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Abstract
Let b:(n) denote the number of ¢-regular partitions of n. In recent years, some
parities for b;(n) have been proved for small ¢. In particular, some infinite families of
congruences modulo 2 for big(n) were established by Cui and Gu. Motivated by their
work, we prove several infinite families of congruences modulo 4 for bis(n).
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1 Introduction

This paper is concerned with congruences modulo 4 for 16-regular partition. Recall that
a partition of n is a non-increasing sequence of positive integers, called parts, whose sum
is n. If t > 2 is an integer, then a partition is called an t-regular partition if there is no
part divisible by ¢. Let b;(n) denote the number of ¢t-regular partitions of n. As usual, set
b:(0) = 1. The generating function of b;(n) is

S b = 2L, (L1)
n=0 fl
where here and throughout this paper,
o0
fo= 1T =a").
n=1

In recent years, a number of congruences for t-regular partitions have been proved.
Merca [13] proved some congruences modulo 4 for by(n). Yao [22] proved some infinite
families of congruences modulo 2 for b3(n). Andrews, Hirschhorn and Sellers [1], Ballantine
and Merca [2], and Xia [15] proved some congruences modulo 3 and powers of 2 for bs(n).
Baruah and Das [3] proved some parity results for b7(n) and baz(n). Cui and Gu [6], Keith
[8], Lin and Wang [11], and Xia and Yao [17, 18, 20] deduced several infinite families of
congruences modulo powers of 2 and 3 for bg(n). Xia [16] proved some congruences modulo
t for bi(n) by employing some theta functions, where ¢t € {13,17,19}. Recently, Keith and
Zanello [9] studied the parity of the coeflicients of certain eta-quotients and investigated
the parity of b;(n) with ¢ < 28. Cui and Gu [5] discovered infinite families of congruences
modulo 2 for some t-regular partition functions, where ¢t € {2,4,5,8,13,16}. In particular,
they proved the following infinite families of congruences modulo 2 for big(n):

., (Bi+5p)pt =5
bie (kaTH- (8i+ p)g ) =0 (mod 2),
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where p is a prime with p = 3 (mod 4), k¥ > 1 and 1 < i < p— 1. For more details on
congruence properties for partition functions, see for example [12, 19, 21].

In this paper, motivated by Cui and Gu’s work, we prove some infinite families of
congruences modulo 4 for b1g(n). The main results of this paper can be stated as follows.

Theorem 1. Forn >0 and a > 0,

5(34 —1

b16 (340‘11 + (8)) = (—l)o‘blg(n) (mod 4), (1.2)
1 da

bis (34a+4n + 89X25> =0 (mod 4), (1.3)
4o

bis (34a+4n + 62“:5) =0 (mod 4). (1.4)

Based on (1.2) and the facts that big(1) = 1, b16(2) = 2, b16(3) = 3 and by(11) = 56,
we can obtain the following corollary:

Corollary 1. Fora >0 and 0 <i <3,

do 1
b16 (3404,” + 5(38)> =1 (HlOd 4),

where ro =11, 1y =1, ro =2 and r3 = 3.
Theorem 2. Let p > 5 be a prime with p = 7,11,13,17,19,23 (mod 24). For k > 0, if
p1n, then

4 2k+2 2k+2 1
b16 <27p2k+1n -+ 5p85> = b16 (Sp%Hn -+ E)(p8)) (mod 4) (15)

Theorem 3. Let p > 5 be a prime with p =5 (mod 6). For k >0, if ptn, then

117 2k+2 5
ekl —" > = big <3p2k+1n +

8

13p2k+2 _ 5

b16 (27p2k+1n + 3

) (mod 4).  (1.6)

