Bull. Math. Soc. Sci. Math. Roumanie Tome 66 (114), No. 4, 2023, 455–458

On the totally positive grassmannian by GEORGE LUSZTIG

Abstract

We give an alternative proof for the equivalence of two definitions of the totally positive grassmannian.

Key Words: Grassmannian, total positivity, Perron line. **2020 Mathematics Subject Classification**: 20G99.

Let V be an **R**-vector space of dimension $N \geq 2$ with a fixed basis 0.1. e_1, e_2, \ldots, e_N . Let \mathcal{B} be the manifold whose points are the complete flags $F_1 \subset F_2 \subset$ $\ldots \subset F_{N-1}$ in V. Here F_i is a subspace of dimension i of V. In [4] I defined the totally positive part $\mathcal{B}_{>0}$ of \mathcal{B} , a certain open subset of \mathcal{B} homeomorphic to $\mathbf{R}_{>0}^{N(N-1)/2}$. We fix $k \in [1, N-1]$. Let Gr^k be the manifold whose points are the subspaces of V of dimension k. In [5] I defined the totally positive part $Gr^k_{>0}$ of Gr^k as the image of $\mathcal{B}_{>0}$ under the map $\mathcal{B} \to Gr^k$ which takes $F_1 \subset F_2 \subset \ldots \subset F_{N-1}$ to F_k . This is an open subset of Gr^k homeomorphic to $\mathbf{R}_{>0}^{k(N-k)}$. In [5, 3.4] it was shown that $Gr_{>0}^{k}$ can be described in terms of inequalities involving elements in the canonical basis of the irreducible representation of SL(V) corresponding to a multiple $c \overline{\omega}_k$ of the k-th fundamental weight $\overline{\omega}_k$ where c is any integer $\geq N - 1$. (The result in [5, 3.4] applies to any real partial flag manifold.) In a note added in the proof of [5] I stated (quoting Rietsch [7]) that c can be taken to be any number > 1 (including 1); a similar statement was made for any partial flag manifold. However the proof in [7] contained an error, see Geiss, Leclerc, Schröer [1]. (I thank B. Leclerc for providing this reference.) In 2009, Rietsch (unpublished, but mentioned in [2]) has shown that c above can indeed be taken to be 1. Proofs of Rietsch's result appeared in [8] and [3]. But for a general partial flag manifold it is not known to what extent the result in [5, 3.4] can be improved. In this paper we present a method which could possibly yield an improvement of the result of [5, 3.4]. In the case of the Grassmannian this recovers the result of Rietsch, see Theorem 0.5; but one can hope that our method applies also in other cases. This method is based on the observation of [5, §2] that the positive part of a partial flag manifold is a single connected component of an explicit algebraic open subset of that partial flag manifold. For a further study of $Gr_{>0}^k$, see [6]. I thank P. Galashin and L. Williams for comments on an earlier version of this paper.

0.2. Notation. For two integers $a \leq b$ we set $[a,b] = \{z \in \mathbb{Z}; a \leq z \leq b\}$. For a finite set I let |I| be the cardinal of I. For any $I \in [1, N]$ let V_I be the subspace of V with basis $\{e_i; i \in I\}$. For any $I \subset [1, N]$ with |I| = k, we set $e_I = e_{i_1} \wedge e_{i_2} \wedge \ldots \wedge e_{i_k} \in \Lambda^k V$ where I consists of the numbers $i_1 < i_2 < \ldots < i_k$ and $\Lambda^k V$ is the k-th exterior power of V. Let $\Lambda^k V_{>0}$ (resp. $\Lambda^k V_{\geq 0}$) be the set of nonzero vectors in $\Lambda^k V$ whose coordinates with respect to the basis $\{e_I; |I| = k\}$ are all in $\mathbb{R}_{>0}$ (resp. $\mathbb{R}_{\geq 0}$). Let $P\Lambda^k V_{>0}$ (resp. $P\Lambda^k V_{\geq 0}$) be the set of lines in $\Lambda^k V$ which are spanned by vectors in $\Lambda^k V_{>0}$ (resp. $\Lambda^k V_{>0}$). Define a linear

map $A: V \to V$ by $A(e_1) = e_2$, $A(e_i) = e_{i+1} + e_{i-1}$ if 1 < i < N, $A(e_N) = e_{N-1}$. For any $r \in \mathbf{R}_{\geq 0}$ let $g_r = \exp(rA) \in GL(V)$. If r > 0, the matrix of g_r is totally positive.

