ xpm))

is a sum of products of powers of x1, x2, . . . , xm with integer coefficients,
therefore it is an algebraic integer. Being rational and algebraic integer, the
above number is an integer, which was to be proven.

(See also Example 6 at page 191 of Problems from the Book by T.
Andreescu and G. Dospinescu, XYZ Press, 2008. And note that yet another
beautiful solution, which uses matrices, is given to that problem starting with
page 192.)

In our case one can consider x1 = 2 +
√
3, and x2 = 2−

√
3; the above

theorem implies that

4p −
((

2 +
√
3
)p

+
(
2−

√
3
)p)
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is divisible by p for every positive prime number p. If p is odd, from here we
infer that

xp − 22p−1 =
1

2

((
2 +

√
3
)p

+
(
2−

√
3
)p)

− 22p−1

is divisible by p. Then

xp − 2 =
(
xp − 22p−1

)
+
(
22p−1 − 2

)

is also divisible by p, because 22p−1 − 2 is divisible by p, too, according
to Fermat ’s Little Theorem (which is, somehow, generalized by the above
mentioned result).

Note that the fact that xp − 2 is divisible by p can also be obtained by
using the binomial development in the formula for xp. �

Remark. Similar solutions with the second approach were also given
by Nicuşor Minculete, Braşov and Marius Olteanu, Râmnicu Vâlcea.

301. Determine the greatest prime number p = p(n) such that there
exists a matrix X ∈ SL(n,Z) with Xp = In and X 6= In.

Proposed by Victor Vuletescu, University of Bucharest,

Bucharest, Romania.

Solution by Marian Tetiva, Gheorghe Roşca Codreanu National College,
Bârlad, Romania. We show that p(n) is the greatest prime which does not
exceed n+ 1.

First we prove that p(n) ≤ n+ 1. Suppose p is a prime, and that there
exists X ∈ SL(n,Z) with Xp = In. Thus X is a root of the polynomial

T p − 1 = (T − 1)(T p−1 + · · ·+ T + 1)

and then the minimal polynomial ofX over Q is one of T−1, T p−1+· · ·+T+1
(both factors are irreducible), or T p − 1 itself. Since we look for X 6= In,
the first case is excluded. Because the degree of the minimal polynomial of
a matrix of order n is at most n, we find that either p − 1 ≤ n or p ≤ n; in
both cases p ≤ n+ 1 follows.

Now we show that for p = p(n), the greatest prime which does not
exceed n + 1, there is a matrix X ∈ SLn(Z) with Xp = In. As p − 1 ≤ n,
we can consider X = (xij)1≤i,j≤n with x11 = x12 = · · · = x1,p−1 = −1,
x21 = x32 = · · · = xp−1,p−2 = 1, and all other entries equal to 0. For this
matrix we have Xp−1 + · · · + X + In = 0n (it is built starting from the
companion matrix of T p−1+ · · ·+T +1), therefore Xp− In = 0n ⇔ Xp = In,
too (just multiply the previous equality with X − In).

Note that when p(n) ≤ n (that is, when n + 1 is not a prime), a
permutation matrix corresponding to a cycle of order p can be used as yet
an example. �

302. Let n ≥ 2 and denote by D ⊂ Mn(C) and C ⊂ Mn(C) the set
of diagonal and circulant matrices, respectively. Consider V = [D,C] =
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= span{dc − cd | d ∈ D, c ∈ C}. Prove that C, D, and V span Mn(C) if and
only if n is prime.

Proposed by Remus Nicoară, University of Tennessee, Knoxville,

TN, USA.

Solution by the author. We begin with a standard notation; Ei,j is
the matrix with 0 or 1 as entries and which has the value 1 only on the
position (i, j). Let us note firstly that the set D is generated by the matrices
Eh,h = Dh, where 1 ≤ h ≤ n. The set C is generated by the matrices X l,

with l ≤ n, where X =




0 1 0 ... ... 0
0 0 1 ... .... 0
... ... ... ... ... ...
0 0 0 ... 1 0
1 0 0 ... ... 0



, so X l =

n∑

i=1

Ei,i+l, where

the indices are taken modulo n.
For 1 ≤ k ≤ n and l ≤ n, we have that [Dk, X

l] = Ek,k+l − Ek−l,k

generate the space V . It is easy to verify that C,D ⊥ V , where the scalar
product is given by < X, Y >= Tr(Y tX).

