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Abstract

Let R be a commutative Noetherian ring and let C be a semidualizing R-module.
The aim of this paper is to introduce and study the relative version of Matlis duality
with respect to C' and some other related topics. In particular, it is shown that over
local ring R, the relative Matlis dual of a Noetherian R-module is Artinian, and in the
case that R is complete the relative Matlis dual of an Artinian R-module is Noetherian.
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1 Introduction

Throughout this paper R is a commutative Noetherian ring and we use the notation Eg (M)
for the injective envelope of an R-module M. The notion of a “semidualizing module” is
a central notion in relative homological algebra. The study of semidualizing modules was
independently initiated by Foxby [6], Vasconcelos [14] and Golod [7], which are common
generalizations of dualizing modules and finitely generated projective modules of rank one.
This notion has been investigated by many authors from different points of view; see for
example [3], [8], [12], and [13]. In [9], Holm and White defined the so-called C-injective,
C-projective and C-flat modules to characterize the Auslander class A (R) and the Bass
class Bo(R), where C'is a semidualizing R-module. The notion of C-injective (C-projective,
C-flat) modules is important for the study of the relative homological algebra with respect
to semidualizing modules. For example in [8], Holm and Jgrgensen used these modules
to define C-Gorenstein injective (projective, flat) modules, introduced the notions of C-
Gorenstein projective, C-Gorenstein injective, and C-Gorenstein flat dimensions, and in-
vestigated the properties of these dimensions. Many other properties of C-injective modules,
especially Tor-modules, are investigated in [5] and [10].

The first part of this paper is focused on the class of C-injective modules. We do some
preliminary work in Section 2. In particular, we review some of the results, demonstrating
the extent to which C-injective modules act like injective modules. In Section 3, we give a
generalization of the notion of Matlis duality with respect to a semidualizing module and
some related topics. For an R-module M over a local ring (R, m), we denote by MVC the
relative Matlis dual Homp (M, Homg(C,Eg(R/m))) with respect to C. There is a natural
R-homomorphism ¢ : M — (MYe)Ve defined by ¢(z)(f) = f(z) for all z € M and
f € MVe. We say that an R-module M is C-Matlis reflexive if M =2 (MY°¢)Ve under
the homomorphism . It is known that if R is a complete local ring, then Egx(R/m) is
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a Matlis reflexive R-module. Along these lines, we shown that Hompg(C,Egr(R/m)) is C-
Matlis reflexive, in the case that R is complete local. Also, we investigate some properties
of the relative Matlis duality functor with respect to C' which are similar to the properties
of the classical Matlis duality functor. For example it is shown that over local ring R,
the relative Matlis dual of a Noetherian R-module is Artinian, and in the case that R is
complete the relative Matlis dual of an Artinian R-module is Noetherian.

2 Background and preliminary results

We begin with a definition due to Foxby [6], generalizing Grothendieck’s notion of a dual-
izing module, and introduced independently by Golod [7] and Vasconcelos [14].

Definition 2.1. A finitely generated R-module C' is called semidualizing if the natural
homothety morphism R — Hompz(C, C) is an isomorphism and Ext7'(C,C) = 0.

Many of the primary properties of semidualizing modules are investigated in [11]. In
the following, we recall some of them from [11] that will be used in the next section.

Fact 2.2. Let C be a semidualizing R-module. Then the following statements hold.
(i) Suppp(C) = Spec(R).
(#4) If M is a non-zero R-module, then Homp(C, M) # 0 and C ®p M # 0.
(#i7) If f: R — S is a flat ring homomorphism, then C' ®g S is a semidualizing S-module.

The classes defined next are collectively known as Foxby classes. The definitions are due
to Foxby; see [1] and [3].

