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Abstract

We explore the axioms of incidence, order and congruence in the context of neu-
tral (or, as it is called sometimes, absolute) geometry, following Hilbert’s axiomatic
system. We present the material in a self-contained form, emphasizing on pure geo-
metric concepts and ideas. We carefully investigate the importance and the minima-
lity of each group of axioms which lead to the construction of neutral geometry. This
paper approaches the foundations of geometry from an educational viewpoint and
is intended to meet the interest of readers who would like to explore the axiomatic
method and in particular Hilbert’s axiomatic system.
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1. Introduction

Recently, Springer-Verlag published David Hilbert’s original notes on Foun-
dations of Geometry [19]. The volume invites the reader to revisit and reflect on
many interesting themes that were in the center of attention of mathematical world
at the end of the XIX-th century. Some of these ideas are valuable for their poten-
tial for undergraduate research in the current curriculum in many North American
Universities. The present article is an exploration that invites the reader to revise
from an educational viewpoint the original David Hilbert’s ideas.

Hilbert’s axiomatic system is already incorporated in a well-known text writ-
ten by M. J. Greenberg [15]. However, Greenberg presents only three incidence
axioms (one of the versions of Hilbert’s system has eight). For educational pur-
poses, we would like to understand why these axioms are important. Furthermore,
by discussing precisely these axioms, we face a more important question: what is
actually the axiomatic method? Why is it important? Why is it ,,important to sepa-
rate the purely geometric ideas from the numerical ideas, as Greenberg writes (see
[15], p. xii) ?

We start our discussion by a historical presentation. Since first stated,
Hilbert’s axiomatic system was subject to many comments, critical views or educa-
tional developments. While Hélder and Sommer have accepted that Hilbert’s 1899



axiomatic system consists of independent axioms (no one of the axioms is logically
deducible from the remaining axioms), Schur claimed that three of the axioms are
consequences of eight other axioms [27]. Schur’s critical standpoint has been proved
as incorrect by E. H. Moore [27], while some other redundancies have been men-
tioned in the same reference. Since the original discussion of the 1899 version of his
axiomatic system, Hilbert updated twice his axiomatic system [19]. In 1904, Veblen
writes that he regards his own research [50] as a continuation of the work of Pasch
and Peano, rather than the one of Hilbert and Pieri. A few years later, R. L. Moore
[28] proved that several of Veblen’s axioms depend on the others. Three decades
later, Barbilian (who took classes with Hilbert) comments in his notes that Hilbert
does not tell us how he obtained his axioms, implying that the original axiomatic
system was a long trial and error evolution.

Hilbert’s viewpoint on foundations is not the only one available for educational
purposes. One can present the axiomatic method by using the ruler-and-protractor
postulates that are currently used in high school texts. There is also an excellent
recent college textbook studying this viewpoint [51].

Birkhoff’s influential article [2] starts by reminding several other attempts to
present the axiomatic method in its simpler and most accessible form. Birkhoff’s
viewpoint has been further simplified by MacLane in 1959 [23] to better serve the
needs of high school curriculum. However, all these viewpoints on Foundations of Ge-
ometry represent semi-formalized axiomatic systems. They incorporate the number
system in the foundations of geometry, when this is not mathematically necessary. A
motivated undergraduate student may want to know also more about Hilbert’s ori-
ginal ideas and program. Actually, if we wish that our students experience a higher
degree of generality and abstract content, then shouldn’t we discuss the topic in its
most general framework, that is pursuing Hilbert’s terms in their utmost generality?
Shouldn’t we look for a version of Hilbert’s axiomatic system with axioms stated in
their ,weakest” form? Here there is a wide potential for undergraduate research and
further explorations. This is the idea that motivates the present study.

While preparing our work, we have revised many seminal contributions and
viewpoints (see e.g. [2, 3, 4, 6, 13, 14, 20, 21, 23, 24, 26, 30, 33, 34, 35, 54]) and we
recommend them to the interested reader. However, the present material aims to be
self-contained and no other reading is assumed to be necessary.

The North-American reader is familiar with Hilbert’s axiomatic system mainly
through Townsend’s classical translation [18]. That’s why we have constantly re-
ferred throughout the text to this reference. In our approach, the axioms of order
are different than Hilbert’s original group of axioms of order, and we follow along the
lines of the presentation suggested by Adler’s notes to Hilbert’s viewpoint from the
summer of 1902 (see Michael Hallett interesting presentation in [19], pp. 532-539
and Hilbert’s notes [19], pp. 543-552). The axioms of equality are written in their
weakest form and symmetry and transitivity are proved as consequences. More
precisely, our exploration shows that some of Hilbert’s axioms from 1899 can be
weakened. Part of the original 1899 axiom I is our Theorem 5, while Hilbert’s 1899
axiom II3 is Theorem 8 below. Also, Hilbert’s axiom I14 is obtained from Moore’s
theorems from section 3.2. The first axiom of congruence in [18] is proved in Theo-
rem 22, by using weakened forms of the axioms of equality Eq; — E5. Furthermore,



the weakened form of the axioms of equality E; — E5 yield the SSS congruence case
in Theorem 30, which implies that the congruence of triangles and congruence of
angles are relations of equivalence. These facts are obtained in the conclusion of the
present work, in Corollaries 2 and 3.

The key idea of the axiomatic method is that any mathematical theory is built
from a set of primary objects, which do not require definitions, together with a set
of axioms. The theory is built as a collection of mathematically rigorous statements
deduced from the axioms and using the axioms. The collection of primary objects
of the geometry are the following, inherited from set theory. The objects of the first
collection are called points, and they are denoted by capital letters A, B,C, ... The
second collection contains the lines, denoted by [,1’,... The third collection contains
the planes, denoted by Greek letters «, 3,7, ... Finally, the last collection contains
only one element called the space, denoted by S.