Since span(C,D) has dimension 2n− 1, it follows that span(C,D,V) =
=Mn(C) if and only if dimC V = (n− 1)2.

Let Vh,l = Eh,h+l−Eh−l,h. They span the space V . We must look at the

dependence relations between Vh,l. Let ch,l ∈ C such that
∑

h,l

ch,lVh,l = On.

This is equivalent to
∑

i,j

(ci,j−i − cj−i,j)Ei,j = On, so ci,j−i = cj−i,j .

If we denote d = j−i, this means ci,d = ci+d,d, for any i, d, so we deduce
ci,d = ci+md,d, for any m ≥ 1. Now if d 6= 0 and n is prime the set {i+md},
wherem ≥ 1, contains all the residues modulo n, besides i, and since i 6= j we
can find an m0 such that i+m0d ≡ j(mod p). Thus ci,d = cj,d, ∀i, j, d 6= 0.

Now let us look at the linear transformation ch,l →
∑

h,l

ch,lVh,l. From

what we obtained, for n prime, we know that its kernel is determined, on
the first n − 1 columns, by the values on the first row, and the last column
is arbitrary. Thus we have 2n − 1 ,,degrees of freedom“, so the kernel has
dimension 2n− 1. This means that the image has dimension n2 − 2n+ 1 =
= (n− 1)2.

Finally, let us see what happens when n is not prime. We prove that
the kernel has a bigger dimension, and the proof ends. This is easy to see
since {i+md} cannot span the whole residues when d is not coprime with n,
and we can choose such a d 6= 0 and d < n. In this case on the d-th column
we have at least one more ,,degree of freedom“ so the dimension of the kernel
is bigger than 2n− 1. �
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303. Prove that

∞∑

n=0

1

Γ (n+ 3/2)
=

2e√
π

1∫

0

e−x2
dx

and
∞∑

n=0

Γ (−n+ 1/2) Γ (n+ 1/2)

Γ (n+ 3/2)
=

√
π

2e

1∫

0

ex
2
dx,

where Γ(x) =

∞∫

0

e−ttx−1dt is Euler ’s Gamma function.

Proposed by Cezar Lupu, student University of Bucharest,

Bucharest and Tudorel Lupu, Decebal High School, Constanţa,Romania.

Solution by the authors. On the first serie, we use Series expansion of
Incomplete Gamma function, namely

Γ(a− 1)− Γ(a− 1, x) = xa ·
(

1

(a− 1)x
− 1

a
+

x

2(a+ 1)
− x2

6(a+ 2)
+

+
x3

24(a+ 3)
− x4

120(a+ 4)
+

x5

720(a+ 5)
+O

(
x6
))

.

We multiply the equation by x(1−a) to make things more polynomial-like
and thus we have

x1−a
(
Γ(a− 1)− Γ(a− 1, x)

)
=

1

a− 1
− x

a
+

x2

2(a+ 1)
− x3

6(a+ 2)

+
x4

24(a+ 3)
− x5

120(a+ 4)
+O

(
x6
)
.

The magic happens when multiplying by ex, it will make a translation
in the x terms, or in series form




∞∑

j=0

xj

j!



(

∞∑

i=0

(−1)ixi

i!(a+ i− 1)

)
=

∞∑

k=0

k∑

i=0

(−1)ixk

i!(a+ i− 1)(k − i)!
.

So, we obtain

exx1−a
(
Γ(a− 1)− Γ(a− 1, x)

)
=

1

a− 1
+

x

(a− 1)a
+

x2

(a− 1)a(a+ 1)
+

+
x3

(a− 1)a(a+ 1)(a+ 2)
+

x4

(a− 1)a(a+ 1)(a+ 2)(a+ 3)
+O

(
x5
)
.

Finally eliminating the term a− 1, we have

(a−1)exx1−a (Γ(a− 1)− Γ(a− 1, x)) = 1+
x

a
+

x2

a(a+ 1)
+

x3

a(a+ 1)(a+ 2)
+
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+
x3

a(a+ 1)(a+ 2)
+

x4

a(a+ 1)(a+ 2)(a+ 3)
+O

(
x5
)
=

∞∑

i=0

xi(a− 1)!

(i+ a− 1)!
.

Dividing by Γ(a) and using Gamma function instead of factorial, we
deduce

∞∑

i=0

xi

Γ(a+ i)
=

(−1 + a)exx1−a
(
Γ(−1 + a)− Γ(−1 + a, x)

)

Γ(a)
.

