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Abstract

Let R be a commutative Noetherian ring and let C be a semidualizing R-module.
The aim of this paper is to introduce and study the relative version of Matlis duality
with respect to C and some other related topics. In particular, it is shown that over
local ring R, the relative Matlis dual of a Noetherian R-module is Artinian, and in the
case that R is complete the relative Matlis dual of an Artinian R-module is Noetherian.
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1 Introduction

Throughout this paper R is a commutative Noetherian ring and we use the notation ER(M)
for the injective envelope of an R-module M . The notion of a “semidualizing module” is
a central notion in relative homological algebra. The study of semidualizing modules was
independently initiated by Foxby [6], Vasconcelos [14] and Golod [7], which are common
generalizations of dualizing modules and finitely generated projective modules of rank one.
This notion has been investigated by many authors from different points of view; see for
example [3], [8], [12], and [13]. In [9], Holm and White defined the so-called C-injective,
C-projective and C-flat modules to characterize the Auslander class AC(R) and the Bass
class BC(R), where C is a semidualizing R-module. The notion of C-injective (C-projective,
C-flat) modules is important for the study of the relative homological algebra with respect
to semidualizing modules. For example in [8], Holm and Jørgensen used these modules
to define C-Gorenstein injective (projective, flat) modules, introduced the notions of C-
Gorenstein projective, C-Gorenstein injective, and C-Gorenstein flat dimensions, and in-
vestigated the properties of these dimensions. Many other properties of C-injective modules,
especially Tor-modules, are investigated in [5] and [10].

The first part of this paper is focused on the class of C-injective modules. We do some
preliminary work in Section 2. In particular, we review some of the results, demonstrating
the extent to which C-injective modules act like injective modules. In Section 3, we give a
generalization of the notion of Matlis duality with respect to a semidualizing module and
some related topics. For an R-module M over a local ring (R,m), we denote by M∨C the
relative Matlis dual HomR(M,HomR(C,ER(R/m))) with respect to C. There is a natural
R-homomorphism ψ : M → (M∨C )∨C defined by ψ(x)(f) = f(x) for all x ∈ M and
f ∈ M∨C . We say that an R-module M is C-Matlis reflexive if M ∼= (M∨C )∨C under
the homomorphism ψ. It is known that if R is a complete local ring, then ER(R/m) is
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a Matlis reflexive R-module. Along these lines, we shown that HomR(C,ER(R/m)) is C-
Matlis reflexive, in the case that R is complete local. Also, we investigate some properties
of the relative Matlis duality functor with respect to C which are similar to the properties
of the classical Matlis duality functor. For example it is shown that over local ring R,
the relative Matlis dual of a Noetherian R-module is Artinian, and in the case that R is
complete the relative Matlis dual of an Artinian R-module is Noetherian.

2 Background and preliminary results

We begin with a definition due to Foxby [6], generalizing Grothendieck’s notion of a dual-
izing module, and introduced independently by Golod [7] and Vasconcelos [14].

Definition 2.1. A finitely generated R-module C is called semidualizing if the natural
homothety morphism R→ HomR(C,C) is an isomorphism and Ext⩾1

R (C,C) = 0.

Many of the primary properties of semidualizing modules are investigated in [11]. In
the following, we recall some of them from [11] that will be used in the next section.

Fact 2.2. Let C be a semidualizing R-module. Then the following statements hold.

(i) SuppR(C) = Spec(R).

(ii) If M is a non-zero R-module, then HomR(C,M) ̸= 0 and C ⊗RM ̸= 0.

(iii) If f : R→ S is a flat ring homomorphism, then C ⊗R S is a semidualizing S-module.

The classes defined next are collectively known as Foxby classes. The definitions are due
to Foxby; see [1] and [3].

Definition 2.3. The Auslander class with respect to C is the class AC(R) of R-modules
M such that:

(i) TorRi (C,M) = 0 = ExtiR(C,C ⊗RM) for all i ⩾ 1, and

(ii) the natural map γMC :M → HomR(C,C ⊗RM) is an isomorphism.

The Bass class with respect to C is the class BC(R) of R-modules M such that:

(i) ExtiR(C,M) = 0 = TorRi (C,HomR(C,M)) for all i ⩾ 1, and

(ii) the natural evaluation map ξCM : C ⊗R HomR(C,M) −→M is an isomorphism.

In the following, we collect some properties of Foxby classes from [11].

Fact 2.4. Let C be a semidualizing R-module. Then the following statements hold.

(i) The class AC(R) contains all the R-modules of finite flat dimension and the class
BC(R) contains all the R-modules of finite injective dimension.