Definition 2.3. The Auslander class with respect to C is the class Ac(R) of R-modules
M such that:

(i) Tor®(C,M)=0=Exth(C,C @z M) for all i > 1, and
(i3) the natural map & : M — Homp(C,C ®g M) is an isomorphism.
The Bass class with respect to C' is the class Bo(R) of R-modules M such that:
(i) Exth(C, M) =0 = Tor?(C,Homp(C, M)) for all i > 1, and
(43) the natural evaluation map ¢§; : C @ gp Homg(C, M) — M is an isomorphism.
In the following, we collect some properties of Foxby classes from [11].
Fact 2.4. Let C be a semidualizing R-module. Then the following statements hold.

(i) The class Ac¢(R) contains all the R-modules of finite flat dimension and the class
Bc(R) contains all the R-modules of finite injective dimension.

(i) If M € Ac(R), then C @ M € Bo(R). If M € Bo(R), then Homp(C, M) € Ac(R).
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(#it) The classes Ac(R) and Be(R) satisfy the “two-of-three property”: If any two R-
modules in a short exact sequence are in A¢(R), respectively Bo(R), then so is the
third.

Definition 2.5. For a semidualizing R-module C, we set
Ze(R) = {Homg(C,I)| I is an injective R-module}.
The R-modules in Z¢(R) are called C-injective.

Proposition 2.6. Let f : R — S be a flat ring homomorphism, and let C' be a semidualizing
R-module. If E is an injective R-module, then Hompg(C,Hompg(S, E)) is a (C ®r 95)-
injective S-module.

Proof. By Fact 2.2(iii), C ®g S is a semidualizing S-module. Also, Hompg(S, E) is an
injective S-module, by [4, Proposition 3.1.6]. Hence

Homp(C,Hompg(S, E)) = Homgs(C ®r S,Hompg(S, F))
is a (C ®pg S)-injective S-module. g

Proposition 2.7. Let C be a semidualizing R-module, and let F' be a flat R-module. As-
sume that E and E' are two injective R-modules. Then the following statements hold.

(1) Homp(F,Hompg(C, E)) is a C-injective R-module.
(#4) Hompg(C, FE) ®g F is a C-injective R-module.
(#it) Homp(C, F) ®g (C ®g F) is an injective R-module.
(iv) Homg(Homg(C, E),Homg(C, E")) is a flat R-module.
Proof. (i) By adjointness, we have
Hompg(F,Hompg(C, E)) 2 Hompr(C ®r F, E)
= Homp(C,Hompg(F, E)).

By [4, Theorem 3.2.16], Hompg(F, E) is an injective R-module. So, we get the assertion.
(73) By [4, Theorem 3.2.14], Homp(C, E)®@g F =2 Homg(C, EQrF). So Homg(C, E)®g
F is a C-injective R-module, since F ®pg F' is injective by [4, Theorem 3.2.16].
(7i7) In the following sequence, the second isomorphism follows from [4, Theorem 3.2.14],
and the third isomorphism follows from [4, Theorem 3.2.16] and Fact 2.4(3).

Homg(C,FE) ®gr (C ®r F) = (Homg(C,E)®r F) @r C
= HomR(C,E®R F) Qr C
=2 FE®pF

(iv) By [11, Proposition 3.1.10] and Fact 2.4(¢), we have
HOIHR(HOIHR(C, E), HOIDR(C, El)) = HOHIR(E, E’).
Also, [4, Proposition 3.2.16] implies that Homp(E, E’) is a flat R-module, as desired. O
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Parallel to the class of injective modules in Be(R), we have the class of C-injective
modules in Ac(R). Thus, C-injective modules are expected to play the role of the injec-
tive objects of Ac(R). In the following two propositions, we review some of the results,
demonstrating the extent to which C-injective modules act like injective modules.

Proposition 2.8. Let C be a semidualizing R-module, and let
(x): 0=>W =W —=>W"—=0
be a short exact sequence of R-modules. Then the following statements hold.

(i) [9, Proposition 5.2 (c)] If W' and W' are C-injective, then W is also C-injective and
the sequence splits.

(i¢) If W' and W are C-injective, then W' is also C-injective and the sequence splits.