0.3. As in [5], let $Gr_{\geq 0}^k$ be the closure of $Gr_{\geq 0}^k$ in Gr^k . We define Gr'^k to be the set of all $E \in Gr^k$ such that $E \cap V_I = 0$ for any $I \subset [1, N]$ such that |I| = N - k (an open subset of Gr^k). Let $Gr'_{\geq 0}^k$ (resp. $Gr'_{\geq 0}^k$) be the set of all $E \in Gr^k$ such that the line $\Lambda^k E$ in $\Lambda^k V$ is in $P\Lambda^k(V)_{>0}$ (resp. $P\Lambda^k(V)_{\geq 0}$). According to [5, 3.2], we have

(a) $Gr_{>0}^k \subset Gr'_{>0}^k, Gr_{\geq 0}^k \subset Gr'_{\geq 0}^k$

We show:

(b) $Gr'^k_{>0} \subset Gr'^k$.

Assume that $E \in Gr'_{\geq 0}^{k}$, $E \notin Gr'^{k}$. We can find $I \subset [1, N]$ such that |I| = N - k, $E \cap V_{I} \neq 0$. Let $e'_{1} \in E \cap V_{I} - \{0\}$. We can find a basis $e'_{1}, e'_{2}, \ldots, e'_{k}$ of E containing e'_{1} . Since $e'_{1} \in V_{I}$, $\epsilon := e'_{1} \wedge e'_{2} \wedge \ldots \wedge e'_{k}$ is a linear combination of elements of the form $e_{I'}$ with $I' \subset [1, N], |I'| = k, I' \cap I \neq \emptyset$. In particular, $e_{[1,N]-I}$ appears with coefficient 0 when ϵ is expressed as a linear combination of $e_{I''}, |I''| = k$. Thus, for any $c \in \mathbf{R} - \{0\}$ we have $c\epsilon \notin \Lambda^{k}V_{\geq 0}$ so that $E \notin Gr'^{k}$. This proves (b).

0.4. Let $E \in Gr^k$. We say that E is generic if

(i) $E \cap V_{[1,N-k]} = 0$,

(ii) $E \cap V_{[k+1,N]} = 0$,

and if, setting

 $E_{i} = E \cap V_{[1,N-k+i]} \text{ if } i \in [1, k-1], E_{k} = E, E_{i} = E \oplus V_{[1,i-k]} \text{ if } i \in [k+1, N-1], E_{i}' = E \cap V_{[k-i+1,N]} \text{ if } i \in [1, k-1], E_{k}' = E, E_{i}' = E \oplus V_{N-i+k+1,N} \text{ if } i \in [k+1, N-1], so that <math>E_{1} \subset E_{2} \subset \ldots \subset E_{N-1}, \dim E_{i} = i, E_{1}' \subset E_{2}' \subset \ldots \subset E_{N-1}', \dim E_{i}' = i, we$ have:

(iii) $E'_i \cap E_{k-i} = 0$ if $i \in [1, k-1]$,

(iv) $E'_{k+i} \cap E_{N-i} = E$ if $i \in [1, N-k-1]$.

Let Gr^{k*} be the set of all $E \in Gr_k$ which are generic. (An open subset of Gr_k .) According to [5]:

(a) $Gr_{>0}^k$ is a connected component of Gr^{k*} . We show:

(b) $Gr'^k \subset Gr^{k*}$.

Let $E \in Gr'^k$. Then E clearly satisfies conditions (i),(ii). For $i \in [1, k-1]$ we have

$$E'_{i} \cap E_{k-i} = (E \cap V_{[k-i+1,N]}) \cap (E \cap V_{[1,N-i]})$$

= $E \cap V_{[k-i+1,N] \cap [1,N-i]}$
= $E \cap V_{[k-i+1,N-i]}$
= 0

since |[k-i+1, N-i]| = N-k. Thus, (iii) holds. For $i \in [1, N-k-1]$ and for

$$x \in E'_{k+i} \cap E_{N-i} = (E \oplus V_{[N-i+1,N]}) \cap (E \oplus V_{[1,N-k-i]})$$

we have x = a + b = c + d with

$$a \in E, b \in V_{[N-i+1,N]}, c \in E, d \in V_{[1,N-k-i]}.$$

We have

$$b - c \in V_{[N-i+1,N]} + V_{[1,N-k-i]} = V_{[N-i+1,N] \cup [1,N-k-i]}.$$

Also, $b-c \in E$ and $E \cap V_{[N-i+1,N] \cup [1,N-k-i]} = 0$ since $|[N-i+1,N] \cup [1,N-k-i]| = N-k$. Thus b = c so that b = c = 0 since $V_{[N-i+1,N]} \cap V_{[1,N-k-i]} = 0$. We see that $x = a \in E$. Thus, $E'_{k+i} \cap E_{N-i} \subset E$. The reverse inclusion is obvious. We see that (iv) holds. This proves (b).

