Relative Matlis duality with respect to a semidualizing module by Elham Tavasoli⁽¹⁾, Maryam Salimi⁽²⁾

Abstract

Let R be a commutative Noetherian ring and let C be a semidualizing R-module. The aim of this paper is to introduce and study the relative version of Matlis duality with respect to C and some other related topics. In particular, it is shown that over local ring R, the relative Matlis dual of a Noetherian R-module is Artinian, and in the case that R is complete the relative Matlis dual of an Artinian R-module is Noetherian.

Key Words: Semidualizing, C-injective, Matlis duality.
2020 Mathematics Subject Classification: Primary 13D05; Secondary 13D45, 18G20.

1 Introduction

Throughout this paper R is a commutative Noetherian ring and we use the notation $E_R(M)$ for the injective envelope of an R-module M. The notion of a "semidualizing module" is a central notion in relative homological algebra. The study of semidualizing modules was independently initiated by Foxby [6], Vasconcelos [14] and Golod [7], which are common generalizations of dualizing modules and finitely generated projective modules of rank one. This notion has been investigated by many authors from different points of view; see for example [3], [8], [12], and [13]. In [9], Holm and White defined the so-called C-injective, C-projective and C-flat modules to characterize the Auslander class $\mathcal{A}_C(R)$ and the Bass class $\mathcal{B}_C(R)$, where C is a semidualizing R-module. The notion of C-injective (C-projective, C-flat) modules is important for the study of the relative homological algebra with respect to semidualizing modules. For example in [8], Holm and Jørgensen used these modules to define C-Gorenstein injective (projective, flat) modules, introduced the notions of C-Gorenstein projective, C-Gorenstein injective, and C-Gorenstein flat dimensions, and investigated the properties of these dimensions. Many other properties of C-injective modules, especially Tor-modules, are investigated in [5] and [10].

The first part of this paper is focused on the class of *C*-injective modules. We do some preliminary work in Section 2. In particular, we review some of the results, demonstrating the extent to which *C*-injective modules act like injective modules. In Section 3, we give a generalization of the notion of Matlis duality with respect to a semidualizing module and some related topics. For an *R*-module *M* over a local ring (R, \mathfrak{m}) , we denote by M^{\vee_C} the relative Matlis dual Hom_{*R*} $(M, \text{Hom}_R(C, \mathbb{E}_R(R/\mathfrak{m})))$ with respect to *C*. There is a natural *R*-homomorphism $\psi : M \to (M^{\vee_C})^{\vee_C}$ defined by $\psi(x)(f) = f(x)$ for all $x \in M$ and $f \in M^{\vee_C}$. We say that an *R*-module *M* is *C*-Matlis reflexive if $M \cong (M^{\vee_C})^{\vee_C}$ under the homomorphism ψ . It is known that if *R* is a complete local ring, then $\mathbb{E}_R(R/\mathfrak{m})$ is a Matlis reflexive R-module. Along these lines, we shown that $\operatorname{Hom}_R(C, \operatorname{E}_R(R/\mathfrak{m}))$ is C-Matlis reflexive, in the case that R is complete local. Also, we investigate some properties of the relative Matlis duality functor with respect to C which are similar to the properties of the classical Matlis duality functor. For example it is shown that over local ring R, the relative Matlis dual of a Noetherian R-module is Artinian, and in the case that R is complete the relative Matlis dual of an Artinian R-module is Noetherian.

2 Background and preliminary results

We begin with a definition due to Foxby [6], generalizing Grothendieck's notion of a dualizing module, and introduced independently by Golod [7] and Vasconcelos [14].

Definition 2.1. A finitely generated *R*-module *C* is called *semidualizing* if the natural homothety morphism $R \to \operatorname{Hom}_R(C, C)$ is an isomorphism and $\operatorname{Ext}_R^{\geq 1}(C, C) = 0$.

Many of the primary properties of semidualizing modules are investigated in [11]. In the following, we recall some of them from [11] that will be used in the next section.

Fact 2.2. Let C be a semidualizing R-module. Then the following statements hold.

(i) $\operatorname{Supp}_R(C) = \operatorname{Spec}(R).$

(*ii*) If M is a non-zero R-module, then $\operatorname{Hom}_R(C, M) \neq 0$ and $C \otimes_R M \neq 0$.

(*iii*) If $f: R \to S$ is a flat ring homomorphism, then $C \otimes_R S$ is a semidualizing S-module.

The classes defined next are collectively known as *Foxby classes*. The definitions are due to Foxby; see [1] and [3].

Definition 2.3. The Auslander class with respect to C is the class $\mathcal{A}_C(R)$ of R-modules M such that:

- (i) $\operatorname{Tor}_{i}^{R}(C, M) = 0 = \operatorname{Ext}_{R}^{i}(C, C \otimes_{R} M)$ for all $i \ge 1$, and
- (*ii*) the natural map $\gamma_C^M : M \to \operatorname{Hom}_R(C, C \otimes_R M)$ is an isomorphism.