For reasons of space, we limit our exploration to the first three groups of
axioms, covering Incidence, Order and Congruence. The properties that can be
proved in this axiomatic framework generate the so-called Hilbert’s neutral plane
without continuity, since no Continuity Axiom is assumed. With this preparation,
we are ready to study this viewpoint and see how this geometric space and its objects
could be presented today.

2. Exploring Axioms of Incidence

2.1. Axioms of incidence

The first two axioms establish the existence and uniqueness of a line that is
incident to two given distinct points.

Axiom I;. For any two distinct points A and B there exists a line | which
is incident with both A and B, i.e. A€l and B € 1.

Axiom I,. For any two distinct points A and B there is at most one line [
which is incident with both A and B, i.e. A€l and B € 1.

Put together, these axioms lead obviously to the following.

Proposition 1. For any two distinct points A and B there is an unique line
l such that A€l and B €.

The unique line [ of the previous theorem is often denoted by AB, indicating
that it is the line that passes through the points A and B.

Axiom I3. There exist at least two distinct points on any line. Moreover,
there exist at least three distinct points which are not on the same line.

In view of the axiom I3, it seems useful to be able to distinguish points which
are on a line from points which do not belong to the same line, therefore we introduce
the following notion.

Definition 1. Any number of points are called collinear if there is a line
which is incident to all of them. Otherwise, they are called non-collinear.

For example, axiom I; asserts that every two distinct points are collinear,
and axiom I3 guarantees the existence of at least three non-collinear points in any
geometry. The next two axioms establish the relationship between points and planes.

Axiom 14. For any three arbitrary non-collinear distinct points A, B and C,
there exists a plane « which contains A, B and C.

In general, such a plane is denoted by o = (ABC). Remark that, in any
geometry, axioms I3 and I guarantee the existence of at least three non-collinear



points, therefore the existence of at least one plane that contains them. Similar to
axiom I in the context of points and lines, we introduce the following axiom, which
guarantees the uniqueness of the plane which contains three given non-collinear
points.

Axiom I5. For any three non-collinear points A, B and C, there exists at
most one plane « which contains A, B and C.

In a similar fashion, one can easily prove the following.

Proposition 2. For any three non-collinear points A, B and C there is an
unique plane o which contains A, B and C.

The following axiom establishes the relationship among points on a given line
and a plane containing that line. This axiom plays a crucial role once we construct
geometries with more number of points and lines.

Axiom Ig. If two points A and B, which determine the line [, lie in the plane
«, then every point of the line [ lies in the plane a.

In this case, we write | C « (regarded as a subset of points). The following
axiom states that the minimum number of points in an intersection of two planes is
two.

Axiom I;. If two planes o and 8 have a common point A, then they have
another common point B distinct from A.

An immediate consequence of axioms I; and Ig is that if the planes o and
contain the two distinct points A and B, then they contain the whole line [ = AB,
and we write « N 5 = {l}, again as an equality of sets of points.

The last axiom of incidence states the minimum number of points in the space
of any geometry.

Axiom Ig. There exist at least four points which do not belong to the same
plane.

In the view of this last axiom Ig, we give the following.

Definition 3. Any number of points are called coplanar if there is a plane
which passes through all of them. Otherwise, they are called non-coplanar.

Example 1. Azioms 1;-Ig give rise to a simple model of a space created only
with 4 points, 6 lines and 4 planes.

The model described above can be written as follows. The distinct points are
A, B, C, D, and the six lines are given by the following sets of points:
lap = {A, B}, lac = {A,C}, lpc = {B,C}, lpp = {B,D}, lcp = {C,D}, and
lap = {A,D}. The four planes are (ABC) = {A,B,C}, (ABD) = {A, B, D},
(ACD) ={A,C, D}, (BCD) = {B,C, D}, and the space is (ABCD).

2.2. First theorems

We study below some immediate consequences of the group of eight axioms
of incidence I;-Ig. Notice that the results we prove below make sense even when
applied to the simple model described above.

Theorem 1. Two distinct lines have at most one common point.

Proof. Let [y, I3 two distinct lines. We distinguish the following two cases.

If iy N> = 0, then they have no point in common, therefore the conclusion of
the theorem is true.

If iy Ny # 0, then let A € Iy Nl a point in their intersection. Let us assume,
by contradiction, that there is another point B € [y Ny, B # A. In particular,



A, B € |y, therefore [y = AB (axiom I;). Similarly, A, B € Iy, therefore o = AB.
Proposition 1 says then that AB = [; = I3, in contradiction with the hypothesis that
ly # ls. Therefore, our assumption on the existence of a different point B € [ Ny
is false. In conclusion, A is the only common point of the two lines /; and I>. B
The previous theorem motivates the following
Definition 3. Two distinct lines that intersect in exactly one point are called
secant lines.

Figure 1: Two secant lines determine an unique plane

Theorem 2. Two secant lines determine an unique plane.

Proof. Let l; and l; be two secant lines. Theorem 1 asserts that there is
an unique point O in their intersection, i.e. O € [; Nly. Then there exists a point
A+# 0O, A €ly (axiom I3), and similarly, a point B # O, B € ls. Moreover A # B,
via theorem 1.

But O €1y and A € Iy, so OA = [; (proposition 1). An analogous reasoning
gives OB = ly. Now, applying proposition 2 for the non-collinear distinct points
0O, A and B, we deduce the existence and the uniqueness of the plane o = (OAB).
Moreover, the plane « contains the lines OA =1; and OB =[5 (axiom Is). B

Theorem 3. A linel and a point O ¢ | determine an unique plane.