Theorem 4. We have
lim #{m|b1s(27m + 5) = b1s(3m) (mod 4), m < n}

n— 00 n
= <
— lim #{m|b1s(27m + 14) = b1s(3m + 1) (mod 4), m < n} 1 (17)
n— 00 n

2 Proof of Theorem 1
Setting ¢ = 16 in (1.1), we get

Z b16(n)q" = % (21)
n=0 1
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Andrews, Hirschhorn and Sellers [1] discovered the following 3-dissection formula for %:

fa_ fefis | f8fsfse o Jo 1836
[T T A T

Substituting (2.2) into (2.1) yields

- n_ Jfa fie fiafis T313 fs6 2f6f18f36>
b _J4 he _ 42
Z 16(n)q fl f4 (f??f:%fs i f3f18 f3

fas [ A S I3 f1aa 2gf24f72f144>
(ff2f%44 TR TR,

_ fisfis [ +q f6f9f36f48f72+2 o fo f18f36 f18 f7
f??f122f3?6f1244 f3f12f18f144 f3f12f144
aSisTfs6f1aa 5 fEfS f30f56 144 6 f6.S18.f34 36 f1a4

+4q + 2¢q
f3 i f2 f3 s fis 2 B fa

B e B s

Picking out those terms in which the power of ¢ is congruent to 2 modulo 3 in (2.3), then
dividing them by ¢? and replacing ¢> by ¢, we obtain

(2.2)

t4q

f2f6f12f16f24 3132 fisfas o fafsfoafas
b
Z 16(3n +2)g frag U pipgpps YA E e

By the binomial theorem, it is easy to prove that for all positive integers m,k and any
prime p,

(mod 4). (2.4)

f}:m = 5,:%1 (mod p™). (2.5)
In view of (2.4) and (2.5),
n_ofs fla | f f
nz%bm 3n + 2)¢" =2 f2 flj +q ;38 +2¢2 - 2; < f3, (mod 4). (2.6)

The following 3-dissection formula for ’;—?2 follows from Berndt’s book [4, Corollary (ii), p.
49]:

3 fefs +q fis

= 2.7
A fahis U 2.7)
Hirschhorn and Sellers [7] proved the following 3-dissection formula for £ f2:
2 3 3 3 416
fi_ f3fs _qf3f18 +q2f3f18 (2.8)

2 e 7 1813
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Substituting (2.7) and (2.8) into (2.6) yields
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- n_ f122(f6f92 f128> fas | o 043 (fg?fé” i 2f§f168)
2 bis(no+ 20" =27 FEC T E ) ATt 2| Tyt — 0T
N fiofts | fas | 2 F315 13
_2f3f18 +2 Jefo +qf3 +2 f8
+2q3f§’f§§f234+2q4f§];168£§4 (mod 4). (2.9)
fé f6 15

Extracting those terms in which the power of ¢ is congruent to 1 modulo 3 in (2.9), then

dividing them by ¢ and replacing ¢> by ¢, we arrive at

S aton -5 =2 8+ G Bt
Ezﬁ : J;f; - % : % + 2qJ;§ ffj (mod 4).  (by (2.5))
Substituting (2.2) and (2.7) into (2.10) yields
(Fe o B van Bl o (2
= I S e

e Pttt o i g Sl

e R o o Mg
rarligrnin op Mllfelnhs od s

(2.10)

It
+¢*=2
JET

(2.11)

Extracting the terms of the form ¢®"*2 in (2.11), then dividing them by ¢ and replacing

q° by q, we get

S n_ o fofefiafi6fos | oS3t | [313 18 o fus
b =
2 bio(2Tn + )0 =27 e B 2R e
f25f224 2fgf8f24f48 m
+ 2q 1 fis + 2¢q 7fl3fff122 (mod 4).