The Bass class with respect to C is the class $\mathcal{B}_C(R)$ of R-modules M such that:

- (i) $\operatorname{Ext}_{R}^{i}(C, M) = 0 = \operatorname{Tor}_{i}^{R}(C, \operatorname{Hom}_{R}(C, M))$ for all $i \ge 1$, and
- (ii) the natural evaluation map $\xi_M^C : C \otimes_R \operatorname{Hom}_R(C, M) \to M$ is an isomorphism.

In the following, we collect some properties of Foxby classes from [11].

Fact 2.4. Let C be a semidualizing R-module. Then the following statements hold.

- (i) The class $\mathcal{A}_C(R)$ contains all the *R*-modules of finite flat dimension and the class $\mathcal{B}_C(R)$ contains all the *R*-modules of finite injective dimension.
- (ii) If $M \in \mathcal{A}_C(R)$, then $C \otimes_R M \in \mathcal{B}_C(R)$. If $M \in \mathcal{B}_C(R)$, then $\operatorname{Hom}_R(C, M) \in \mathcal{A}_C(R)$.

(*iii*) The classes $\mathcal{A}_C(R)$ and $\mathcal{B}_C(R)$ satisfy the "two-of-three property": If any two *R*-modules in a short exact sequence are in $\mathcal{A}_C(R)$, respectively $\mathcal{B}_C(R)$, then so is the third.

Definition 2.5. For a semidualizing R-module C, we set

 $\mathcal{I}_C(R) = \{ \operatorname{Hom}_R(C, I) | I \text{ is an injective } R \operatorname{-module} \}.$

The *R*-modules in $\mathcal{I}_C(R)$ are called *C*-injective.

Proposition 2.6. Let $f : R \to S$ be a flat ring homomorphism, and let C be a semidualizing R-module. If E is an injective R-module, then $\operatorname{Hom}_R(C, \operatorname{Hom}_R(S, E))$ is a $(C \otimes_R S)$ -injective S-module.

Proof. By Fact 2.2(*iii*), $C \otimes_R S$ is a semidualizing S-module. Also, $\operatorname{Hom}_R(S, E)$ is an injective S-module, by [4, Proposition 3.1.6]. Hence

$$\operatorname{Hom}_R(C, \operatorname{Hom}_R(S, E)) \cong \operatorname{Hom}_S(C \otimes_R S, \operatorname{Hom}_R(S, E))$$

is a $(C \otimes_R S)$ -injective S-module.

Proposition 2.7. Let C be a semidualizing R-module, and let F be a flat R-module. Assume that E and E' are two injective R-modules. Then the following statements hold.

- (i) $\operatorname{Hom}_R(F, \operatorname{Hom}_R(C, E))$ is a C-injective R-module.
- (*ii*) Hom_R(C, E) $\otimes_R F$ is a C-injective R-module.
- (*iii*) Hom_R(C, E) \otimes_R (C \otimes_R F) is an injective R-module.

(iv) $\operatorname{Hom}_R(\operatorname{Hom}_R(C, E), \operatorname{Hom}_R(C, E'))$ is a flat R-module.

Proof. (i) By adjointness, we have

$$\operatorname{Hom}_{R}(F, \operatorname{Hom}_{R}(C, E)) \cong \operatorname{Hom}_{R}(C \otimes_{R} F, E)$$
$$\cong \operatorname{Hom}_{R}(C, \operatorname{Hom}_{R}(F, E)).$$

By [4, Theorem 3.2.16], $\operatorname{Hom}_R(F, E)$ is an injective *R*-module. So, we get the assertion. (*ii*) By [4, Theorem 3.2.14], $\operatorname{Hom}_R(C, E) \otimes_R F \cong \operatorname{Hom}_R(C, E \otimes_R F)$. So $\operatorname{Hom}_R(C, E) \otimes_R F$

F is a C-injective R-module, since $E \otimes_R F$ is injective by [4, Theorem 3.2.16].

(iii) In the following sequence, the second isomorphism follows from [4, Theorem 3.2.14], and the third isomorphism follows from [4, Theorem 3.2.16] and Fact 2.4(i).

$$\operatorname{Hom}_{R}(C, E) \otimes_{R} (C \otimes_{R} F) \cong (\operatorname{Hom}_{R}(C, E) \otimes_{R} F) \otimes_{R} C$$
$$\cong \operatorname{Hom}_{R}(C, E \otimes_{R} F) \otimes_{R} C$$
$$\cong E \otimes_{R} F$$

(iv) By [11, Proposition 3.1.10] and Fact 2.4(i), we have

$$\operatorname{Hom}_R(\operatorname{Hom}_R(C, E), \operatorname{Hom}_R(C, E')) \cong \operatorname{Hom}_R(E, E').$$

Also, [4, Proposition 3.2.16] implies that $\operatorname{Hom}_R(E, E')$ is a flat *R*-module, as desired.