Figure 2: A plane determined by a line [ and an exterior point O

Proof. Let O be a point and [ a line such that O ¢ I. Then there exist
two points A # B, such that A, B € | (axiom I3), and via proposition 1, we have
AB =1. But O ¢ [, so O, A and B are distinct non-collinear points, and proposition
2 asserts that there is an unique plane a« = (OAB), which contains O and [ = AB
(axiom I). Therefore [ and O uniquely determine the plane «. B

Theorem 4. Two distinct planes either they have no common point, or they
have exactly one line in common.

Proof. Let us assume that two planes o and § have a non-empty intersection,
so they have at least a point in common, say A. Then axiom I; affirms that they
must have another common point B, and proposition 1 asserts that the two distinct
points A and B determine an unique line [ = AB. Via axiom Ig, every point on the
line [ is in both planes, so [ C a N .

Now, if we assume, by contradiction, that there is another point C' € a N g,
distinct from both A and B, and C ¢ [, then axiom I5 would confirm that the two
planes o and 8 would coincide, in contradiction with the hypothesis. B

We are ready to prove Theorem 5. This fact was in Hilbert’s 1899 version of
his axiomatic system part of his original axiom I (see [18], p.5). Thus, we point
out that this part of the 1899 axiomatic system can be relaxed as one can see here.

Theorem 5. Every plane contains at least three distinct points.

Figure 3: A plane contains at least three points: A, D, F



Figure 4: Spatial Desargues’ theorem

Proof. Let o be our plane. Since o # (), then it contains at least one point
A. Moreover, there exists a different point B ¢ « (axiom Ig), and so they determine
an unique line | = AB (proposition 1).

Axiom Iy asserts that there exists a different point C' ¢ [. From proposition
2 the points A, B, C determine an unique plane, say 8 = (ABC). Then A € 8N a,
so there exists another point D € SN, D # A (axiom I7). In particular, D € a,
and = (ABD).

We repeat the reasoning above for the plane g: there is a point E ¢ § (axiom
Is), so the points A, B, E determine a plane ~y (proposition 1). Then A € yNa, so
there exists another point F' € yNa, F # A (axiom I;). In particular, F' € «, and
v = (ABF).

Notice that D # F, otherwise, § = (ABD) = (ABF) = ~, which is a
contradiction with the fact that £ € v but E ¢ 8. In conclusion, we obtained three
distinct points A, D, F' contained in the plane . B

2.3. Desargues theorem

The following theorem is attributed to Desargues (see e.g. [11], pp. 70-72).
What is really interesting to point out is that all we need to prove it are the Axioms
of Incidence.

Theorem 6. [Desargues| Consider two triples of noncollinear points in space
A, B, C and A’, B', C’, dll siz of them distinct two by two. Suppose that the
lines AA’, BB’ and CC’ have a common point Q and that the intersection points
{M}=ABNA'B', {N} =BCNB'C' and {P} = CANC'A’ exist. Then the points
M, N, P are collinear.

Proof. Let a be the plane determined by the points A, B and C (axiom 1),
and let § be the plane determined by A’, B’ and C’ (axiom 1,).

Because A and B are points in the plane « then the line AB is included in «,
i.e. AB C « (axiom Ig). Analogously, A’B’ C 5. But if ABN A’B’ = {M}, then it
follows that M € a N B. Similarly, N € an g and P € a N (. But the intersection
of the two planes a and 3 is a line (axiom I7), therefore, M, N and P are collinear
points. W

3. Axioms of order
The axioms of order deal with the undefined relation of betweenness, i.e. of a
point lying between two other points.

3.1. Introducing the axioms of order

The axioms of order are formulated as follows.

Axiom O;. If a point B is between A and C, then A, B, C are three distinct
collinear points on a line l, and B is between C' and A.

Note here that the usual Euclidean picture of a point being “to the left” or
“to the right” of other points is misleading (see figure 5); the line [ has no prede-
fined “orientation”. The only correct concept of order among points is defined to be
“between”.



Figure 5: The point B is between A and C'

Figure 6: There is a point M is between A and B

Axiom Os. For every pair of distinct points A and B, there is at least
another distinct point C such that B is between A and C.

An immediate consequence of axiom Oy, combined with axiom I3, is that a
line contains at least three points. The axiom can be applied again for the pair
{4, C}, so there exists another point D such that C is between A and D, etc.

Axiom Ojs. Given three arbitrary points on a line, at most one of them is
between the other two.

Notice that the axiom Qs does not guarantee the existence of a point B
between two given ones A and C. This will be proven below in theorem 7. Ne-
vertheless, if we assume that there exists B between A and C, then the axiom Oj
guarantees that A cannot be between B and C, and C cannot be between A and B.
Theorem 8 will clarify the situation of three given points on a line.

Axiom O, (Pasch). Let A, B, C be three non-collinear points, and l a line
situated in the plane (ABC) which does not pass through any of the points A, B,
C. If the line | contains a point which is between A and B, then the line | contains
either a point between A and C or a point between B and C.

We denote by ABC when B is on the line AC and B is between A and C,
and we will refer to it as the order ABC. Note that by axiom O,, the order ABC
is the same as the order C BA.

An immediate consequence of the axioms of order is the following

Theorem 7. Given two points A and B on a line [, there is a point M € 1
such that we have the order AM B.

Proof. There exists a point C not on the line AB (axiom I3). Then there
exists a point D (see figure 6) such that we have the order ACD (axiom Os).
Similarly, there exists the point F with respect to the order DBE (axiom Oy).
Then we apply axiom Oy for the points C, D, E and the line AB, so there exists a
point M on the line AB such that we have order AMB. B

The previous theorem suggest the following

Definition 4. The set of points M on the line AB with the property that M
is between A and B is called a segment, and it is denoted by [AB]. Formally we can
write

[AB] = {M € AB|AMB} U {A, B}

The interior of the segment [AB] is defined to be the set [AB] — {A, B}.