Proof. (i) Let E' and E” be injective R-modules such that W’ = Hompg(C, E’), and W" =
Hompg(C, E"). Applying functor — ® g C' to the exact sequence (x) to get the split exact
sequence (%) : 0 - B/ - C®r W — E” — 0, since Z¢(R) C Ac(R). Hence C Qg
W is an injective R-module and [13, Theorem 2.11 (b)] implies that W is C-injective.
Applying the functor Homg(C,—) on the sequence (xx) to get the split exact sequence
0 — Homp(C, E') — Hompg(C,C @ W) — Hompg(C, E") — 0 of C-injective R-modules.
Also, we have the following commutative diagram.

0 —— Hompg(C, E') —— Homp(C,C @ g W) —— Homp(C,E") —— 0

L

0 —— Homp(C, E') w Homp(C,E") ——=0

1R

Now the Five Lemma implies that f is an isomorphism, which implies that the sequence
() is split exact as desired.
(#i) It is proved the same line as (7). O

Proposition 2.9. Let C be a semidualizing R-module, and

0 M—1 N

:

Homp(C, E)

be a diagram of R-modules with exact row such that M, N € Ac(R) and E is an injective R-
module. Then there exists an R-homomorphism h : N — Hompg(C, E) making the following
diagram commute.

Homp(C, E)
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Proof. Basically, we need to show that the sequence
Homp(N,Hompg(C, E)) - Homp (M, Homg(C, E)) — 0,

is exact. Since M, N € Ac(R), we conclude by Fact 2.4(ii7) that L = Coker f € Ac(R).
Since L and Homp(C, E) belong to Ac(R), we have

Exty(L, Homp(C, E)) = Ext(C @ L,C @ Homp(C, E))
>~ Extp(C ®@r L, F)
=0.

In the above sequence, the first isomorphism follows from [11, Lemma 3.1.13], and the
second isomorphism follows from Fact 2.4(3). O

Theorem 2.10. Let C' be a semidualizing R-module and consider the following two short
exact sequences of R-modules

0—— M —— Homp(C,E) —=K; ——=0

0 —— M —— Homp(C, Ey) —— Ky —— 0,
where Fy and Es are injective and M € Ac(R). Then
Ko @ HOI’HR(C, El) =K P HOI’HR(C, EQ).

Proof. Note that K7, Ko € Ac(R), by Fact 2.4(iii). Therefore applying the functor C @ —
on the above two exact sequences, we get the following two exact sequences:

04>C®RM4>C®RHOH1R(C,E1)4>C®RK1 —0,

04>C®RM4>C®RHOH1R(C,E2)4>C®RK24>O.

On the other hand, C @ gk Homg(C, F;) = E; for i = 1,2. Now, the dual of Schanuel Lemma
implies that
(C®RrK3) & El = (Cop Kp) & Es.

Applying the functor Hompg(C, —) on the above isomorphism, implies the assertion. 0

Let M be an R-module, and let x € M and a € R. By the notation a | , we mean

M
that © = ay for some y € M. Recall that M is called divisible R-module if for every non
zero-divisor element r € R, and every element m € M we have r | m.
M
Proposition 2.11. Let C be a semidualizing R-module and let E be an injective R-module.
Then the following statements hold.

(i) Let a be a non zero-divisor element of R. Then for every f € Hompg(C, E) we have
a | .
Hompg(C,E)
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(i4) Suppose that Ra € Ac(R) for every non zero-divisor element a of R. Then the
R-module Hompg(C, E) is a divisible.

Proof. (i) Let f € Hompg(C,E). Since a is a non zero-divisor element of R, the map
¥ : Ra — Homp(C, E) is well defined R-module homomorphism given by #(ra) = rf, for
each r € R. Since Ra = R belongs to Ac(R), Proposition 2.9 implies that there exists an
R-homomorphism ¢ : R — Hompg(C, E) such that the following diagram commutes.