Parallel to the class of injective modules in $\mathcal{B}_C(R)$, we have the class of *C*-injective modules in $\mathcal{A}_C(R)$. Thus, *C*-injective modules are expected to play the role of the injective objects of $\mathcal{A}_C(R)$. In the following two propositions, we review some of the results, demonstrating the extent to which *C*-injective modules act like injective modules.

Proposition 2.8. Let C be a semidualizing R-module, and let

$$(*): 0 \to W' \to W \to W'' \to 0$$

be a short exact sequence of R-modules. Then the following statements hold.

- (i) [9, Proposition 5.2 (c)] If W' and W'' are C-injective, then W is also C-injective and the sequence splits.
- (ii) If W' and W are C-injective, then W'' is also C-injective and the sequence splits.

Proof. (i) Let E' and E'' be injective R-modules such that $W' = \operatorname{Hom}_R(C, E')$, and $W'' = \operatorname{Hom}_R(C, E'')$. Applying functor $-\otimes_R C$ to the exact sequence (*) to get the split exact sequence (**) : $0 \to E' \to C \otimes_R W \to E'' \to 0$, since $\mathcal{I}_C(R) \subseteq \mathcal{A}_C(R)$. Hence $C \otimes_R W$ is an injective R-module and [13, Theorem 2.11 (b)] implies that W is C-injective. Applying the functor $\operatorname{Hom}_R(C, -)$ on the sequence (**) to get the split exact sequence $0 \to \operatorname{Hom}_R(C, E') \to \operatorname{Hom}_R(C, C \otimes_R W) \to \operatorname{Hom}_R(C, E'') \to 0$ of C-injective R-modules. Also, we have the following commutative diagram.

Now the Five Lemma implies that f is an isomorphism, which implies that the sequence (*) is split exact as desired.

(ii) It is proved the same line as (i).

Proposition 2.9. Let C be a semidualizing R-module, and

$$\begin{array}{c|c} 0 & \longrightarrow M & \xrightarrow{f} & N \\ & g \\ & & \\ & \\ &$$

be a diagram of R-modules with exact row such that $M, N \in \mathcal{A}_C(R)$ and E is an injective R-module. Then there exists an R-homomorphism $h : N \to \operatorname{Hom}_R(C, E)$ making the following diagram commute.

Proof. Basically, we need to show that the sequence

$$\operatorname{Hom}_R(N, \operatorname{Hom}_R(C, E)) \to \operatorname{Hom}_R(M, \operatorname{Hom}_R(C, E)) \to 0,$$

is exact. Since $M, N \in \mathcal{A}_C(R)$, we conclude by Fact 2.4(*iii*) that $L = \operatorname{Coker} f \in \mathcal{A}_C(R)$. Since L and Hom_R(C, E) belong to $\mathcal{A}_C(R)$, we have

$$\operatorname{Ext}_{R}^{1}(L, \operatorname{Hom}_{R}(C, E)) \cong \operatorname{Ext}_{R}^{1}(C \otimes_{R} L, C \otimes_{R} \operatorname{Hom}_{R}(C, E))$$
$$\cong \operatorname{Ext}_{R}^{1}(C \otimes_{R} L, E)$$
$$= 0.$$

In the above sequence, the first isomorphism follows from [11, Lemma 3.1.13], and the second isomorphism follows from Fact 2.4(i).

Theorem 2.10. Let C be a semidualizing R-module and consider the following two short exact sequences of R-modules

$$0 \longrightarrow M \longrightarrow \operatorname{Hom}_{R}(C, E_{1}) \longrightarrow K_{1} \longrightarrow 0$$
$$0 \longrightarrow M \longrightarrow \operatorname{Hom}_{R}(C, E_{2}) \longrightarrow K_{2} \longrightarrow 0,$$

where E_1 and E_2 are injective and $M \in \mathcal{A}_C(R)$. Then

$$K_2 \oplus \operatorname{Hom}_R(C, E_1) \cong K_1 \oplus \operatorname{Hom}_R(C, E_2).$$

Proof. Note that $K_1, K_2 \in \mathcal{A}_C(R)$, by Fact 2.4(*iii*). Therefore applying the functor $C \otimes_R -$ on the above two exact sequences, we get the following two exact sequences:

 $0 \longrightarrow C \otimes_R M \longrightarrow C \otimes_R \operatorname{Hom}_R(C, E_1) \longrightarrow C \otimes_R K_1 \longrightarrow 0,$ $0 \longrightarrow C \otimes_R M \longrightarrow C \otimes_R \operatorname{Hom}_R(C, E_2) \longrightarrow C \otimes_R K_2 \longrightarrow 0.$

On the other hand, $C \otimes_R \operatorname{Hom}_R(C, E_i) \cong E_i$ for i = 1, 2. Now, the dual of Schanuel Lemma implies that

$$(C \otimes_R K_2) \oplus E_1 \cong (C \otimes_R K_1) \oplus E_2.$$

Applying the functor $\operatorname{Hom}_R(C, -)$ on the above isomorphism, implies the assertion. \Box

Let M be an R-module, and let $x \in M$ and $a \in R$. By the notation $a \mid x$, we mean that x = ay for some $y \in M$. Recall that M is called *divisible* R-module if for every non zero-divisor element $r \in R$, and every element $m \in M$ we have $r \mid m$.