Note that the segment [AB], seen as a set of points, is equal to the segment
[BA]. Moreover, the order AM B is equivalent to M € [AB]—{A, B}, so the theorem
7 can be reformulated as follows: the interior of every segment is non-empty. We
have also [AA] = {A}. Moreover, we can define now one of the most important
object of any geometry: the triangle.



Definition 5. A configuration of three distinct non-collinear points A, B, C
is called a triangle, and it is denoted by AABC. Moreover, the points A, B, C are
called the vertices of the triangle, and the segments determined by each pair of two
vertices are called the sides of the triangle.

The next theorem guarantees the existence and uniqueness of ordering three
collinear points. This theorem is important for another reason. In Hilbert’s 1899
axiomatic system (see [18], p.6) this property was axiom II3. By proving it, the
present, exploration shows how the original axiomatic standpoint can be weakened.

Theorem 8. Let A, B, C three points on a line . Then one and only one
of the orders ABC, ACB or BAC occurs.

Proof. We assume that we have neither the order AC'B, nor the order BAC,
and we prove that we must have the order ABC'. In our Euclidean intuition, we will
prove that if B is not “to the left” of A and not “to the right” of C, then it must be
between A and C.

Figure 7: Uniqueness of order on a line

There exists a point D ¢ AC (axiom Is). Then there exists a point F € DB
with the order EDB (axiom Os). Looking at the triangle ABEC and the secant line
AD, then there is a point F' at the intersection of AD and EC, such that we have the
order EFC (axiom Oy). In the same way, there exists the point {G} = CD N AE,
such that we have the order AGE (see figure 7).

The line CG is a secant line for the triangle AAEF, as we have the order
ADF. Moreover, considering the triangle AAFC and the secant line DE, it follows
the order ABC. R

The following theorems establish incidence relations between a line and a
triangle. Historically they are attributed to Moritz Pasch, whose influential works
(see for example [31, 32]) have been one century ago in the center of attention of
many authors interested in foundations of geometry.

Theorem 9. If a line | does not intersect two sides of a triangle AABC,
then it cannot intersect the third one, either.

Proof. Without loss of generality, we can assume [ does not intersect nei-
ther AC nor BC. By contradiction, let us assume [ intersects AB, so [ contains
a point between A and B. Then the axiom O, affirms that [ must contain either
a point between A and C, or a point between B and C, in contradiction with the
hypothesis. B

Theorem 10. If a line | intersects two sides of a triangle AABC, then it
cannot intersect the third one.

Proof. Let us assume, by contradiction, that the line ! intersects all sides
BC, AC, and AB of the triangle AABC in respectively D, E, and F. We can
assume the order FF'D on the line [ (see figure 8). Let us consider the triangle
ACDEFE and the secant line AB, which intersects DFE in F.

It follows that AB intersects either DC or EC (axiom Qy). In either case, it
follows that AB intersects either AC' or BC, respectively, in two points, which means




Figure 8: By contradiction, [ intersects all sides of AABC

that either AB = BC or AB = AC (axiom I5), contradiction with the assumption
that AABC is a triangle. B

3.2. Quadruples of collinear points

The most important result in this section is Theorem 15. Its proof relies on
a sequence of theorems generally attributed to E. H. Moore [27]. The role of these
theorems is to complete the discussion of order properties in a context that does not
include the real numbers.

Let us consider A, B, C, D four collinear points on a line [.

Theorem 11. [Moore] If A, B, C, D are four points on a line |, and we
have the orders ABC and BCD, then it follows the orders ACD and ABD.

Figure 9: Moore’s first theorem

Proof. If we have the orders ABC and BCD, then A,B,C and D are
collinear points. Let [ be the line containing them. From axiom I3 it follows that
there exists a point P ¢ [. Then there is a point @ such that we have the order
BPQ (axiom Os).

From proposition 1 it follows that the lines CQ and DP are distinct. From
the order BC'D, we look now at the triangle ABPD and the secant line C'Q. Then
there exists the point {R} = DPNCQ (axiom Oy), with the order DRP. Consider
now the triangle ABC(Q and the secant line AP. Axiom O, asserts that there is a
point {S} = AP N CQ, with the order QSC.

Let us look now at the triangle AASC and the secant line BQ) (here we use
the order ABC), thus there exists a point {P} = AS N BQ, with the order APS
(axiom Oy).

Considering now the triangle ADP with the secant line C'Q), we obtain the
order AC'D (axiom Oy).

Therefore, from the orders ABC and BC D we obtained the order ACD. Now
let us replace A by D and B by C in the proof above. The order ABC becomes
DCB, which means we have the order BC'D. Moreover, the order BC'D becomes
CBA, which means we have the order ABC. That means that from the previous
orders ABC and BCD we also obtain the desired order ABD. B

The following theorem has a similar proof.

Theorem 12. [Moore| If A, B, C, D are four points on a line |, and we
have the orders ACD and ABC, then it follows the orders BCD and ABD.

The last theorem of Moore about quadruples of points on a line is the follow-

ing.

Theorem 13. [Moore| Let A, B, C, D be four points on a line l. Then the
orders ACD and BCD exclude the order AC'B.

Proof. There exist the points P ¢ [ (axiom I3) and @, such that we have the
order DPQ (axiom Os). From axiom Oy for the triangle AADP with the secant
line QC we deduce the existence of a point R with the order ARP.

