On a conjecture related to integer-valued polynomials by
 Victor J. W. Guo

$$
\begin{aligned}
& \text { Abstract } \\
& \text { Using the following }{ }_{4} F_{3} \text { transformation formula } \\
& \sum_{k=0}^{n}\binom{-x-1}{k}^{2}\binom{x}{n-k}^{2}=\sum_{k=0}^{n}\binom{n+k}{2 k}\binom{2 k}{k}^{2}\binom{x+k}{2 k},
\end{aligned}
$$

which can be proved by Zeilberger's algorithm, we confirm some special cases of a recent conjecture of Z.-W. Sun on integer-valued polynomials.

Key Words: Zeilberger's algorithm, Chu-Vandermonde summation, integervalued polynomials, multi-variable Schmidt polynomials.
2020 Mathematics Subject Classification: Primary 33C20; Secondary 11A07, 11B65, 05A10.

1 Introduction

Recall that a polynomial $P(x) \in \mathbb{Q}[x]$ is called integer-valued, if $P(x) \in \mathbb{Z}$ for all $x \in \mathbb{Z}$. During the past few years, integer-valued polynomials have been investigated by several authors (see, for example, $[3,6,13]$). Recently, Z.-W. Sun [14, Conjectures 35(i)] proposed the following conjecture.

Conjecture 1 (Z.-W. Sun). Let l, m, n be positive integers and $\varepsilon= \pm 1$. Then the polynomial

$$
\frac{1}{n} \sum_{k=0}^{n-1} \varepsilon^{k}(2 k+1)^{2 l-1} \sum_{j=0}^{k}\binom{-x-1}{j}^{m}\binom{x}{k-j}^{m}
$$

is integer-valued.
By the Chu-Vandermonde summation formula, we have

$$
\sum_{j=0}^{k}\binom{-x-1}{j}\binom{x}{k-j}=\binom{-1}{k}=(-1)^{k}
$$

Thus, by [9, Lemmas 2.3 and 2.4], we see that Conjecture 1 is true for $m=1$. In this note, we shall confirm Conjecture 1 for $m=2$.

Theorem 1. Let l and n be positive integers and $\varepsilon= \pm 1$. Then the polynomial

$$
\begin{equation*}
\frac{1}{n} \sum_{k=0}^{n-1} \varepsilon^{k}(2 k+1)^{2 l-1} \sum_{j=0}^{k}\binom{-x-1}{j}^{2}\binom{x}{k-j}^{2} \tag{1.1}
\end{equation*}
$$

is integer-valued.
We shall also prove the following result, which confirms the $l=1$ cases of $[14$, Conjectures 35(ii)].
Theorem 2. Let n be a positive integer. Then the polynomial

$$
\begin{equation*}
\frac{1}{n^{2}} \sum_{k=0}^{n-1}(2 k+1) \sum_{j=0}^{k}\binom{-x-1}{j}^{2}\binom{x}{k-j}^{2} \tag{1.2}
\end{equation*}
$$

is integer-valued.

2 Proof of Theorem 1

We first require the following ${ }_{4} F_{3}$ transformation formula.
Lemma 1. Let n be a non-negative integer. Then

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{-x-1}{k}^{2}\binom{x}{n-k}^{2}=\sum_{k=0}^{n}\binom{n+k}{2 k}\binom{2 k}{k}^{2}\binom{x+k}{2 k} \tag{2.1}
\end{equation*}
$$

Proof. Denote the left-hand side or the right-hand side of (2.1) by $S_{n}(x)$. Applying Zeilberger's algorithm (see [1, 10]), we obtain

$$
(n+2)^{3} S_{n+2}(x)-(2 n+3)\left(n^{2}+2 x^{2}+3 n+2 x+3\right) S_{n+1}(x)+\left(3 n^{2}+3 n+1\right) S_{n}(x)=0
$$

That is to say, both sides of (2.1) satisfy the same recurrence relation of order 2. Moreover, the two sides of (2.1) are equal for $n=0,1$. This completes the proof.