Proposition 2.11. Let C be a semidualizing R-module and let E be an injective R-module. Then the following statements hold.

(i) Let a be a non zero-divisor element of R. Then for every $f \in \operatorname{Hom}_R(C, E)$ we have $a \mid f._{\operatorname{Hom}_R(C, E)} f$.

(ii) Suppose that $Ra \in \mathcal{A}_C(R)$ for every non zero-divisor element a of R. Then the R-module $\operatorname{Hom}_R(C, E)$ is a divisible.

Proof. (i) Let $f \in \operatorname{Hom}_R(C, E)$. Since a is a non zero-divisor element of R, the map $\psi : Ra \to \operatorname{Hom}_R(C, E)$ is well defined R-module homomorphism given by $\psi(ra) = rf$, for each $r \in R$. Since $Ra \cong R$ belongs to $\mathcal{A}_C(R)$, Proposition 2.9 implies that there exists an R-homomorphism $\tilde{\psi} : R \to \operatorname{Hom}_R(C, E)$ such that the following diagram commutes.

Note that $f = \psi(a) = \widetilde{\psi}(a) = a\widetilde{\psi}(1)$, and so $a|_{\operatorname{Hom}_R(C,E)}f$. (*ii*) It follows from item (*i*).

Remark 2.12. Let R be a PID, and let C be a semidualizing R-module. Assume that M is a divisible R-module. Then $\operatorname{Hom}_R(C, M)$ is a C-injective R-module.

Proposition 2.13. Let C be a semidualizing R-module, and let $\mathfrak{p}, \mathfrak{q} \in \text{Spec}(R)$. Then the following statements hold.

- (i) The multiplication by $r \in R \mathfrak{p}$ is an automorphism on $\operatorname{Hom}_R(C, \operatorname{E}_R(R/\mathfrak{p}))$.
- (*ii*) Hom_R(C, E_R(R/ \mathfrak{p})) \cong Hom_R(C, E_R(R/ \mathfrak{q})) *if and only if* $\mathfrak{p} = \mathfrak{q}$.
- (*iii*) $\operatorname{Ass}_R(\operatorname{Hom}_R(C, \operatorname{E}_R(R/\mathfrak{p}))) = \{\mathfrak{p}\}.$
- (iv) If $\varphi \in \operatorname{Hom}_R(C, \operatorname{E}_R(R/\mathfrak{p}))$, then there exists a positive integer t such that $\mathfrak{p}^t \varphi = 0$.
- (v) $\operatorname{Hom}_R(\operatorname{Hom}_R(C, \operatorname{E}_R(R/\mathfrak{p})), \operatorname{Hom}_R(C, \operatorname{E}_R(R/\mathfrak{q}))) \neq 0$ if and only if $\mathfrak{p} \subseteq \mathfrak{q}$.

Proof. (i) Let $r \in R - \mathfrak{p}$. Then $\mathbb{E}_R(R/\mathfrak{p}) \xrightarrow{r} \mathbb{E}_R(R/\mathfrak{p})$ is an isomorphism, by [4, Theorem 3.3.8 (1)] and so $\operatorname{Hom}_R(C, \mathbb{E}_R(R/\mathfrak{p})) \xrightarrow{r} \operatorname{Hom}_R(C, \mathbb{E}_R(R/\mathfrak{p}))$ is an *R*-isomorphism.

(*ii*) Assume that $\operatorname{Hom}_R(C, \operatorname{E}_R(R/\mathfrak{p})) \cong \operatorname{Hom}_R(C, \operatorname{E}_R(R/\mathfrak{q}))$. Therefore,

 $C \otimes_R \operatorname{Hom}_R(C, \operatorname{E}_R(R/\mathfrak{p})) \cong C \otimes_R \operatorname{Hom}_R(C, \operatorname{E}_R(R/\mathfrak{q})).$

By Fact 2.4(*i*), we have $E_R(R/\mathfrak{p}) \cong E_R(R/\mathfrak{q})$ and then [4, Theorem 3.3.8 (2)] implies that $\mathfrak{p} = \mathfrak{q}$. For the reverse, suppose that $\mathfrak{p} = \mathfrak{q}$, then [4, Theorem 3.3.8 (2)] implies that $E_R(R/\mathfrak{p}) \cong E_R(R/\mathfrak{q})$ and therefore, $\operatorname{Hom}_R(C, E_R(R/\mathfrak{p})) \cong \operatorname{Hom}_R(C, E_R(R/\mathfrak{q}))$.