Figure 10: Moore’s third theorem



Similarly, for the triangle ABPD with the secant line QC, it follows the
existence of a point S with the order BSP. Consider now the triangle AABP with
the secant line C'Q. It follows that C' ¢ [AB]. Therefore, from the order BCD, it
follows the order ABC, thus we cannot have the order ACB. R

Immediate consequences of Moore’s theorems are the following results about
the interior of segments.

Theorem 14. There are a (countable) infinite number of points between two
distinct points on a line.

Proof. Let A,B € l. Theorem 7 says that there is a point C € [AB] such
that we have the order AC'B. Similarly, there exist a point D € [C'B]. Therefore we
have the orders ACB and CBD, and theorem 12 assures that D € [AB]. Obviously,
we can continue this argument indefinitely. B

On the same lines, the following theorem establishes the relationship between
the interiors of two segments, one of which is included in the second one.

Theorem 15. If the points C' and D are between A and B, and a point M
is between C and D, then M is between A and B.

Proof. The hypothesis gives us the orders ACB, ADB, and CMD. Let us
assume the order AC'D. Note here that the order CAD cannot occur (theorem 13).

From the orders ACD and CMD it follows the order AMD (theorem 12),
thus M € [AD]. Using the same argument, from the orders AMD and ADB it
follows the order AM B, so M € [AB]. &

3.3. Half-lines

In what follows, we introduce the notion of half-lines . Let O be a fixed point
on a line [ and let A, B € | be two points such that we have the order OAB. Then
we call A and B to be on the same side of the point O. This defines a binary relation
on the set of points of [.

Theorem 16. The binary relation defined above is an equivalence relation
on the set of points of a line [.

Proof. Reflexivity is obviously true, as for A = B, we have clearly the order
OAA. The symmetry follows from the fact that the order OAB is the same as the
order BAO (axiom Oy). For the transitivity, we apply Moore’s theorem 12: if we
have OAB and OBC, then it follows the order OAC. R

In this context, we can define a half-line as follows.

Definition 6. The equivalence class of a point on a line | with respect to a
fized point O € 1 is called the half-line with vertex (origin) O.

Remark that the definition of a half-line is not necessarily bounded to Moore’s
theorems. An equivalent formulation would be as follows: given a pair of points A
and B, the half-line starting at A and pointing in the direction of B consists of all
points P so that we have either the order ABP, or the order APB. A half-line AB
is often called a ray emanated from A towards B.

Theorem 17. Let O and A be two points on a line . The set of points A’ € 1
such that we have the order A’OA forms a half-line with origin O.

Proof. Let A’ be an arbitrary point such that A’OA. Let B be a represen-
tative of the equivalence class defined by A with respect to O, i.e. A and B are on
the same side of O. Thus we have the order OAB. Let B’ € [ such that we have the
order B'OB. From the orders BAO and B’OB it follows the order AOB’. But the

10



orders A’OA and B'OA exclude the order A’OB’ (Moore’s theorem 13). Therefore
the points A’ and B’ are on the same side of O, which proves the conclusion of the
theorem. W

The theorem above affirms that a point O on a line [ divides the line in two
half-lines. For any point A # O, we denote one half-line by (OA, and the other
half-line by (OA’, also called the complementary half-line of (OA.

Figure 11: Two complementary half-lines

Remark 1. The set of points of a half-line is a total ordered set. Indeed, for
two points A and B on a half-line, we have either A coincides with B, of we have
one of the orders OAB or OBA (theorem 8). If we have the order OAB, we say A
precedes B. Therefore, in view of this total ordering, for any two distinct points A
and B on a half-line, either A precedes B or B precedes A.

In view of this remark, we can arrange any finite set of points on a line [ in the
order of their precedence. Moreover, if we denote the ordered points by Ay, 4o, ...,
then for any ¢ < j < k we have the order A;A;Aj. This proves the following:

Theorem 18. There is an order preserving, one-to-one correspondence be-
tween any set of n points on a line | and the set of natural numbers {1,2,... ,n}.

3.4. Half-planes

Similarly as in the case of half-lines, one can introduce the following binary
relation of the set of points in a plane.

Definition 7. Ifl is a line in a plane m and A, B are two points in ™ such
that [AB] N1 = (), then we say that the points A and B are on the same side of the
plane © with respect to the line . This defines a binary relation on the set of points
of the plane .

As before, we prove the following;:

Theorem 19. The binary relation defined above is an equivalence relation.

Proof. Reflexivity and symmetry are obviously true. We have to prove the
transitivity of this relation. Let A, B and B, C on the same side of the plane 7 with
respect to the line [. If follows that the intersections of | with [AB], respectively
[BC], are empty. From theorem 9 it follows that [ N [AC] = 0, so the points A, C
are on the same side of the plane with respect to the line /. B

In view of the theorem above, we give the following:

Definition 8. Let | be a fized line in a plane © and a point A € w — .
The equivalence class of A with respect to the line | is defined to be the half-plane
determined by A and . The line [ is called the border of this half-plane.

Then we have the following.

Theorem 20. Let [ be a fized line, and let A ¢ I. Then the set of points
A’ with the property that the segment [AA’] intersects the line | forms a half-plane
of border [. This half-plane is called the complementary half-plane of the half-plane
determined by | and A.

Note that every line [ in a plane, divides the plane in two half-planes, both
with border [.

3.5. Angles
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Definition 9. An angle is defined to be a pair of two half-lines h and k with
the same origin O, denoted by < (hk). The point O is called the vertex of the angle,
and the half-lines h and k are called the sides of the angle.

If h = (OA and k = (OB are two half-lines defined by three non-collinear
points O, A and B (O is the vertex of the angle), then we will also denote the angle
< (hk) by <AOB.