Using Zeilberger's algorithm, Z.-W. Sun [11, Eq. (3.1)] found the following identity:

$$
\begin{equation*}
16^{n} \sum_{k=0}^{n}\binom{-1 / 2}{k}^{2}\binom{-1 / 2}{n-k}^{2}=\sum_{k=0}^{n}\binom{2 k}{k}^{3}\binom{k}{n-k}(-16)^{n-k} \tag{2.2}
\end{equation*}
$$

and he $[12$, Eq. (3.1)] gave the following formula:

$$
\begin{equation*}
64^{n} \sum_{k=0}^{n}\binom{-1 / 4}{k}^{2}\binom{-3 / 4}{n-k}^{2}=\sum_{k=0}^{n}\binom{2 k}{k}^{3}\binom{2 n-2 k}{n-k} 16^{n-k} \tag{2.3}
\end{equation*}
$$

Here we point out that, for $x=-1 / 2$ and $-3 / 4$, Eq. (2.1) gives identities different from (2.2) and (2.3).

In [2], Chen and the author introduced the multi-variable Schmidt polynomials

$$
S_{n}\left(x_{0}, \ldots, x_{n}\right)=\sum_{k=0}^{n}\binom{n+k}{2 k}\binom{2 k}{k} x_{k}
$$

In order to prove Theorem 1, we also need the following result, which is a special case of the last congruence in $[2$, Section 4].

Lemma 2. Let l and n be positive integers and $\varepsilon= \pm 1$. Then all the coefficients in

$$
\sum_{k=0}^{n-1} \varepsilon^{k}(2 k+1)^{2 l-1} S_{k}\left(x_{0}, \ldots, x_{k}\right)
$$

are multiples of n.
Proof of Theorem 1. For any non-negative integer k, define

$$
x_{k}=\binom{2 k}{k}\binom{x+k}{2 k}
$$

Then the identity (2.1) may be rewritten as

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{-x-1}{k}^{2}\binom{x}{n-k}^{2}=\sum_{k=0}^{n}\binom{n+k}{2 k}\binom{2 k}{k} x_{k} \tag{2.4}
\end{equation*}
$$

It is easy to see that x_{0}, \ldots, x_{n} are all integers on condition that x is an integer. By Eq. (2.4) and Lemma 2, we see that the polynomial (1.1) is integer-valued.

3 Proof of Theorem 2

We need the following result, which can be easily proved by induction on n. See also $[2$, Eq. (2.4)].

Lemma 3. Let n and k be non-negative integers with $k \leqslant n-1$. Then

$$
\begin{equation*}
\sum_{m=k}^{n-1}(2 m+1)\binom{m+k}{2 k}\binom{2 k}{k}=n\binom{n}{k+1}\binom{n+k}{k} \tag{3.1}
\end{equation*}
$$

Proof of Theorem 2. Using the identities (2.1) and (3.1), we have

$$
\begin{aligned}
\sum_{m=0}^{n-1}(2 m+1) \sum_{k=0}^{m}\binom{-x-1}{k}^{2}\binom{x}{n-k}^{2} & =\sum_{m=0}^{n-1}(2 m+1) \sum_{k=0}^{m}\binom{n+k}{2 k}\binom{2 k}{k}^{2}\binom{x+k}{2 k} \\
& =\sum_{k=0}^{n-1} n\binom{n}{k+1}\binom{n+k}{k}\binom{2 k}{k}\binom{x+k}{2 k}
\end{aligned}
$$

It follows that the expression (1.2) can be written as

$$
\begin{equation*}
\sum_{k=0}^{n-1} \frac{1}{n}\binom{n}{k+1}\binom{n+k}{k}\binom{2 k}{k}\binom{x+k}{2 k}=\sum_{k=0}^{n-1} \frac{1}{k+1}\binom{n-1}{k}\binom{n+k}{k}\binom{2 k}{k}\binom{x+k}{2 k} \tag{3.2}
\end{equation*}
$$

Since $\frac{1}{k+1}\binom{2 k}{k}=\binom{2 k}{k}-\binom{2 k}{k-1}$ is clearly an integer (the n-th Catalan number), we conclude that the right-hand side of (3.2) is also an integer whenever x is an integer. This proves the theorem.