(*iii*) In the following sequence, the first equality follows from [2, Exercise 1.2.27], and the second equality follows from Fact 2.2(i) and [4, Theorem 3.3.8 (3)].

$$Ass_R(Hom_R(C, E_R(R/\mathfrak{p}))) = Supp_R(C) \cap Ass_R(E_R(R/\mathfrak{p}))$$
$$= Spec(R) \cap \{\mathfrak{p}\}$$
$$= \{\mathfrak{p}\}.$$

(*iv*) Let $0 \neq \varphi \in \operatorname{Hom}_R(C, \operatorname{E}_R(R/\mathfrak{p}))$. Then $\operatorname{Ass}_R(R\varphi) = \{\mathfrak{p}\}$, by (*iii*). So, \mathfrak{p} is the unique minimal element in $\operatorname{Supp}_R(R\varphi)$. On the other hand, $\operatorname{Supp}_R(R\varphi) = \{\mathfrak{q} \in \operatorname{Spec}(R) | \operatorname{Ann}(\varphi) \subset \mathfrak{q}\}$. Hence \mathfrak{p} is the radical of $\operatorname{Ann}(\varphi)$, and so $\operatorname{Ann}(\varphi)$ is \mathfrak{p} -primary.

(v) By the proof of Proposition 2.7(iv), we have

 $\operatorname{Hom}_R(\operatorname{Hom}_R(C, \operatorname{E}_R(R/\mathfrak{p})), \operatorname{Hom}_R(C, \operatorname{E}_R(R/\mathfrak{q}))) \cong \operatorname{Hom}_R(\operatorname{E}_R(R/\mathfrak{p}), \operatorname{E}_R(R/\mathfrak{q})).$

Now the assertion follows from [4, Theorem 3.3.8 (5)].

3 Relative Matlis duality

Throughout this section (R, \mathfrak{m}) is a local ring. Let M be an R-module. We denote by M^{\vee} the Matlis dual $\operatorname{Hom}_R(M, \operatorname{E}_R(R/\mathfrak{m}))$ of M. There is a natural homomorphism $\varphi : M \to M^{\vee \vee}$ defined by $\varphi(x)(f) = f(x)$ for $x \in M$ and $f \in M^{\vee}$. Recall that M is *Matlis reflexive* if $M \cong M^{\vee \vee}$ under the homomorphism φ . In this section, we introduce the notion of relative Matlis duality with respect to a semidualizing R-module which gives a generalization of the notion Matlis duality.

Definition 3.1. Let C be a semidualizing R-module. For an R-module M, we denote by M^{\vee_C} the *relative Matlis dual* of M with respect to C, and define

$$M^{\vee_C} = \operatorname{Hom}_R(M, C^{\vee}).$$

There is a natural *R*-homomorphism $\psi: M \to (M^{\vee_C})^{\vee_C}$ defined by $\psi(x)(f) = f(x)$ for all $x \in M$ and $f \in M^{\vee_C}$. We say that an *R*-module *M* is *C*-Matlis reflexive if $M \cong (M^{\vee_C})^{\vee_C}$ under the homomorphism ψ .

Proposition 3.2. Let C be a semidualizing R-module, and let M be an R-module. Then the following statements hold.

- (i) $M^{\vee_C} \cong (C \otimes_R M)^{\vee}$.
- (*ii*) $M^{\vee_C} \cong \operatorname{Hom}_R(C, M^{\vee}).$
- (*iii*) $(M^{\vee_C})^{\vee_C} \cong \operatorname{Hom}_R(C, C \otimes_R M^{\vee\vee}).$
- $(iv) (M^{\vee_C})^{\vee_C} \cong (\operatorname{Hom}_R(C, C \otimes_R M))^{\vee\vee}.$

Proof. The items (i) and (ii) follow from adjointness.

(iii) In the following sequence, the first and second isomorphisms follow from item (ii), and the third isomorphism follows from [4, Theorem 3.2.11].

$$(M^{\vee_C})^{\vee_C} \cong (\operatorname{Hom}_R(C, M^{\vee}))^{\vee_C} \\\cong \operatorname{Hom}_R(C, \operatorname{Hom}_R(C, M^{\vee})^{\vee}) \\= \operatorname{Hom}_R(C, \operatorname{Hom}_R(\operatorname{Hom}_R(C, M^{\vee}), \operatorname{E}_R(R/\mathfrak{m}))) \\\cong \operatorname{Hom}_R(C, C \otimes_R \operatorname{Hom}_R(M^{\vee}, \operatorname{E}_R(R/\mathfrak{m}))) \\= \operatorname{Hom}_R(C, C \otimes_R M^{\vee \vee}).$$

(iv) In the following sequence, the first and second isomorphisms follow from items (i), and the third isomorphism follows from [4, Theorem 3.2.11].