Figure 12: An angle Z(hk) = ZAOB

Let us consider an angle < (hk) in a plane . Then there are two distinguished
half-planes: one is determined by the underlying line of the half-line i and the points
of the half-line k, and, similarly, the other one is determined by the underlying line
of the half-line k£ and the points of the half-line h.

Definition 10. We call the interior of the angle < (hk), the intersection of
the two half-planes above. The exterior of the angle < (hk) consists of all the points
in the plane which are neither in the interior, nor on the sides of the angle < (hk).

In a similar fashion, one can define the interior of a triangle as follows.

Definition 11. We call the interior of the triangle AABC, the intersection
of the interiors of its angles.

Remark 2. Let us consider n half-lines with common vertex O and assume
that there exists a line | 2 O which intersects all of them. According to theorem 18,
we can order all the intersection points (A1 A3 As, etc.). This gives us the notion of
a half-line being between two other half-lines, and implicitly an order on the set of
half-lines.

The following theorem is usually known as the crossbar theorem, or, some-
times, as the transversal theorem. In the present approach, the proof relies on axiom
Oy, Pasch’s axiom.

Theorem 21. [Crossbar Theorem]| Let <(hk) be an angle of vertex O. Let
A € h and B € k two points different than O, and T a point in the interior of the
angle < (hk). Then the half-line (OT intersects the segments [AB].

Proof. Denote by H4 the half-plane determined by OB and the point A.
Consider a point A’ on the complementary half-line of (OA, and H 4 the half-plane
determined by OB and the point A’.

Figure 13: The crossbar theorem

We apply Pasch’s axiom Oy for the triangle AAA’B and the half-line (OT,
which intersects AA’ in O. Then (OT should intersect either [AB] or [A’B]. By
contradiction, we assume it intersects [A’B] in a point denoted by L. It follows that

L e Hy. (].)
In the same time, (OT is included in the interior of < (hk). Therefore
L e (OT C Hyu. (2)

The relations (1) and (2) are contradictory. As a final remark, we can observe
that the complementary half-line of (OT, say (OT" is included in the interior of the
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opposite angle of <xAOB, say <A’OB’, therefore it cannot intersect neither [A’B|
nor [AB], because they empty intersection with the interior of <A’OB’. B

4. Axioms of congruence

We introduce below the axioms of congruence and we study their immediate
consequences. The congruence notion we introduce below is actually an equality
notion, but it is called different just to make distinction between equality of real
numbers and equality of geometric objects. The relationship between the set of real
numbers and geometry is addressed later on.

The formulation of these axioms is after A. Rosenthal [40, 41], which has con-
siderably simplified the original Hilbert’s formulation of Axiom FE,, by omitting the
symmetry and transitivity properties of the congruence of angles. These properties
can be actually proved from the axioms below (see Corollary 3).

4.1. Presenting the axioms of congruence

The following axioms introduce the concept of congruence (equality) of seg-
ments and angles. The notion of congruence is written using the special symbol =,
in order to elliminate any confusion between this geometric notion with the equality
notion from set or number theories. We will reserve the equality symbol = for when
we define the values of segments and angles.

Axiom E;. If A and B are two points on a line I, and A’ is a point on a
line ', where I’ is not necessarily distinct from l, then there exists a point B’ onl’
such that [AB] = [A'B’]. For every segment [AB] = [BA].

As we can see from the previous axiom, the congruence [AB] = [A'B’] is
provided by the ability to construct the point B’ on the line I’ with the requested
property.

Axiom E,. If [A'B'] = [AB] and [A”"B"] = [AB], then [A’B’| = [A"B"].

Note that this axiom is not the transitivity property of congruence of seg-
ments. Transitivity will be proved in theorem 22. The next axiom establishes the
additivity of the congruence of segments.

Axiom E;. Let [AB] and [BC] be two segments of a line |, without common
interior points, and let [A'B'] and [B'C’] be two segments without common interior
points on a line ', where l' is not necessarily distinct from 1. If [AB] = [A'B’] and
[BC] = [B'C'], then [AC] = [A'C"].

The next axiom defines the congruence of angles in a plane.

Axiom Ey. Let <(hk) be an angle in a plane 7, and let I be a line in a plane
', where 7' is not necessarily distinct from w. Let h' be a half-line of I, where h’
is not necessarily distinct from h. Then in one of the half-planes determined by I’,
there uniquely exists a half-line k', such that <(hk) = <(h'k’). For every angle,
I (hk) = 4 (hk) (reflezivity), and < (hk) = <% (kh) (symmetry).

As above, the congruence < (hk) = < (h'k’) is provided by the ability to con-
struct the angle < (h'k’) in one of the half-planes of 7'

The next axiom is establishing conditions for congruences of angles of tri-
angles. For an angle of a triangle AABC, say <ABC, we understand the angle
determined by the half-lines (BA and (BC.

Axiom Ej;. Let AABC and AA'B'C’ be two triangles. If [AB] = [A'B’],
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[AC]) = [A'C"], and <BAC = <B'A'C’, then
JABC = g A'B'C" and SACB=<A'C'B'.

The first two congruence axioms give the following result

Theorem 22. The congruence relation for segments is an equivalence rela-
tion.

Proof. We prove first the following statement: if we have two segments
[AB] = [A'B’], then [AB] = [B’A’]. Indeed, we have [B’A'] = [A’B’] (axiom
E;). Therefore [AB] = [A'B’] and [B’A’] = [A'B’], so, using axiom Ej, it follows
[AB] = [B'A’].

Reflexivity now follows from axiom E; ([AB] = [BA]) and, from the statement
above, it follows [AB] = [AB].

Let us prove the symmetry. We have [A’B’] = [A'B’], via the reflexivity
proved above. Moreover, if [AB] = [A’B’] it follows that [A’B’] = [AB], via
axiom Es. It is very important to notice that only from this point on, we have
the right to assert that [AB] = [C'D] is the same as [CD] = [AB].