0 Raf R

|
£ Y
Homp(C, E)

Note that f = ¢ (a) = ¥(a) = ah(1), and so a|Homg(C,B) f-
(1) Tt follows from item (3).

Remark 2.12. Let R be a PID, and let C be a semidualizing R-module. Assume that M
is a divisible R-module. Then Hompg(C, M) is a C-injective R-module.

Proposition 2.13. Let C be a semidualizing R-module, and let p,q € Spec(R). Then the
following statements hold.
(i
(i4) Homp(C,Ep(R/p)) = Homp(C, Ex(R/q)) if and only if p = q.

) The multiplication by r € R — p is an automorphism on Homg(C,Er(R/p)).

)
(11i) Assgp(Hompg(C,Er(R/p))) = {p}.

)

)

(iv) If ¢ € Homg(C,Eg(R/p)), then there exists a positive integer t such that pteo = 0.
(v) Homg(Homg(C,Er(R/p)), Homgr(C,Er(R/q))) # 0 if and only if p C q.

Proof. (i) Let r € R —p. Then Er(R/p) = Er(R/p) is an isomorphism, by [4, Theorem
3.3.8 (1)] and so Hompz(C,Er(R/p)) = Homz(C,Er(R/p)) is an R-isomorphism.
(#4) Assume that Hompg(C,Er(R/p)) = Homp(C,Er(R/q)). Therefore,

C ®r Homp(C,Er(R/p)) = C @ Homp(C, Er(R/q)).

By Fact 2.4(i), we have Eg(R/p) = Er(R/q) and then [4, Theorem 3.3.8 (2)] implies that
p = q. For the reverse, suppose that p = q, then [4, Theorem 3.3.8 (2)] implies that
Er(R/p) 2 Er(R/q) and therefore, Homg(C,Er(R/p)) = Homp(C,Er(R/q)).

(#4i) In the following sequence, the first equality follows from [2, Exercise 1.2.27], and
the second equality follows from Fact 2.2(i) and [4, Theorem 3.3.8 (3)].

Assgp(Hompg(C,Er(R/p))) = Suppr(C) N Assr(Er(R/p))

= Spec(R) N {p}
= {p}.
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(iv) Let 0 # ¢ € Hompg(C,Er(R/p)). Then Assgp(Ry) = {p}, by (iii). So, p is
the unique minimal element in Suppg(R¢). On the other hand, Suppgr(Ry) = {q €
Spec(R)| Ann(p) C q}. Hence p is the radical of Ann(yp), and so Ann(y) is p-primary.

(v) By the proof of Proposition 2.7(iv), we have

Hompg(Homp(C,Er(R/p)), Homg(C,Er(R/q))) = Homgr(Er(R/p), Er(R/q)).

Now the assertion follows from [4, Theorem 3.3.8 (5)]. 0

3 Relative Matlis duality

Throughout this section (R, m) is a local ring. Let M be an R-module. We denote by MV the
Matlis dual Hompg(M,Eg(R/m)) of M. There is a natural homomorphism ¢ : M — M"Y
defined by ¢(z)(f) = f(x) for x € M and f € M. Recall that M is Matlis reflezive if
M = MVV under the homomorphism ¢. In this section, we introduce the notion of relative
Matlis duality with respect to a semidualizing R-module which gives a generalization of the
notion Matlis duality.

Definition 3.1. Let C be a semidualizing R-module. For an R-module M, we denote by
MV¢ the relative Matlis dual of M with respect to C, and define

MY¢ =Hompg(M,CV).

There is a natural R-homomorphism ¢ : M — (MV¢)Ve defined by ¢ (z)(f) = f(z) for all
x € M and f € MVe. We say that an R-module M is C-Matlis reflexive if M = (MVo)Ve
under the homomorphism ).

Proposition 3.2. Let C be a semidualizing R-module, and let M be an R-module. Then
the following statements hold.