Theorem 0.5 (Rietsch) We have $Gr'_{>0}^k = Gr_{>0}^k$.

The proof is similar to that of [4, 8.17]. The inclusion $Gr_{>0}^k \subset Gr'_{>0}^k$ follows from 0.3(a). We show the reverse inclusion. Let $E \in Gr'_{>0}^k$. Since g_r is totally positive for r > 0 and is the identity for r = 0, for any $r \in \mathbf{R}_{\geq 0}$ we have $g_r(E) \in Gr'_{>0}^k$. Applying [4, 5.2] to $g = g_1 : \Lambda^k V \to \Lambda^k V$ and noting that $g_1^n = g_n$ for all integers $n \ge 1$, we see that the sequence $g_n \Lambda^k E$ (n = 1, 2, ...) converges in $P \Lambda^k V_{>0}$ to the Perron line $L_{g_1} \in P \Lambda^k V_{>0}$ (notation of [4, 5.2(a)]). From [4, 8.9(a)] we see that there exists $E_1 \in Gr_{>0}^k$ such that $g_1(E_1) = E_1$. By 0.3(a) we have $E_1 \in Gr'_{>0}^k$. Since L_{g_1} is the unique g_1 -stable line in $P \Lambda^k V_{>0}$, we must have $L_{g_1} = \Lambda^k E_1$. Since $g_n \Lambda^k E$ converges to $\Lambda^k E_1$ as $n \to \infty$, it follows that $g_n E$ converges to E_1 as $n \to \infty$ (in Gr^k). Since $E_1 \in Gr_{>0}^k$ and $Gr_{>0}^k$ is open in Gr^k , it follows that $g_{n_0} E \in Gr_{>0}^k$ for some integer $n_0 \ge 1$. Since the map $r \mapsto g_n E$ from $\mathbf{R}_{\geq 0}$ to $Gr'_{>0}^k$ is continuous, its image is contained in a single connected component of Gr^{k*} (recall that $Gr'_{>0}^k \subset Gr'^k \subset Gr^{k*}$, see 0.3(b),0.4(b)). In particular the image of 0 and that of n_0 (namely E and $g_{n_0} E$) belong to the same connected component of Gr^{k*} . Since $g_{n_0} E \in Gr_{>0}^k$ and $Gr_{>0}^k$ is a connected component of Gr^{k*} (see 0.4(a)), it follows that $E \in Gr_{>0}^k$. The theorem is proved.

0.6. The following result is a consequence of the theorem in 0.5.

(a) $Gr'_{>0}^k = Gr_{>0}^k$.

The inclusion $Gr_{\geq 0}^{k} \subset Gr'_{\geq 0}^{k}$ follows from 0.3(a). We show the reverse inclusion. Let $E \in Gr'_{\geq 0}^{k}$. Since g_r is totally positive for r > 0, for such r we have $g_r \Lambda^k E \in P \Lambda^k V_{>0}$ that is, $\Lambda^k(g_r E) \in P \Lambda^k V_{>0}$. Using 0.5 we see that $g_r E \in Gr_{>0}^k$ for r > 0. Taking the limit as $r \to 0$ we see that E is in the closure of $Gr_{>0}^k$, that is, $E \in Gr_{>0}^k$. This proves (a).

Acknowledgement Supported by NSF grant DMS-2153741.

References

- C. GEISS, B. LECLERC, J. SCHRÖER, Preprojective algebras and cluster algebras, in Trends in representation theory of algebras and related topics, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 253-283 (2008).
- [2] A. KNUTSON, T. LAM, D. SPEYER, Positroid varieties I. Juggling and geometry, arxiv:0903.3694.
- [3] T. LAM, Totally nonnegative Grassmannian and Grassmann polytopes, arxiv:1506.00603.

- [4] G. LUSZTIG, Total positivity in reductive groups, in *Lie theory and geometry*, Progr. in Math., Birkhäuser Boston, 123, 531-568 (1994).
- [5] G. LUSZTIG, Total positivity in partial flag manifolds, *Represent. Th.*, **12**, 70-78 (1998).
- [6] A. POSTNIKOV, Total positivity, Grassmannians and networks, arxiv:math.0609764.
- [7] K. RIETSCH, Total positivity and real flag varieties, Ph.D. Thesis, M. I. T. (1998).
- [8] K. TALASKA, L. WILLIAMS, Network parametrizations for the grassmannian, arxiv:1210.5433.

Received: 16.09.2023 Accepted: 24.10.2023

> Department of Mathematics, M. I. T., Cambridge, MA 02139, USA E-mail: gyuri@mit.edu