(ii) If M ∈ AC(R), then C ⊗RM ∈ BC(R). If M ∈ BC(R), then HomR(C,M) ∈ AC(R).
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(iii) The classes AC(R) and BC(R) satisfy the “two-of-three property”: If any two R-
modules in a short exact sequence are in AC(R), respectively BC(R), then so is the
third.

Definition 2.5. For a semidualizing R-module C, we set

IC(R) = {HomR(C, I)| I is an injective R-module}.

The R-modules in IC(R) are called C-injective.

Proposition 2.6. Let f : R→ S be a flat ring homomorphism, and let C be a semidualizing
R-module. If E is an injective R-module, then HomR(C,HomR(S,E)) is a (C ⊗R S)-
injective S-module.

Proof. By Fact 2.2(iii), C ⊗R S is a semidualizing S-module. Also, HomR(S,E) is an
injective S-module, by [4, Proposition 3.1.6]. Hence

HomR(C,HomR(S,E)) ∼= HomS(C ⊗R S,HomR(S,E))

is a (C ⊗R S)-injective S-module.

Proposition 2.7. Let C be a semidualizing R-module, and let F be a flat R-module. As-
sume that E and E′ are two injective R-modules. Then the following statements hold.

(i) HomR(F,HomR(C,E)) is a C-injective R-module.

(ii) HomR(C,E)⊗R F is a C-injective R-module.

(iii) HomR(C,E)⊗R (C ⊗R F ) is an injective R-module.

(iv) HomR(HomR(C,E),HomR(C,E
′)) is a flat R-module.

Proof. (i) By adjointness, we have

HomR(F,HomR(C,E)) ∼= HomR(C ⊗R F,E)
∼= HomR(C,HomR(F,E)).

By [4, Theorem 3.2.16], HomR(F,E) is an injective R-module. So, we get the assertion.
(ii) By [4, Theorem 3.2.14], HomR(C,E)⊗RF ∼= HomR(C,E⊗RF ). So HomR(C,E)⊗R

F is a C-injective R-module, since E ⊗R F is injective by [4, Theorem 3.2.16].
(iii) In the following sequence, the second isomorphism follows from [4, Theorem 3.2.14],

and the third isomorphism follows from [4, Theorem 3.2.16] and Fact 2.4(i).

HomR(C,E)⊗R (C ⊗R F ) ∼= (HomR(C,E)⊗R F )⊗R C
∼= HomR(C,E ⊗R F )⊗R C
∼= E ⊗R F

(iv) By [11, Proposition 3.1.10] and Fact 2.4(i), we have

HomR(HomR(C,E),HomR(C,E
′)) ∼= HomR(E,E

′).

Also, [4, Proposition 3.2.16] implies that HomR(E,E
′) is a flat R-module, as desired.
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Parallel to the class of injective modules in BC(R), we have the class of C-injective
modules in AC(R). Thus, C-injective modules are expected to play the role of the injec-
tive objects of AC(R). In the following two propositions, we review some of the results,
demonstrating the extent to which C-injective modules act like injective modules.

Proposition 2.8. Let C be a semidualizing R-module, and let

(∗) : 0 →W ′ →W →W ′′ → 0

be a short exact sequence of R-modules. Then the following statements hold.

(i) [9, Proposition 5.2 (c)] If W ′ and W ′′ are C-injective, then W is also C-injective and
the sequence splits.

(ii) If W ′ and W are C-injective, then W ′′ is also C-injective and the sequence splits.

Proof. (i) Let E′ and E′′ be injective R-modules such that W ′ = HomR(C,E
′), and W ′′ =

HomR(C,E
′′). Applying functor − ⊗R C to the exact sequence (∗) to get the split exact

sequence (∗∗) : 0 → E′ → C ⊗R W → E′′ → 0, since IC(R) ⊆ AC(R). Hence C ⊗R
W is an injective R-module and [13, Theorem 2.11 (b)] implies that W is C-injective.
Applying the functor HomR(C,−) on the sequence (∗∗) to get the split exact sequence
0 → HomR(C,E

′) → HomR(C,C ⊗R W ) → HomR(C,E
′′) → 0 of C-injective R-modules.

Also, we have the following commutative diagram.

0 // HomR(C,E
′) //

∼=
��

HomR(C,C ⊗RW )

f

���
�
�

// HomR(C,E
′′)

∼=
��

// 0

0 // HomR(C,E
′) // W // HomR(C,E

′′) // 0

Now the Five Lemma implies that f is an isomorphism, which implies that the sequence
(∗) is split exact as desired.

(ii) It is proved the same line as (i).

Proposition 2.9. Let C be a semidualizing R-module, and

0 // M
f //

g

��

N

HomR(C,E)

be a diagram of R-modules with exact row such that M,N ∈ AC(R) and E is an injective R-
module. Then there exists an R-homomorphism h : N → HomR(C,E) making the following
diagram commute.