4 Concluding remarks

Z.-W. Sun [14, Conjecture 35(ii)] conjectured that, for all positive integers l and n, the polynomial

$$
\frac{(2 l-1)!!}{n^{2}} \sum_{k=0}^{n-1}(2 k+1)^{2 l-1} \sum_{j=0}^{k}\binom{-x-1}{j}^{2}\binom{x}{k-j}^{2}
$$

is integer-valued. Here $(2 l-1)!!=(2 l-1)(2 l-3) \cdots 3 \cdot 1$.
We believe that the following (stronger) result is true.
Conjecture 2. Let l and n be positive integers and k a non-negative integer with $k \leqslant n-1$. Then

$$
\begin{equation*}
(2 l-1)!!\sum_{m=k}^{n-1}(2 m+1)^{2 l-1}\binom{m+k}{2 k}\binom{2 k}{k}^{2} \equiv 0 \quad\left(\bmod n^{2}\right) \tag{4.1}
\end{equation*}
$$

Our proof of Theorem 2 implies that the above conjecture is true for $l=1$. In view of (2.1), Sun's conjecture follows from (4.1) too.

Recently, q-analogues of congruences have been studied by many authors. See $[4,5,7$, $8,15]$ and references therein. For $l=1$, we have a q-analogue of (4.1) as follows:

$$
\sum_{m=k}^{n-1}[2 m+1]\left[\begin{array}{c}
m+k \tag{4.2}\\
2 k
\end{array}\right]\left[\begin{array}{c}
2 k \\
k
\end{array}\right]^{2} q^{-(k+1) m} \equiv 0 \quad\left(\bmod [n]^{2}\right)
$$

where $[n]=1+q+\cdots+q^{n-1}$ is the q-integer and $\left[\begin{array}{l}n \\ k\end{array}\right]=\prod_{j=1}^{k}\left(1-q^{n-k+j}\right) /\left(1-q^{j}\right)$ denotes the q-binomial coefficient. The proof of (4.2) is similar to that of Theorem 2. However, we cannot find any q-analogue of (4.1) for $l>1$.

References

[1] M. Apagodu, D. Zeilberger, Multi-variable Zeilberger and Almkvist-Zeilberger algorithms and the sharpening of Wilf-Zeilberger theory, Adv. Appl. Math., 37, 139152 (2006).
[2] Q.-F. Chen, V. J. W. Guo, On the divisibility of sums involving powers of multivariable Schmidt polynomials, Int. J. Number Theory, 14, 365-370 (2018).
[3] V. J. W. Guo, Proof of Sun's conjectures on integer-valued polynomials, J. Math. Anal. Appl., 444, 182-191 (2016).
[4] V. J. W. Guo, M. J. Schlosser, A family of q-supercongruences modulo the cube of a cyclotomic polynomial, Bull. Aust. Math. Soc., 105, 296-302 (2022).
[5] V. J. W. Guo, W. Zudilin, A q-microscope for supercongruences, Adv. Math., 346, 329-358 (2019).
[6] J.-C. Liu, Proof of some divisibility results on sums involving binomial coefficients, J. Number Theory, 180, 566-572 (2017).
[7] J.-C. Liu, X.-T. Jiang, On the divisibility of sums of even powers of q-binomial coefficients, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 116, Art. 76 (2022).
[8] Y. Liu, X. Wang, Some q-supercongruences from a quadratic transformation by Rahman, Results Math., 77, Art. 44 (2022).
[9] G.-S. Mao, Proof of some congruence conjectures of Guo and Liu, Ramanujan J., 48, 233-244 (2019).
[10] M. Petkovšek, H. S. Wilf, D. Zeilberger, $A=B$, A K Peters, Ltd., Wellesley, MA (1996).
[11] Z.-W. Sun, On sums involving products of three binomial coefficients, Acta Arith., 156, 123-141 (2012).
[12] Z.-W. Sun, Some new series for $1 / \pi$ and related congruences, Nanjing Univ. J. Math. Biquarterly, 131, 150-164 (2014).
[13] Z.-W. Sun, Supercongruences involving dual sequences, Finite Fields Appl., 46, 179216 (2017).
[14] Z.-W. Sun, Open conjectures on congruences, Nanjing Univ. J. Math. Biquarterly, 36, 1-99 (2019).
[15] X. Wang, C. Xu, q-Supercongruences on triple and quadruple sums, Results Math., 78, Art. 27 (2023).

Received: 08.04.2022
Accepted: 12.05.2022
School of Mathematics and Statistics, Huaiyin Normal University, Huai'an, Jiangsu 223300, People's Republic of China

E-mail: jwguo@math.ecnu.edu.cn