$$(M^{\vee_C})^{\vee_C} \cong ((C \otimes_R M)^{\vee})^{\vee_C} \\\cong (C \otimes_R (C \otimes_R M)^{\vee})^{\vee} \\= (C \otimes_R \operatorname{Hom}_R (C \otimes_R M, \operatorname{E}_R(R/\mathfrak{m})))^{\vee} \\\cong (\operatorname{Hom}_R(\operatorname{Hom}_R(C, C \otimes_R M), \operatorname{E}_R(R/\mathfrak{m})))^{\vee} \\= (\operatorname{Hom}_R(C, C \otimes_R M))^{\vee \vee}.$$

Proposition 3.3. Let C be a semidualizing R-module, and let M be an R-module. Then the following statements hold.

- (i) If M is Matlis reflexive and $M \in \mathcal{A}_C(R)$, then M is C-Matlis reflexive.
- (ii) If $l_R(M) < \infty$ and $M \in \mathcal{A}_C(R)$, then M is C-Matlis reflexive.
- (iii) If $l_R(M) < \infty$, then $l_R(M^{\vee_C}) < \infty$.

Proof. (i) It follows from Proposition 3.2(iii).

(*ii*) Let $l_R(M) < \infty$. Then *M* is Matlis reflexive by [4, Theorem 3.4.1]. Now the assertion follows from item (*i*).

(*iii*) Let $l_R(M) < \infty$. Then $l_R(M^{\vee}) < \infty$, by [4, Theorem 3.4.1]. By Proposition 3.2(*ii*), $M^{\vee_C} \cong \operatorname{Hom}_R(C, M^{\vee})$ and so, $l_R(M^{\vee_C}) = l_R(\operatorname{Hom}_R(C, M^{\vee})) \leq t l_R(M^{\vee})$, where t is a number of generators of C.

Remark 3.4. A Standard fact for finite length module M is that $l_R(M^{\vee}) = l_R(M)$. It is worth noting that this fails in general for C-Matlis duality, where C is semidualizing. For example, if (R, \mathfrak{m}) is Artinian local and not Gorenstein, with $M = R/\mathfrak{m}$ and $C = \mathbb{E}_R(R/\mathfrak{m})$, then $M^{\vee_C} \cong \operatorname{Hom}_R(R/\mathfrak{m}, R)$, so $l_R(M)^{\vee_C} = \operatorname{type} R > 1 = l_R(M)$. This example also shows that modules of finite length will rarely be C-Matlis reflexive.

It is known that if R is a complete ring, then $E_R(R/\mathfrak{m})$ is a Matlis reflexive R-module. In this regard, in the following it is shown that $\operatorname{Hom}_R(C, E_R(R/\mathfrak{m}))$ is a C-Matlis reflexive R-module, where C is a semidualizing module over complete ring R.

Corollary 3.5. Let R be a complete ring and let C be a semidualizing R-module. Then $\operatorname{Hom}_R(C, \operatorname{E}_R(R/\mathfrak{m}))$ is C-Matlis reflexive.

Proof. By [4, Theorem 3.4.1(6)], we have $\operatorname{Hom}_R(\operatorname{E}_R(R/\mathfrak{m}), \operatorname{E}_R(R/\mathfrak{m})) \cong R$, since R is complete. Therefore, $(\operatorname{Hom}_R(C, \operatorname{E}_R(R/\mathfrak{m})))^{\vee\vee} \cong \operatorname{Hom}_R(C, \operatorname{E}_R(R/\mathfrak{m}))$ by [4, Theorem 3.2.11]. Now the assertion follows from Proposition 3.3(*i*) and Fact 2.4.

Remark 3.6. Note that $E_R(R/\mathfrak{m})$ is an injective cogenerator for *R*-modules. That means, $\operatorname{Hom}_R(M, E_R(R/\mathfrak{m})) \neq 0$ for any *R*-module $M \neq 0$. Also, for any *R*-module $M \neq 0$, we have $C \otimes_R M \neq 0$, by Fact 2.2(*ii*), and so

$$\operatorname{Hom}_{R}(M, \operatorname{Hom}_{R}(C, \operatorname{E}_{R}(R/\mathfrak{m}))) \cong \operatorname{Hom}_{R}(C \otimes_{R} M, \operatorname{E}_{R}(R/\mathfrak{m})) \neq 0.$$

Theorem 3.7. Let C be a semidualizing R-module, and let \widehat{R} be the m-adic completion of R. Then the following statements hold.