0 // M
f //

g

��

N

hyys
s
s
s
s

HomR(C,E)
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Proof. Basically, we need to show that the sequence

HomR(N,HomR(C,E)) → HomR(M,HomR(C,E)) → 0,

is exact. Since M,N ∈ AC(R), we conclude by Fact 2.4(iii) that L = Coker f ∈ AC(R).
Since L and HomR(C,E) belong to AC(R), we have

Ext1R(L,HomR(C,E)) ∼= Ext1R(C ⊗R L,C ⊗R HomR(C,E))

∼= Ext1R(C ⊗R L,E)

= 0.

In the above sequence, the first isomorphism follows from [11, Lemma 3.1.13], and the
second isomorphism follows from Fact 2.4(i).

Theorem 2.10. Let C be a semidualizing R-module and consider the following two short
exact sequences of R-modules

0 // M // HomR(C,E1) // K1
// 0

0 // M // HomR(C,E2) // K2
/ / 0,

where E1 and E2 are injective and M ∈ AC(R). Then

K2 ⊕HomR(C,E1) ∼= K1 ⊕HomR(C,E2).

Proof. Note that K1,K2 ∈ AC(R), by Fact 2.4(iii). Therefore applying the functor C⊗R−
on the above two exact sequences, we get the following two exact sequences:

0 // C ⊗RM // C ⊗R HomR(C,E1) // C ⊗R K1
// 0,

0 // C ⊗RM // C ⊗R HomR(C,E2) // C ⊗R K2
// 0.

On the other hand, C⊗RHomR(C,Ei) ∼= Ei for i = 1, 2. Now, the dual of Schanuel Lemma
implies that

(C ⊗R K2)⊕ E1
∼= (C ⊗R K1)⊕ E2.

Applying the functor HomR(C,−) on the above isomorphism, implies the assertion.

Let M be an R-module, and let x ∈ M and a ∈ R. By the notation a |
M

x, we mean

that x = ay for some y ∈ M . Recall that M is called divisible R-module if for every non
zero-divisor element r ∈ R, and every element m ∈M we have r |

M

m.

Proposition 2.11. Let C be a semidualizing R-module and let E be an injective R-module.
Then the following statements hold.

(i) Let a be a non zero-divisor element of R. Then for every f ∈ HomR(C,E) we have
a |
HomR(C,E)

f .
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(ii) Suppose that Ra ∈ AC(R) for every non zero-divisor element a of R. Then the
R-module HomR(C,E) is a divisible.

Proof. (i) Let f ∈ HomR(C,E). Since a is a non zero-divisor element of R, the map
ψ : Ra → HomR(C,E) is well defined R-module homomorphism given by ψ(ra) = rf , for
each r ∈ R. Since Ra ∼= R belongs to AC(R), Proposition 2.9 implies that there exists an

R-homomorphism ψ̃ : R→ HomR(C,E) such that the following diagram commutes.

0 // Ra �
� //

ψ

��

R

ψ̃yys
s
s
s
s

HomR(C,E)

Note that f = ψ(a) = ψ̃(a) = aψ̃(1), and so a|HomR(C,E)f .
(ii) It follows from item (i).

Remark 2.12. Let R be a PID, and let C be a semidualizing R-module. Assume that M
is a divisible R-module. Then HomR(C,M) is a C-injective R-module.

Proposition 2.13. Let C be a semidualizing R-module, and let p, q ∈ Spec(R). Then the
following statements hold.

(i) The multiplication by r ∈ R− p is an automorphism on HomR(C,ER(R/p)).

(ii) HomR(C,ER(R/p)) ∼= HomR(C,ER(R/q)) if and only if p = q.

(iii) AssR(HomR(C,ER(R/p))) = {p}.

(iv) If φ ∈ HomR(C,ER(R/p)), then there exists a positive integer t such that ptφ = 0.

(v) HomR(HomR(C,ER(R/p)),HomR(C,ER(R/q))) ̸= 0 if and only if p ⊆ q.

Proof. (i) Let r ∈ R − p. Then ER(R/p)
r−→ ER(R/p) is an isomorphism, by [4, Theorem

3.3.8 (1)] and so HomR(C,ER(R/p))
r−→ HomR(C,ER(R/p)) is an R-isomorphism.

(ii) Assume that HomR(C,ER(R/p)) ∼= HomR(C,ER(R/q)). Therefore,

C ⊗R HomR(C,ER(R/p)) ∼= C ⊗R HomR(C,ER(R/q)).