(i) MVe = (C®p M)V,
(i4) MVe = Hompg(C, MY).
(#5i) (MVe)Ve 2 Hompg(C,C @ MVY).
(iv) (MVe)Ve = (Homp(C,C @5 M))VV.

Proof. The items (¢) and (iz) follow from adjointness.
(7i7) In the following sequence, the first and second isomorphisms follow from item (i),
and the third isomorphism follows from [4, Theorem 3.2.11].

(MVYe)Ve = (Homp(C, MY))Ve
= Hompg(C,Hompg(C, M"¥)Y)
= Homp(C, Homg(Hompg(C, M), Er(R/m)))
=~ Hompg(C,C ®g Homg(M",Eg(R/m)))
= Hompg(C,C @ MVV).
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(iv) In the following sequence, the first and second isomorphisms follow from items (),
and the third isomorphism follows from [4, Theorem 3.2.11].

(MVe)ve =

Hompg(Hompg(C,C ®@r M),Eg(R/m)))"

(
(
= (C ®r Homg(C @ M,Eg(R/m)))"
(
(Hompg(C,C @5 M))"V.

Proposition 3.3. Let C be a semidualizing R-module, and let M be an R-module. Then
the following statements hold.

(1) If M is Matlis reflexive and M € Ac(R), then M is C-Matlis reflezive.
(1) Iflp(M) < o0 and M € Ac(R), then M is C-Matlis reflexive.
(i13) If lp(M) < oo, then lp(MVe) < .

Proof. (i) It follows from Proposition 3.2(ii7).

(7) Let [r(M) < oo. Then M is Matlis reflexive by [4, Theorem 3.4.1]. Now the
assertion follows from item (7).

(i17) Let Ig(M) < oo. Then Ig(M") < oo, by [4, Theorem 3.4.1]. By Proposition
3.2(i1), MV =2 Homp(C,M") and so, Igr(MV¢) = Ig(Hompg(C, MV)) < tigr(M"), where ¢
is a number of generators of C. 0

Remark 3.4. A Standard fact for finite length module M is that [g(MY) = Ig(M). Tt is
worth noting that this fails in general for C-Matlis duality, where C' is semidualizing. For
example, if (R, m) is Artinian local and not Gorenstein, with M = R/m and C' = Egx(R/m),
then MVe = Homp(R/m, R), so lr(M)Ve = type R > 1 = [gr(M). This example also shows
that modules of finite length will rarely be C-Matlis reflexive.

It is known that if R is a complete ring, then Eg(R/m) is a Matlis reflexive R-module.
In this regard, in the following it is shown that Homp(C,Er(R/m)) is a C-Matlis reflexive
R-module, where C' is a semidualizing module over complete ring R.

Corollary 3.5. Let R be a complete ring and let C' be a semidualizing R-module. Then
Homp(C,Er(R/m)) is C-Matlis reflexive.

Proof. By [4, Theorem 3.4.1(6)], we have Homg(Er(R/m), Er(R/m)) = R, since R is com-
plete. Therefore, (Hompg(C,Er(R/m)))¥Y = Hompg(C,Eg(R/m)) by [4, Theorem 3.2.11].
Now the assertion follows from Proposition 3.3(7) and Fact 2.4. O
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Remark 3.6. Note that Eg(R/m) is an injective cogenerator for R-modules. That means,
Hompg(M,Eg(R/m)) # 0 for any R-module M # 0. Also, for any R-module M # 0, we
have C @ g M # 0, by Fact 2.2(i7), and so

HOHlR(M, HOHl}:g((j7 ER(R/m))) = HomR(C’ ®r M, ER(R/III))
£,

Theorem 3.7. Let C be a semidualizing R-module, and let R be the m-adic completion of
R. Then the following statements hold.

(i) Homg(CV,CV) =~ R

(ii) R ®p Homp(C,ER(R/m)) = Homp(C,Ex(R/m)).

(ii7) Homy(C,Ex(R/M)) = Homp(C, Ex(R/m)), as R-modules.