(2.12)

)
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Thanks to (2.5),
fofofizfiofon _ 1511
s fife

f3f3 18 fisfas _ fas
fififefs — fs

(mod 2), (2.13)

(mod 4), (2.14)

fihie i fo fre

fe fsfaafas _ F1f3
P, 3
Combining (2.12)—(2.16) yields

(mod 2). (2.16)

i b16(27n + 23)¢" = qE +2¢q- ﬁ . i‘z . fi‘l + 2q2ﬂ - 3, (mod 4). (2.17)
oy I3 fi fo fi2 o

Substituting (2.7) and (2.8) into (2.17), we obtain

i b16(27n + 23)¢" = q% + qu—g‘* ( fof§ | ﬁg) (f12f128 + q2f“°’26>

P fe \fafis  Tfa ) \fefss L s
+2q3f§fj%f§4+2q4f1j£‘f6 2q4f§gj§4 (mod 4). (2.18)

By (2.5),

f3fisf3s _ Jas (mod 2), (2.19)

fsfse  f3

Fisfsn _ 31565

fefofss — f8
fof5f3uf3s _ F3fisf3s

(mod 2), (2.20)

Fofafh =T (mod 2), (2.21)
fisf3uf3s _ f3 s f3s
Tofia = Jif3 (mod 2). (2.22)
Based on (2.18)-(2.22), we deduce that
> big(81n + 50)g" = 3% (mod 4) (2.23)

n=0
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and for n > 0,
bi6(81n + 23) = by(81n + 77) = 0 (mod 4). (2.24)
Combining (2.1) and (2.23), we see that for n > 0,
b16(81n + 50) = —bi6(n) (mod 4). (2.25)

By (2.25) and mathematical induction, we get (1.2). Replacing n by 81n+ 23 and 81n+ 77
n (1.2), respectively, and using (2.24), we obtain (1.3) and (1.4). This completes the proof
of Theorem 1. 0

3 Proofs of Theorems 24

We first prove Theorem 2. Define

a(n) = b1g(9In + 5) — bis(n). (3.1)
In view of (2.1) and (2.10),
SN I 3
> a(n)g" = 2f2 5 +2¢ g (mod 4). (3.2)

Substituting (2.7) into (3.2), we arrive at

- n_old <f12f128 2f326> f6 <f24f326 4f722)
2 almg" =27 ( FER+ A )+ 2 (e

n=0

=2f3f12 +2qfs - J3s +2q 2 6 13 +2¢ 5 fo 1% (mod 4), (by (2.5))

fr2 f3fis f3f36
which yields
i)a(?m)Q” =2fifs (mod4) (3.3)
and _
> TR o

The following identity is commonly known as Euler’s pentagonal number theorem and is
worth highlighting here:

oo

fl _ Z (_1)nqn(3n+1)/2. (3.5)

n=—oo
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In view of (3.3) and (3.5),

o0 o0 o0

Za(gn)qn =9 Z (_1)mqm(3m+1)/2 Z (_1)kq2k(3k+1) (HlOd 4)7

n=0 m=—oo k=—o00

which yields

a(3n) =2 g (—1)mtk
m(3m—+1)/2+2k(3k+1)=n,
(m,k)ELXTL

=2 Z 1 (mod 4). (3.6)

(6m~+1)24(12k+2)2=24n+5,
(m,k)ELXL

From (3.6), we know if 24n + 5 is not of the form 22 + y2, then a(3n) = 0 (mod 4). Note
that if N is of the form z? + y?, then v,(N) is even since p is a prime with p =3 (mod 4)
and (_71) = —1. Here v,(N) denotes the highest power of p dividing N and (5> denotes
the Legendre symbol. It is easy to check that if p { n, then

5(p2k+2 _ 1)

vp <24 (p%“n + 1 > + 5> =1 (24p2k+1n + 5p2k+2) =2k+1

is odd. Therefore, 24 (p%“n + %) + 5 is not of the form z2? + y? and

5(p2k+2 _ 1)

a (3p2k+1n + 3

) =0 (mod 4), p=3 (mod4). (3.7

The following identity is a classical identity of theta functions due to Gauss:

BN 2
7 > g : (3.8)
1 n=0
In view of (2.5) and (3.3),
Z a(3n)q" = 2fs - f (mod 4). (3.9)

n=0

By (3.5) and (3.8), we can rewrite (3.9) as

z a(3n)qn =9 Z (71)mqm(3m+1) qu(k+1)/2 (mod 4)7
n=0 m=—0o0 k=0

which yields

a(3n) =2 > (—1)™

m(3m+1)+k(k+1)/2=n,
(m,k)ELXN
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=2 Z 1 (mod 4).
2(6m+1)243(2k+1)2=24n+5,
(m,k)EZXN
Therefore, if 24n + 5 is not of the form 222 + 3y?, then a(3n) = 0 (mod 4). Note that if
N is of the form 222 + 3y2, then vp(N) is even since p is a prime with p = 13,17, 19,23

(mod 24) and (_76) = —1. Tt is easy to verify if p { n, then

v 24 2k+1 5(p2k+2 - 1) 5 _ 24 2k+1 5 2k+2\ __ 2k 1
v Pt = | + = v, (24p*" 10 4 5p*?) =2k +

2k+2 1)

is odd. Therefore, 24 (p”““n 45771

51 ) + 5 is not of the form 22 + 3y? and

2k+2 _

5
<3p2k+1 + (p -

1)> =0 (mod4), p=13,17,19,23 (mod 24). (3.10)

5(p2FT2_1)

Replacing n by 3p**+in + (p=17,11,13,17,19,23 (mod 24)) in (3.1) and using
(3.7) and (3.10), we arrive at (1.5). This completes the proof of Theorem 2.

Now, we turn to prove Theorem 3.

It follows from (3.4), (3.5) and (3.8) that

Z (3TL+ 1 =9 Z m m 3m+1)/2zq2k(k+1) (mod 4)
n=0 m=—oo k=0

Thus,

a(3n+1) =2 Z (=)™

m(3m+1)/242k(k+1)=n,
(m,k)ELXN

=2 > 1 (mod 4). (3.11)

(6m+41)243(4k+2)2=24n+13,
(m,k)EZXN

Thus, if 24n + 13 is not of the form x? + 3y?, then a(3n + 1) = 0 (mod 4). Note that if
N is of the form z? + 3y?, then 1v,(NN) is even since p is a prime with p =5 (mod 6) and
(_?3) = —1. It is easy to check that if p { n, then

v (24 (pim + BETE U 43} Z ) oap g 13242 — 9k 4 1
'p p n+ Y + —l/p( D n+ 13p )— +

is odd. Therefore, 24 ( 2ktlp 4 13(”7_1)) + 13 is not of the form x? + 3y? and

2k+2

13 ~5
<3p2k+1 + Xps) =0 (mod4), p=5 (mod6). (3.12)

Replacing n by 3p?*+1n + % in (3.1) and utilizing (3.12), we get (1.6). The proof
of Theorem 3 is complete.
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Recall that an integral power series ) _, a(n)q™ is called lacunary if

L #nlan) =0, n < X}

1.
X —o0 X

To prove Theorem 4, we require the following classical result due to Landau [10]; see
also [14].

Theorem 5. [10, 14] Let r(n) and s(n) be quadratic polynomials. Then

(ni@ qrm)) (i@ qs<n>)

It follows from (3.6), (3.11) and Theorem 5 that

18 lacunary.

#{m|a(3m) =0 (mod 4), 0 <m < n}

lim
n—o0o n
1) = 4 <m<
— lim #{mla(Bm+1)=0 (mod4), 0 <m <n} 1 (3.13)
n— oo n
Theorem 4 follows from (3.1) and (3.13). This completes the proof. 0

4 Concluding remarks

As seen in Introduction, congruences for b;(n) have received a lot of attention in recent
years. In this study, we prove some infinite families of congruences modulo 4 on big(n). A
natural question is to extend the congruences in this paper to modulo 8, 16, etc. However, it
will likely require a different approach since the methods used in this paper run into serious
limitations beyond the modulus of 8. Furthermore, it would be interesting to determine
the arithmetic density of the set of integers such that b;(n) = 0 (mod 2¥) for fixed positive
integers t and k.
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