For transitivity, let us consider [AB] = [A'B’'], and [A'B’'] = [A”B"]. But
the congruence [A’B’] = [A” B"| implies the congruence [A”B"] = [A’B’] (symme-
try). Then, from [AB] = [A’B’] and [A”B"] = [A’B’], it follows the congruence
[AB] = [A”B"] (axiom E,). B

The congruence relation, being an equivalence relation, gives rise to a partition
of the set of all segments in disjoint equivalence classes. This fact allows us to
define all segments in an equivalence class to have the same value. We denote the
value of a segment [AB] by simply AB. Note that the same notation AB is also
used for the line which passed through the points A and B. In general it is clear
from the context if we refer to the line AB or to the value of the segment [AB].
Moreover, the congruence [AB] = [C'D] can be also written as an equality of values,
AB = CD, when there is no danger of confusion between equivalence classes and
their representatives. In what follows, going back and forth between congruence of
segments (or angles) and equality of their values, technically requires one to prove
the independence of chosen representatives in a given equivalence class. For the
simplicity of geometric arguments, we will omit these technical details.

Theorem 23. Let (OA be a half-line with origin O. If C and C' are two
points on (OA such that [OC] = [OC], then the points C and C' coincide.

Proof. Without loss of generality, we can assume the order OCC". Let I be a
point which does not belong to the half line (OA (axiom Is). Then, in the triangles
AOCT and AOC'I, we have: [OC] = [OC'], [OI] = [OI] and <I0C = <I0C".

Figure 14: If OC = OC’, then C = C’

From axiom Ej it follows <OIC = 4OIC’, therefore the half lines (IC and
(IC" coincide as sets (axiom Eg). This implies (IC N (OA = (IC' N (OA, so C and
C' coincides. W

Sometimes we write C' = C’ whenever C' and C’ coincide. Let us notice that
the equal sign which expresses the coincidence is not the same as the usual symbol
= of equality of numbers.
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Note that axiom Ej guarantees the additivity of the values of segments on
same same line. Indeed, if A, B, C and A’, B’, C’ are points on the lines [ and I,
respectively, with orders ABC and A’B'C’, respectively, such that [AB] = [A'B’],
[BC] = [B'C'], then if follows directly from axiom Ej that [AC] = [A'C’]. We
can formally write the following equalities in terms of values of segments: AC =
= AB+ BC and A'C' = A’B’ + B'C".

Theorem 24. The congruence relation for segments preserves the order
relation.

Proof. Consider the points A, B, C on a line [, with the property that B
is an interior point of the segment [AC], i.e. we have the order ABC. Moreover,
let us consider the points A’, B’, C' on another line I, such that [AB] = [A'B’].
[AC] = [A'C"], and B’C’" are on the same half-line of vertex A’.

Figure 15: Congruence of segments preserves the order

If we show that B’ is interior to [A'C’], and [B'C’] = [BC], then it will follow the
order A’B’C", which is the conclusion of our theorem. Indeed, let us assume the
existence of another point C” € I’ with order A’B’C”, such that [B'C"”] = [BC].
But [A’B’] = [AB] and [B'C"] = [BC], so, by additivity, it follows [A'C"] = [AC].
But [A'C’'] = [AC], thus [A'C"] = [A'C’], and then, according to theorem 23, it
follows that C’ = C”. Thus we have the desired order A’B'C’. B

In view of the results above, one can define the difference operation among
segments. Indeed, if [AB] and [AC] are two segments on a line [, such that the have
order ABC, then the difference of the values of [AC] and [AB] is the value of the
segment [BC], respecting the additivity property AB + BC = AC. Therefore we
can write AC — AB = BC.

4.2. Congruence of triangles

Definition 12. Two triangles ANABC and ANA'B'C’ are called congruent,
and we denote by NABC = NA'B'C’, if they have congruent sides and congruent
angles, respectively.

Concretely, AABC = AA’B’C" if the following six congruences are respected:

[AB]=[A'B’], [BC]=[B'C'], [CA=][C'A],

JBAC = <B'A'C', <ABC =4A'B'C', «BCA=4B'C'A.

When there is no danger of confusion, we denote by <A the angle < BAC.

The first result about congruence of triangles is the following.

Theorem 25. If a triangle NABC' has two congruent sides, then it has two
congruent angles, too. In this case, we call the triangle ANABC to be isocelles.

Proof. Without loss of generality, we can assume [AB] = [AC]. Then the
triangles ABAC and ACAB are in the conditions of axiom Fs, thusdABC =
=JACB. 1

The next theorem is the first important congruence case of triangles.

Theorem 26. [SAS] Let AABC and AA'B'C’ be two triangles, such that
[AB] = [A'B'], [AC] = [A'C"], and <BAC = <B’'A'C’". Then AABC = ANA'B'C".
This congruence case is called Side-Angle-Side (SAS).
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Proof. Using axiom E5, we have X ABC = 4 A’B’C’' and <ACB = < A'C'B’.
The only congruence left to show is [BC| = [B’C’]. Consider a point C” on the half-
line (B’C” such that [BC] = [B'C"] (axiom E;). Consider now the triangles AABC
and AA'B'C". From [AB] = [A'B'], [BC] = [B'C"], and 4ABC = 3AB'C", it
follows from axiom Ej5 that «<BAC = <B’A’C"”. From the hypothesis, we have
<BAC = < B'A’C’". Then we have C’ and C” such that the angles <C’"A’B’ and
<C"A’B’ are congruent. Since C’ and C” are in the same half-plane with respect
to the line A’B’, it follows from axiom E, that (A’C’ and (A'C"” coincide, thus
c=c". n

The next theorem establishes the second case of triangle congruence.

