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On the totally positive grassmannian
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Abstract

We give an alternative proof for the equivalence of two definitions of the totally
positive grassmannian.
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0.1. Let V be an R-vector space of dimension N ≥ 2 with a fixed basis
e1, e2, . . . , eN . Let B be the manifold whose points are the complete flags F1 ⊂ F2 ⊂
. . . ⊂ FN−1 in V . Here Fi is a subspace of dimension i of V . In [4] I defined the totally

positive part B>0 of B, a certain open subset of B homeomorphic to R
N(N−1)/2
>0 . We fix

k ∈ [1, N − 1]. Let Grk be the manifold whose points are the subspaces of V of dimension
k. In [5] I defined the totally positive part Grk>0 of Grk as the image of B>0 under the
map B → Grk which takes F1 ⊂ F2 ⊂ . . . ⊂ FN−1 to Fk. This is an open subset of Grk

homeomorphic to R
k(N−k)
>0 . In [5, 3.4] it was shown that Grk>0 can be described in terms

of inequalities involving elements in the canonical basis of the irreducible representation
of SL(V ) corresponding to a multiple cϖk of the k-th fundamental weight ϖk where c is
any integer ≥ N − 1. (The result in [5, 3.4] applies to any real partial flag manifold.) In
a note added in the proof of [5] I stated (quoting Rietsch [7]) that c can be taken to be
any number ≥ 1 (including 1); a similar statement was made for any partial flag manifold.
However the proof in [7] contained an error, see Geiss, Leclerc, Schröer [1]. (I thank B.
Leclerc for providing this reference.) In 2009, Rietsch (unpublished, but mentioned in [2])
has shown that c above can indeed be taken to be 1. Proofs of Rietsch’s result appeared
in [8] and [3]. But for a general partial flag manifold it is not known to what extent the
result in [5, 3.4] can be improved. In this paper we present a method which could possibly
yield an improvement of the result of [5, 3.4]. In the case of the Grassmannian this recovers
the result of Rietsch, see Theorem 0.5; but one can hope that our method applies also in
other cases. This method is based on the observation of [5, §2] that the positive part of a
partial flag manifold is a single connected component of an explicit algebraic open subset
of that partial flag manifold. For a further study of Grk>0, see [6]. I thank P. Galashin and
L. Williams for comments on an earlier version of this paper.

0.2. Notation. For two integers a ≤ b we set [a, b] = {z ∈ Z; a ≤ z ≤ b}. For a finite
set I let |I| be the cardinal of I. For any I ∈ [1, N ] let VI be the subspace of V with basis
{ei; i ∈ I}. For any I ⊂ [1, N ] with |I| = k, we set eI = ei1 ∧ ei2 ∧ . . . ∧ eik ∈ ΛkV where
I consists of the numbers i1 < i2 < . . . < ik and ΛkV is the k-th exterior power of V . Let
ΛkV>0 (resp. ΛkV≥0) be the set of nonzero vectors in ΛkV whose coordinates with respect
to the basis {eI ; |I| = k} are all in R>0 (resp. R≥0). Let PΛkV>0 (resp. PΛkV≥0) be the
set of lines in ΛkV which are spanned by vectors in ΛkV>0 (resp. ΛkV≥0). Define a linear
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map A : V → V by A(e1) = e2, A(ei) = ei+1 + ei−1 if 1 < i < N , A(eN ) = eN−1. For any
r ∈ R≥0 let gr = exp(rA) ∈ GL(V ). If r > 0, the matrix of gr is totally positive.

0.3. As in [5], let Grk≥0 be the closure of Grk>0 in Grk. We define Gr′k to be the set of

all E ∈ Grk such that E ∩ VI = 0 for any I ⊂ [1, N ] such that |I| = N − k (an open subset
of Grk). Let Gr′k>0 (resp. Gr′k≥0) be the set of all E ∈ Grk such that the line ΛkE in ΛkV

is in PΛk(V )>0 (resp. PΛk(V )≥0). According to [5, 3.2], we have

(a) Grk>0 ⊂ Gr′k>0, Grk≥0 ⊂ Gr′k≥0.
We show:

(b) Gr′k>0 ⊂ Gr′k.
Assume that E ∈ Gr′k>0, E /∈ Gr′k. We can find I ⊂ [1, N ] such that |I| = N − k,
E ∩ VI 6= 0. Let e′1 ∈ E ∩ VI − {0}. We can find a basis e′1, e

′
2, . . . , e

′
k of E containing e′1.

Since e′1 ∈ VI , ϵ := e′1 ∧ e′2 ∧ . . .∧ e′k is a linear combination of elements of the form eI′ with
I ′ ⊂ [1, N ], |I ′| = k, I ′ ∩ I 6= ∅. In particular, e[1,N ]−I appears with coefficient 0 when ϵ
is expressed as a linear combination of eI′′ , |I ′′| = k. Thus, for any c ∈ R − {0} we have
cϵ /∈ ΛkV>0 so that E /∈ Gr′k. This proves (b).