The left and right hand side are valid for any positive real number a.

Making x = 1, a =
3

2
and using erf function, i.e., erf(x) =

2

π

x∫

0

e−t2dt,

instead of the incomplete Gamma, we conclude the solution.
For the second series, we just have to put x → −x and the solution is

almost the same as above. �

Remark. A similar solution, but a little bit more laborious, was given
by Marius Olteanu, Râmnicu Vâlcea.

304. Let f, g : [0, 1] → R be two functions such that f is continuous
and g is increasing and differentiable, with g(0) ≥ 0. Prove that if for any
t ∈ [0, 1]

1∫

t

f(x)dx ≥
1∫

t

g(x)dx,

then
1∫

0

f2(x)dx ≥
1∫

0

g2(x)dx.

Proposed by Andrei Ciupan, student Harvard University, Boston,

MA, USA.

Solution by the author. Let F and G be fixed, but otherwise arbitrary,
primitives of f and g, respectively. From the AM-GM inequality we have

1∫

0

f2(x)dx+

1∫

0

g2(x)dx ≥ 2 ·
1∫

0

f(x)g(x)dx. (1)

By integration by parts we obtain

1∫

0

f(x)g(x)dx = F (x) · g(x)
∣∣∣
1

0
−

1∫

0

F (x)g′(x)dx. (2)

The hypothesis tells us that F (1) − F (x) ≥ G(1) − G(x) for any
x ∈ [0, 1], which can be rewritten as −F (x) ≥ G(1) − F (1) − G(x). Since g
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is differentiable and increasing, we have g′(x) ≥ 0 for any x in [0, 1]. From
these two facts we obtain

−
1∫

0

F (x)g′(x)dx ≥
1∫

0

(G(1)− F (1)) g′(x)dx−
1∫

0

G(x)g′(x)dx⇔

⇔ −
1∫

0

F (x)g′(x)dx ≥ (G(1)−F (1))(g(1)−g(0))−G(x) ·g(x)
∣∣∣
1

0
+

1∫

0

g2(x)dx.

By combining this last relation with (2), we obtain

1∫

0

f(x)g(x)dx ≥ F (1)g(1)− F (0)g(0) + (G(1)− F (1)) (g(1)− g(0))

−G(1)g(1) +G(0)g(0) +

1∫

0

g2(x)dx.

By reducing and grouping, we finally obtain

1∫

0

f(x)g(x)dx ≥ g(0) (F (1)− F (0) +G(0)−G(1)) +

1∫

0

g2(x)dx.

Therefore, by taking into account relation (1), we obtain

1∫

0

f2(x)dx ≥
1∫

0

g2(x)dx+ 2g(0)




1∫

0

f(x)dx−
1∫

0

g(x)dx


 ≥

1∫

0

g2(x)dx,

since g(0) ≥ 0 and

1∫

0

f(x)dx ≥
1∫

0

g(x)dx. �

Remark. A similar solution, but a little bit more complicated, was
given by Marius Olteanu, Râmnicu Vâlcea.

305. Let K be a field and f ∈ K[X] with deg(f) = n ≥ 1 having
distinct roots x1, x2, . . . , xn. For p ∈ {1, 2, . . . , n} let S1, S2, . . . , Sp be the
symmetric fundamental polynomials in x1, x2, . . . , xp. Show that

[K(S1, S2, . . . , Sp) : K] ≤
(
n

p

)
.

Proposed by Marius Cavachi, Ovidius University of Constanţa,

Constanţa, Romania.

Solution by the author. We consider firstly the following fields,
F = K(S1, . . . , Sp), L = K(x1, . . . , xp), M = K(x1, x2, . . . , xn). We have
the inclusions K ⊂ F ⊂ L ⊂ M . The extension K →֒ M is Galois and let
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G = Gal(M/K) be the Galois group, and finally let us denote withG1 the im-
age of the group Gal(M/F ) through the canonical inclusion Gal(M/F ) →֒ G.

The groupG acts on the set of subfields ofM and

∣∣∣∣
G

Stab(L)

∣∣∣∣ = |Orb(L)|.
Since for σ ∈ G, σ(L) is uniquely determined by the subset {σ(x1), . . . , σ(xp)}
of {x1, . . . , xn}, we deduce that |Orb(L)| ≤

(
n

p

)
.