Theorem 27. |[ASA| Let AABC and AA'B'C’ be two triangles, such that
[BC|=[B'C"], ¥ABC=<xA'B'C’" and <ACB=<A'C'B’. Then ANABC=AA'B'C".
This congruence case is called Angle-Side-Angle (ASA).

Proof. Let A” € (B'A’ such that [BA] = [B’A”]. Consider the trian-
gles ABAC and AB’A”C’. Axiom Ej guarantees that < BCA = < B'C'A”. Since
A’ and A” are in the same half-plane with respect to B’C’, it follows that (C'A’
and (C'A” coincide. Therefore, A’ = A”. We apply theorem 26 for the triangles
AABC and AA'B'C’, where we now have [AB] = [A'B’], [BC] = [B'C’'] and
JABC =3A'B'C'. 1

Theorem 28. [Additivity of Angles] If (ki) = (R'l'), and (Ik) = (I'k"), where
I and U' are half-lines interior to the angles < (hk) and (h'k’), then (hk) = (W'K').

Proof. Let H and K be two points such that H € h and K € k. Using
theorem 21 from the previous section, it follows that | N [HK| # 0. Let {L} =
=IN[HK]. Now take H' € h’/ and L' €l’ such that [OH] = [0’H’] and [OL]=[0'L],
and take K’ on the half-line complement to (L'H’ such that [L'K'] = [LK].

Figure 16: Additivity of angles

Notice that the congruence AOHL = AO'H'L’ (case SAS) implies [HL] = [H'L]
and SOHL = <O'H'L’'. But the segments [HL], [LK];[H'L'],[L'K’] satisfy the
conditions of axiom Egs, thus the triangles AOHK and AO’H’'K’ are congruent
(case SAS). It follows that <HOK = <H'O'K’, thus using axiom Ey4, it follows
that the half-lines (O’K’ and k' coincide. B

Corollary 1. In the same hypothesis as in Theorem 28, if < (hk) = x(R'k'),
and < (hl) = (W), then s (lk) = < (I'K').

Theorem 29. Consider the triangles NABC and ANA'BC such that A and
A" are in different half-planes with respect to the line BC. If [AB] = [A'B] and
[AC] = [A'C], then triangles AABC and AA'BC have congruent angles, respec-
tively.

Proof. Considering the segments [AA’] and [BC|, we distinguish two cases:
[AA'|N[BC] # 0 or [AA]N[BC] =0 (see Figure 17).

Figure 17: The triangles AABC and AA’BC have congruent angles

In each one of these cases, we apply Theorem 25 for the triangles AABA’,
and ANABA', respectively. The conclusion of the theorem follows then immediately
from Theorems 28 and 1. W
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Now we are in the right context to prove the following side-side-side (SSS)
congruence theorem of triangles. Note that in the proof we do not use neither the
symmetry, nor the transitivity of the equality relation for angles! These properties
are an immediate corrolary to the following theorem.

Theorem 30. [SSS] Let AABC and AA'B'C’ be two triangles, such that
[AB] = [A'B'], [BC] = [B'C’], and [CA] = [C"A']. Then AABC = NA'B'C’. This
congruence case is called Side-Side-Side (SSS).

Proof. By contradiction, we assume <ABC # s A’B’C’. Consider the half-
line (B'D’ such that [B'D’] = [AB] and <D'B'C' = <ABC. But [BC] = [B'C"],

Figure 18: The congruence case SSS

[BA] = [B'D’], and ¥ABC = < D'B'C’, thus AABC = AD'B'C’ (case SAS). It
follows that [AC] = [D'C].

Let us construct a point E’ in the complementary half-plane defined by the
line B’C" and the point A’, such that [B'E’] = [B'D’] and <E'B'C' = <C'B'D'".
It follows that AD'B'C' = AE'B'C’ (case SAS), thus [E'C’] = [D'C'] = [AC] =
= [A’C"]. Similarly, [E'B'] = [B'D'] = [AB] = [A'B/].

Then the triangles AA’B'C’ and AE'B'C" are congruent, according to the-
orem 29. Then 4 A'B'C’' = <E'B’'C’, so in the half-plane determined by B'C’
and A’ we have two distinct half-lines (B’D’ and (B’A’, such that they determine
JA'B'C' = < D'B’'C’, in contradiction with axiom E4. B

Corollary 2. The congruence relation for triangles is an equivalence relation.

Corollary 3. The congruence relation for angles is an equivalence relation.

The fact that we have proved these corollaries shows that the axioms in
Hilbert’s axiomatic system have been weakened, which was the goal of our anal-
ysis. More precisely, we have seen that part of axiom Iy from [18] can be proved
as we did in Theorem 5. We have seen that Hilbert’s 1899 axiom I3 is proved
in Theorem 8. Also, Hilbert’s axiom Il is obtained from Moore’s theorems from
section 5. Hilbert corrected this redundancy in his axiomatic system, by eliminat-
ing this axiom in his 1902 version (see [19], p.544). Another interesting result of
our analysis is that the first axiom of congruence in [18] can be actually proved in
Theorem 22. Furthermore, we have seen that the weakened form of the axioms of
equality E; — Eg are sufficient to prove the SSS congruence case in Theorem 30.

We express our hope that our presentation has met the reader’s expectations
for an exploration of Dawvid Hilbert’s framework and ideas. As M. J. Greenberg
points out in [15], p.xi, Albert Finstein stated that without this new conception of
geometry, as it was raised at the beginning of the XX-th century, he would not have
been able to develop the theory of relativity. Thus, we can say that the overall
impact of Hilbert’s work on the developments from the last century was meaningful
in many areas.
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