0.4. Let E ∈ Grk. We say that E is generic if

(i) E ∩ V[1,N−k] = 0,

(ii) E ∩ V[k+1,N ] = 0,

and if, setting

Ei = E ∩ V[1,N−k+i] if i ∈ [1, k − 1], Ek = E, Ei = E ⊕ V[1,i−k] if i ∈ [k + 1, N − 1],

E′
i = E ∩ V[k−i+1,N ] if i ∈ [1, k− 1], E′

k = E, E′
i = E ⊕ VN−i+k+1,N if i ∈ [k+1, N − 1],

so that E1 ⊂ E2 ⊂ . . . ⊂ EN−1, dimEi = i, E′
1 ⊂ E′

2 ⊂ . . . ⊂ E′
N−1, dimE′

i = i, we
have:

(iii) E′
i ∩ Ek−i = 0 if i ∈ [1, k − 1],

(iv) E′
k+i ∩ EN−i = E if i ∈ [1, N − k − 1].

Let Grk∗ be the set of all E ∈ Grk which are generic. (An open subset of Grk.) According
to [5]:

(a) Grk>0 is a connected component of Grk∗.
We show:

(b) Gr′k ⊂ Grk∗.
Let E ∈ Gr′k. Then E clearly satisfies conditions (i),(ii). For i ∈ [1, k − 1] we have

E′
i ∩ Ek−i = (E ∩ V[k−i+1,N ]) ∩ (E ∩ V[1,N−i])

= E ∩ V[k−i+1,N ]∩[1,N−i]

= E ∩ V[k−i+1,N−i]

= 0

since |[k − i+ 1, N − i]| = N − k. Thus, (iii) holds. For i ∈ [1, N − k − 1] and for

x ∈ E′
k+i ∩ EN−i = (E ⊕ V[N−i+1,N ]) ∩ (E ⊕ V[1,N−k−i])

we have x = a+ b = c+ d with

a ∈ E, b ∈ V[N−i+1,N ], c ∈ E, d ∈ V[1,N−k−i].
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We have

b− c ∈ V[N−i+1,N ] + V[1,N−k−i] = V[N−i+1,N ]∪[1,N−k−i].

Also, b−c ∈ E and E∩V[N−i+1,N ]∪[1,N−k−i] = 0 since |[N−i+1, N ]∪[1, N−k−i]| = N−k.
Thus b = c so that b = c = 0 since V[N−i+1,N ] ∩ V[1,N−k−i] = 0. We see that x = a ∈ E.
Thus, E′

k+i ∩ EN−i ⊂ E. The reverse inclusion is obvious. We see that (iv) holds. This
proves (b).

Theorem 0.5 (Rietsch) We have Gr′k>0 = Grk>0.

The proof is similar to that of [4, 8.17]. The inclusion Grk>0 ⊂ Gr′k>0 follows from
0.3(a). We show the reverse inclusion. Let E ∈ Gr′k>0. Since gr is totally positive for
r > 0 and is the identity for r = 0, for any r ∈ R≥0 we have gr(E) ∈ Gr′k>0. Applying [4,
5.2] to g = g1 : ΛkV → ΛkV and noting that gn1 = gn for all integers n ≥ 1, we see that
the sequence gnΛ

kE (n = 1, 2, . . .) converges in PΛkV>0 to the Perron line Lg1 ∈ PΛkV>0

(notation of [4, 5.2(a)]). From [4, 8.9(a)] we see that there exists E1 ∈ Grk>0 such that
g1(E1) = E1. By 0.3(a) we have E1 ∈ Gr′k>0. Since Lg1 is the unique g1-stable line in
PΛkV>0, we must have Lg1 = ΛkE1. Since gnΛ

kE converges to ΛkE1 as n → ∞, it follows
that gnE converges to E1 as n → ∞ (in Grk). Since E1 ∈ Grk>0 and Grk>0 is open in
Grk, it follows that gn0E ∈ Grk>0 for some integer n0 ≥ 1. Since the map r 7→ gnE from
R≥0 to Gr′k>0 is continuous, its image is contained in a single connected component of
Grk∗ (recall that Gr′k>0 ⊂ Gr′k ⊂ Grk∗, see 0.3(b),0.4(b)). In particular the image of 0
and that of n0 (namely E and gn0

E) belong to the same connected component of Grk∗.
Since gn0

E ∈ Grk>0 and Grk>0 is a connected component of Grk∗ (see 0.4(a)), it follows that
E ∈ Grk>0. The theorem is proved.

0.6. The following result is a consequence of the theorem in 0.5.

(a) Gr′k≥0 = Grk≥0.

The inclusion Grk≥0 ⊂ Gr′k≥0 follows from 0.3(a). We show the reverse inclusion. Let

E ∈ Gr′k≥0. Since gr is totally positive for r > 0, for such r we have grΛ
kE ∈ PΛkV>0 that

is, Λk(grE) ∈ PΛkV>0. Using 0.5 we see that grE ∈ Grk>0 for r > 0. Taking the limit as
r → 0 we see that E is in the closure of Grk>0, that is, E ∈ Grk≥0. This proves (a).
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