On the other hand, σ ∈ Stab(L) is equivalent to {σ(x1), . . . , σ(xp)} =
= {x1, . . . , xn}, which is further equivalent to (X − σ(x1)) . . . (X − σ(xp)) =
= (X−x1) . . . (X−xp). Thus {σ(S1), . . . , σ(Sp)} = {S1, . . . , Sp} so σ(F ) = F ,
hence σ ∈ G1. We conclude that |G/ Stab(L)| = |G/G1| = [F : K].

Thus, it follows that [F : K] ≤
(
n

p

)
.

Solution by Marian Tetiva, Gheorghe Roşca Codreanu National College,
Bârlad, Romania. For 1 ≤ i1 < i2 < · · · < ip ≤ n let us denote by

S1(xi1 , xi2 , . . . , xip), S2(xi1 , xi2 , . . . , xip), . . . , Sp(xi1 , xi2 , . . . , xip)

the symmetric fundamental polynomials in xi1 , xi2 , . . . , xip .
Thus, S1 = S1(x1, x2, . . . , xp) and so on.
Let x be an arbitrary element from K(S1, S2, . . . , Sn); that is,

x =
∑

aj1j2...jpS
j1
1 S

j2
2 · · ·Sjp

p ,

for some aj1j2...jp ∈ K (the sum being extended over a finite number of indices
0 ≤ j1 ≤ n, 0 ≤ j2 ≤ n, . . . , 0 ≤ jp ≤ n). Denote this x by x = x12...p and
define, similarly, xi1i2...ip to be

∑
aj1j2...jp

(
S1
(
xi1 , xi2 , . . . , xip

))j1 (S2
(
xi1 , xi2 , . . . , xip

))j2 · · ·

· · ·
(
Sp
(
xi1 , xi2 , . . . , xip

))jp

with the same coefficients as in x, for all 1 ≤ i1 < i2 < · · · < ip ≤ n.
Now observe that the polynomial

f =
∏

1≤i1<i2<···<ip≤n

(X − xi1i2...ip)

has degree

(
n

p

)
, has coefficients in K (due to the fundamental theorem of

symmetric polynomials), and has x = x12...p as a root.
Thus, any element of the algebraic extension K ⊆ K(S1, S2, . . . , Sp) has

degree over K at most

(
n

p

)
. This means that the degree of this extension is

at most

(
n

p

)
, too, finishing the proof. �
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Remark. It seems that the condition about x1, x2, . . . , xn to be distinct
is unnecessary.

306. Let x1, x2, . . . , xn, y1, y2, . . ., yn be positive real numbers such that
x1 + x2 + · · · + xn = 1, and denote by A the set of pairs (i, j) such that
y1 + · · ·+ yj ≤ x1 + · · ·+ xi. Prove that one has

∑

(i,j)∈A

xi+1yj
1 + (x1 + · · ·+ xi+1)(y1 + · · ·+ yj)

≤ π2

24
.

Prove that the constant
π2

24
is the best satisfying the property.

Proposed by Radu Gologan, Simion Stoilow Institute of Mathematics

of the Romanian Academy, Bucharest, Romania.

Solution by the author. In the Cartesian plane consider the triangle T
with vertices O(0, 0), A(1, 0), B(1, 1). For (i, j) ∈ A put ai = x1 + · · · + xi,
bj = y1+· · ·+yj , and denote by Rij the rectangle with vertices of coordinates

(ai, bj−1), (ai, bj), (ai+1, bj−1), (ai+1, bj).

It is clear that
⋃

A

Rij is contained in T and the rectangles have disjoint

interiors.

Then the lower Darboux sum for f(x, y) =
1

1 + xy
on T is less than

∑

Rij

min
Rij

f(x, y)xi+1yj ≥
∑

(i,j)∈A

xi+1yj
1 + (x1 + · · ·+ xi+1)(y1 + · · ·+ yj)

by the fact that f is decreasing in each variable.
In conclusion, the last sum is less than the double integral

c =

∫ ∫

T

1

1 + xy
dxdy.