- (i) $\operatorname{Hom}_R(C^{\vee}, C^{\vee}) \cong \widehat{R}.$
- (*ii*) $\widehat{R} \otimes_R \operatorname{Hom}_R(C, \operatorname{E}_R(R/\mathfrak{m})) \cong \operatorname{Hom}_R(C, \operatorname{E}_R(R/\mathfrak{m})).$
- $(iii) \operatorname{Hom}_{\widehat{R}}(\widehat{C}, \operatorname{E}_{\widehat{R}}(\widehat{R}/\widehat{\mathfrak{m}})) \cong \operatorname{Hom}_{R}(C, \operatorname{E}_{R}(R/\mathfrak{m})), \ as \ \widehat{R}\text{-modules}.$
- (iv) If M is a finitely generated R-module, then $(M^{\vee_C})^{\vee_C} \cong \operatorname{Hom}_R(C, C \otimes_R \widehat{M}).$
- (v) $\operatorname{Hom}_R(C, \operatorname{E}_R(R/\mathfrak{m}))$ is Artinian as R-module and \widehat{R} -module.

Proof. (i) In the following sequence, the first isomorphism follows from adjointness, the second isomorphism follows from [4, Theorem 3.4.1], and the last one follows from [4, Theorem 3.2.14], since \hat{R} is a flat *R*-module.

$$\operatorname{Hom}_{R}(C^{\vee}, C^{\vee}) = \operatorname{Hom}_{R}(C^{\vee}, \operatorname{Hom}_{R}(C, \operatorname{E}_{R}(R/\mathfrak{m})))$$
$$\cong \operatorname{Hom}_{R}(C, C^{\vee \vee})$$
$$\cong \operatorname{Hom}_{R}(C, \widehat{C})$$
$$\cong \operatorname{Hom}_{R}(C, C \otimes_{R} \widehat{R})$$
$$\cong \widehat{R}.$$

(*ii*) In the following sequence, the first isomorphism follows from [4, Theorem 3.2.14], since \widehat{R} is a flat *R*-module, and the second isomorphism follows from [4, Theorem 3.4.1(4)].

$$\overline{R} \otimes_R \operatorname{Hom}_R(C, \operatorname{E}_R(R/\mathfrak{m})) \cong \operatorname{Hom}_R(C, \overline{R} \otimes_R \operatorname{E}_R(R/\mathfrak{m}))$$

 $\cong \operatorname{Hom}_R(C, \operatorname{E}_R(R/\mathfrak{m})).$

(iii) In the following sequence, the first isomorphism follows form [4, Theorem 3.4.1(5)], and the second isomorphism follows from adjointness.

$$\operatorname{Hom}_{\widehat{R}}(\widehat{C}, \operatorname{E}_{\widehat{R}}(\widehat{R}/\widehat{\mathfrak{m}})) \cong \operatorname{Hom}_{\widehat{R}}(C \otimes_{R} \widehat{R}, \operatorname{E}_{R}(R/\mathfrak{m}))$$
$$\cong \operatorname{Hom}_{R}(C, \operatorname{Hom}_{\widehat{R}}(\widehat{R}, \operatorname{E}_{R}(R/\mathfrak{m})))$$
$$\cong \operatorname{Hom}_{R}(C, \operatorname{E}_{R}(R/\mathfrak{m})).$$

(*iv*) By Proposition 3.2(*ii*), we have $(M^{\vee_C})^{\vee_C} \cong \operatorname{Hom}_R(C, C \otimes_R M^{\vee\vee})$. Now the assertion follows from [4, Theorem 3.4.1 (8)].

(v) The assertion follows from [4, Corollary 3.4.4], since C is a Noetherian R-module. \Box

In the following theorem, we give a characterization of Artinian modules.

Theorem 3.8. Let C be a semidualizing R-module and let M be an R-module. If M is Artinian, then $\operatorname{Hom}_R(C, M) \subseteq \operatorname{Hom}_R(C, \operatorname{E}_R(R/\mathfrak{m})^n)$ for some $n \ge 1$. In the case that M is finitely generated the converse also holds.

Proof. Let M be an Artinian R-module. Then there exists $n \ge 1$ such that $M \subseteq E_R(R/\mathfrak{m})^n$, by [4, Theorem 3.4.3]. So, $\operatorname{Hom}_R(C, M) \subseteq \operatorname{Hom}_R(C, E_R(R/\mathfrak{m})^n)$. For the reverse, let M be a finitely generated R-module such that $\operatorname{Hom}_R(C, M) \subseteq \operatorname{Hom}_R(C, E_R(R/\mathfrak{m})^n)$ for some $n \ge 1$. Note that $\operatorname{Hom}_R(C, E_R(R/\mathfrak{m})^n) \cong (C^{\vee})^n$ is an Artinian R-module, by [4, Corollary 3.4.4]. Hence $\operatorname{Hom}_R(C, M)$ is an Artinian R-module. Assume that $M \ne 0$. Then $\operatorname{Hom}_R(C, M) \ne 0$, by Fact 2.2(*ii*). So,

$$\{\mathfrak{m}\} = \operatorname{Ass}_{R}(\operatorname{Hom}_{R}(C, M))$$
$$= \operatorname{Supp}_{R}(C) \cap \operatorname{Ass}_{R}(M)$$
$$= \operatorname{Spec}(R) \cap \operatorname{Ass}_{R}(M).$$

Therefore, $Ass_R(M) = \{\mathfrak{m}\}\$ and so, M is an Artinian R-module.