(iv) If M is a finitely generated R-module, then (MV°)V¢ = Hompg(C,C ®r ]/\/7)
(v) Homp(C,Er(R/m)) is Artinian as R-module and R-module.

Proof. (i) In the following sequence, the first isomorphism follows from adjointness, the
second isomorphism follows from [4, Theorem 3.4.1], and the last one follows from [4,

Theorem 3.2.14], since R is a flat R-module.
Hompz(CY,C") = Homg(C",Homg(C,Eg(R/m)))
=~ Hompg(C,CYY)

(c.C)
= HOHIR(C C®r R)
~R.

= HOHIR

(#4) In the following sequence, the first isomorphism follows from [4, Theorem 3.2.14],
since R is a flat R-module, and the second isomorphism follows from [4, Theorem 3.4.1(4)].

R ®p Homp(C, Ep(R/m)) = Hompg(C, R @ Er(R/m))
= Homp(C, Eg(R/m)).

(#4i) In the following sequence, the first isomorphism follows form [4, Theorem 3.4.1(5)],
and the second isomorphism follows from adjointness.

Hom;(C,E5(R/M)) = Homp(C ®g R, Er(R/m))
= Homp(C, Hom 5 (R, Er(R/m)))
> Homp(C, E(R/m)).
(1v) By Proposition 3.2(i1), we have (MV¢)Ve 2 Homg(C,C ®r M"V). Now the asser-

tion follows from [4, Theorem 3.4.1 (8)].
(v) The assertion follows from [4, Corollary 3.4.4], since C' is a Noetherian R-module.

0
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In the following theorem, we give a characterization of Artinian modules.

Theorem 3.8. Let C' be a semidualizing R-module and let M be an R-module. If M is
Artinian, then Homp(C, M) C Hompg(C,Eg(R/m)™) for some n > 1. In the case that M
1s finitely generated the converse also holds.

Proof. Let M be an Artinian R-module. Then there exists n > 1 such that M C Ex(R/m)",
by [4, Theorem 3.4.3]. So, Hompg(C, M) C Hompg(C,Er(R/m)"). For the reverse, let
M Dbe a finitely generated R-module such that Homp(C, M) C Homp(C,Er(R/m)") for
some n > 1. Note that Homg(C,Er(R/m)™) = (CV)" is an Artinian R-module, by [4,
Corollary 3.4.4]. Hence Homp(C, M) is an Artinian R-module. Assume that M # 0. Then
Homp(C, M) # 0, by Fact 2.2(ii). So,

{m} = Assg(Homp(C, M))
= Suppy(C) N Assr(M)
= Spec(R) N Assr(M).

Therefore, Assgp(M) = {m} and so, M is an Artinian R-module. O

Remark 3.9. Let M and N be R-modules such that Suppy (V) = Spec(R). Then the proof
of Theorem 3.8 shows that M is Artinian if and only if Homg (N, M) C Homg(N,Er(R/m)™)
for some n > 1.

Theorem 3.10. Let C' be a semidualizing R-module, and let M be an R-module. Then the
following statements hold.

(1) If M is Noetherian, then MY is Artinian.
(it) If MVe is Artinian, then C @ g M is Noetherian.
(#5i) If M is Artinian, then MVC is Noetherian provided that R is complete.

Proof. (i): Assume that M is finitely generated. Then so is C' ® g M, which implies that
MVYe = (C®@gr M)V is Artinian by [4, Corollary 3.4.4].

(#7): Assume that MVC is Artinian. Then so is (C ® g M)V. Now the assertion follows
from [4, Corollary 3.4.4].

(#44) Assume that R is complete and M is Artinian. Then MV is Noetherian by [4,
Theorem 3.4.7]. Also Proposition 3.2(ii) implies that MY¢ =~ Hompg(C, M"), and so MV¢
is Noetherian. 0

Remark 3.11. Note that Theorem 3.10 holds true for any finitely generated R-module C;
we do not have to assume that C' is semidualizing.
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