By Fubini calculation c =

1∫

0

ln(1 + x2)

x
dx, so the existence part of the

result is proven. To prove that c =
π2

24
, use the power series for ln(1+ t), and

the uniform convergence by the Abel theorem, on [0, 1]. Thus

1∫

0

ln(1 + x2)

x
dx =

1∫

0

∞∑

n=1

(−1)n+1xndx =
1

2

∞∑

n=1

(−1)n+1 1

n2
=
π2

24
,

concluding the proof.
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To prove the fact that the found constant is the best, it suffices to

consider in the inequality, for every n, the numbers xi =
1

n
= yj , and remark

that the sum in the inequality is a Riemannian sum for the double integral,

so for n going to infinity the sum tends to
π2

24
. �

307. Let f : R → R be twice differentiable with f ′′ continuous and
lim

x→±∞
f(x) = ∞ such that f(x) > f ′′(x) for all x ∈ R. Show that f(x) > 0

for any real number x.

Proposed by Beniamin Bogoşel, student West University of Timişoara,

Timişoara, Romania.

Solution by Richard Stevens, Columbus State University, GA, USA.
This solution follows also in large lines the solution of the author. Suppose
that f(a) ≤ 0 for some real number a. From the given conditions we see that
there is an interval containing a for which f has a minimum value that does
not occur at either end point of the interval. Denoting this minimum point as

(b, f(b)), it follows that f(b) ≤ 0, f ′(b) = 0 and f ′′(b) = lim
x→b

f ′(x)

x− b
< 0. Thus,

for some ε > 0, f ′(x) < 0 for b < x < b+ ε and f ′(x) > 0 for b− ε < x < b.
This indicates that (b, f(b)) is a relative maximum point and that f is not
constant on an interval containing b. Therefore, f(x) > 0 for all x. �

308. Let Mn(Q) be the ring of square matrices of size n and
X ∈Mn(Q). Define the adjugate (classical adjoint) of X, denoted adj(X), as
follows. The (i, j)-minor Mij of X is the determinant of the (n− 1)× (n− 1)
matrix obtained by deleting row i and column j of X, and the (i, j) – cofactor
of X is Cij = (−1)i+jMij . The adjugate of X is the transpose of the ‘cofactor
matrix’ Cij of X. Consider A,B ∈Mn(Q) such that

(adj(A))3 − (adj(B))3 = 2((adj(A))− (adj(B))) 6= On.

Show that

rank(AB) ∈ {rank(A), rank(B)}.
Proposed by Flavian Georgescu, student University of Bucharest,

Bucharest, Romania.

Solution by the author. We have to prove that either A or B is invertible.
We shall argue by contradiction, so assume neither is invertible.

Firstly let us note that for non-invertible matrix Y ∈ Mn(Q), we
have rank(adj(Y )) ∈ {0, 1}. This is true since if rank(Y ) ≤ n − 2, then
adj(Y ) = On, otherwise if rank(Y ) = n − 1, using Sylvester ’s inequality we
have

rank(Y · adj(Y )) + n ≥ rank(Y ) + rank(adj(Y )),

and since Y · adj(Y ) = On, it follows that rank(adj(Y )) ≤ 1. From above we
get for A and B that rank(adj(A)), rank(adj(B)) ∈ {0, 1}, so we can deduce
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that
(adj(A))2 = tr(adj(A)) · adj(A),

respectively
(adj(B))2 = tr(adj(B)) · adj(B).

For more ease, let us denote α = tr(adj(A)) and β = tr(adj(A)).
We can rewrite our hyphotesis as

α2 · adj(A)− β2 · adj(B) = 2(adj(A)− adj(B)),

and passing to traces we get α3 − β3 = 2(α− β), so

(α− β)(α2 + β2 + α · β − 2) = 0.

If α = β, then (α2−2)(adj(A)−adj(B)) = 0, and since adj(A) 6= adj(B),
it would lead to α2−2 = 0, so

√
2 ∈ Q, a contradiction. If α2+β2+α ·β = 2,

we can rewrite it as (α + 2β)2 + 3α2 = 8. We can reduce to the following
equation in integers, a2 + 3b2 = 8c2. This implies 3 | a2 + c2 whence, since
−1 is not a quadratic residue modulo 3, it follow that 3|a and 3|c, thus
3|b. Next we proceed by infinite descent, to obtain that the only solution is
a = b = c = 0, a contradiction.

Thus our assumption is false, so one of the matricesA orB is invertible.�

Thanks are due to Vlad Matei for his outstanding work in editing the
final form of the solutions.
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Moldova, membri sau nemembri ai S.S.M.R.
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Candidaţii vor fi admişi ı̂n funcţie de data depunerii banilor şi ı̂n
limita locurilor disponibile.
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