Remark 3.9. Let M and N be R-modules such that $\operatorname{Supp}_R(N) = \operatorname{Spec}(R)$. Then the proof of Theorem 3.8 shows that M is Artinian if and only if $\operatorname{Hom}_R(N, M) \subseteq \operatorname{Hom}_R(N, \operatorname{E}_R(R/\mathfrak{m})^n)$ for some $n \ge 1$.

Theorem 3.10. Let C be a semidualizing R-module, and let M be an R-module. Then the following statements hold.

- (i) If M is Noetherian, then M^{\vee_C} is Artinian.
- (ii) If M^{\vee_C} is Artinian, then $C \otimes_R M$ is Noetherian.
- (iii) If M is Artinian, then M^{\vee_C} is Noetherian provided that R is complete.

Proof. (i): Assume that M is finitely generated. Then so is $C \otimes_R M$, which implies that $M^{\vee_C} \cong (C \otimes_R M)^{\vee}$ is Artinian by [4, Corollary 3.4.4].

(*ii*): Assume that M^{\vee_C} is Artinian. Then so is $(C \otimes_R M)^{\vee}$. Now the assertion follows from [4, Corollary 3.4.4].

(*iii*) Assume that R is complete and M is Artinian. Then M^{\vee} is Noetherian by [4, Theorem 3.4.7]. Also Proposition 3.2(*ii*) implies that $M^{\vee_C} \cong \operatorname{Hom}_R(C, M^{\vee})$, and so M^{\vee_C} is Noetherian.

Remark 3.11. Note that Theorem 3.10 holds true for any finitely generated R-module C; we do not have to assume that C is semidualizing.

442

Acknowledgement The authors are very grateful to the referee for several suggestions and comments that greatly improved the paper.

References

- L. L. AVRAMOV, H. B. FOXBY, Ring homomorphisms and finite Gorenstein dimension, Proc. London Math. Soc. (3), 75, 241–270 (1997).
- [2] W. BRUNS, J. HERZOG, Cohen-Macaulay rings, Cambridge University Press, Cambridge (1993).
- [3] L. W. CHRISTENSEN, Semi-dualizing complexes and their Auslander categories, *Trans. Amer. Math. Soc.*, 353, 1839–1883 (2001).
- [4] E. E. ENOCHS, O. M. G. JENDA, *Relative homological algebra*, de Gruyter Expositions in Mathematics, **30**, Walter de Gruyter & Co., Berlin (2000).
- [5] A. J. FEICKERT, S. SATHER-WAGSTAFF, Gorenstein Injective Filtrations Over Cohen-Macaulay Rings with Dualizing Modules, *Algebr. Represent. Theor.*, 22, 297– 319 (2019).
- [6] H. B. FOXBY, Gorenstein modules and related modules, Math. Scand., 31, 267–284 (1972).
- [7] E. S. GOLOD, G-dimension and generalized perfect ideals, *Trudy Mat. Inst. Steklov.*, 165, 62–66 (1984).
- [8] H. HOLM, P. JØRGENSEN, Semidualizing modules and related Gorenstein homological dimension, J. Pure Appl. Algebra, 205, 423–445 (2006).
- [9] H. HOLM, D. WHITE, Foxby equivalence over associative rings, J. Math. Kyoto Univ., 47, 781–808 (2007).
- [10] M. SALIMI, E. TAVASOLI, S. YASSEMI, Tensor and torsion products of relative injective modules with respect to a semidualizing module, *Comm. Algebra*, 43, 2632–2642 (2015).
- [11] S. SATHER-WAGSTAFF, Semidualizing modules, URL:http://www.ndsu.edu/pubweb /~ssatherw/.
- [12] S. SATHER-WAGSTAFF, T. SHARIF, D. WHITE, AB-contexts and stability for Gorenstein flat modules with respect to semidualizing modules, *Algebr. Represent. Theory*, 14, 403–428 (2011).
- [13] R. TAKAHASHI, D. WHITE, Homological aspects of semidualizing modules, Math. Scand., 106, 5–22 (2010).

[14] W. V. VASCONCELOS, Divisor theory in module categories, North-Holland Math. Stud., 14, North-Holland Publishing Co., Amsterdam (1974).

Received: 31.03.2022 Revised: 02.06.2022 Accepted: 02.08.2022

> ⁽¹⁾ Department of Mathematics, East Tehran Branch, Islamic Azad University, Tehran, Iran E-mail: elhamtavasoli@ipm.ir

> ⁽²⁾ Department of Mathematics, East Tehran Branch, Islamic Azad University, Tehran, Iran E-mail: maryamsalimi@ipm.ir