By Fact 2.4(i), we have ER(R/p) ∼= ER(R/q) and then [4, Theorem 3.3.8 (2)] implies that
p = q. For the reverse, suppose that p = q, then [4, Theorem 3.3.8 (2)] implies that
ER(R/p) ∼= ER(R/q) and therefore, HomR(C,ER(R/p)) ∼= HomR(C,ER(R/q)).

(iii) In the following sequence, the first equality follows from [2, Exercise 1.2.27], and
the second equality follows from Fact 2.2(i) and [4, Theorem 3.3.8 (3)].

AssR(HomR(C,ER(R/p))) = SuppR(C) ∩AssR(ER(R/p))

= Spec(R) ∩ {p}
= {p}.
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(iv) Let 0 ̸= φ ∈ HomR(C,ER(R/p)). Then AssR(Rφ) = {p}, by (iii). So, p is
the unique minimal element in SuppR(Rφ). On the other hand, SuppR(Rφ) = {q ∈
Spec(R)|Ann(φ) ⊂ q}. Hence p is the radical of Ann(φ), and so Ann(φ) is p-primary.

(v) By the proof of Proposition 2.7(iv), we have

HomR(HomR(C,ER(R/p)),HomR(C,ER(R/q))) ∼= HomR(ER(R/p),ER(R/q)).

Now the assertion follows from [4, Theorem 3.3.8 (5)].

3 Relative Matlis duality

Throughout this section (R,m) is a local ring. LetM be anR-module. We denote byM∨ the
Matlis dual HomR(M,ER(R/m)) of M . There is a natural homomorphism φ : M → M∨∨

defined by φ(x)(f) = f(x) for x ∈ M and f ∈ M∨. Recall that M is Matlis reflexive if
M ∼=M∨∨ under the homomorphism φ. In this section, we introduce the notion of relative
Matlis duality with respect to a semidualizing R-module which gives a generalization of the
notion Matlis duality.

Definition 3.1. Let C be a semidualizing R-module. For an R-module M , we denote by
M∨C the relative Matlis dual of M with respect to C, and define

M∨C = HomR(M,C∨).

There is a natural R-homomorphism ψ :M → (M∨C )∨C defined by ψ(x)(f) = f(x) for all
x ∈M and f ∈M∨C . We say that an R-module M is C-Matlis reflexive if M ∼= (M∨C )∨C

under the homomorphism ψ.

Proposition 3.2. Let C be a semidualizing R-module, and let M be an R-module. Then
the following statements hold.

(i) M∨C ∼= (C ⊗RM)∨.

(ii) M∨C ∼= HomR(C,M
∨).

(iii) (M∨C )∨C ∼= HomR(C,C ⊗RM∨∨).

(iv) (M∨C )∨C ∼= (HomR(C,C ⊗RM))∨∨.

Proof. The items (i) and (ii) follow from adjointness.
(iii) In the following sequence, the first and second isomorphisms follow from item (ii),

and the third isomorphism follows from [4, Theorem 3.2.11].

(M∨C )∨C ∼= (HomR(C,M
∨))∨C

∼= HomR(C,HomR(C,M
∨)∨)

= HomR(C,HomR(HomR(C,M
∨),ER(R/m)))

∼= HomR(C,C ⊗R HomR(M
∨,ER(R/m)))

= HomR(C,C ⊗RM∨∨).
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(iv) In the following sequence, the first and second isomorphisms follow from items (i),
and the third isomorphism follows from [4, Theorem 3.2.11].

(M∨C )∨C ∼= ((C ⊗RM)∨)∨C

∼= (C ⊗R (C ⊗RM)∨)∨

= (C ⊗R HomR(C ⊗RM,ER(R/m)))∨

∼= (HomR(HomR(C,C ⊗RM),ER(R/m)))∨

= (HomR(C,C ⊗RM))∨∨.

Proposition 3.3. Let C be a semidualizing R-module, and let M be an R-module. Then
the following statements hold.

(i) If M is Matlis reflexive and M ∈ AC(R), then M is C-Matlis reflexive.

(ii) If lR(M) <∞ and M ∈ AC(R), then M is C-Matlis reflexive.

(iii) If lR(M) <∞, then lR(M
∨C ) <∞.

Proof. (i) It follows from Proposition 3.2(iii).

(ii) Let lR(M) < ∞. Then M is Matlis reflexive by [4, Theorem 3.4.1]. Now the
assertion follows from item (i).

(iii) Let lR(M) < ∞. Then lR(M
∨) < ∞, by [4, Theorem 3.4.1]. By Proposition

3.2(ii), M∨C ∼= HomR(C,M
∨) and so, lR(M

∨C ) = lR(HomR(C,M
∨)) ⩽ tlR(M

∨), where t
is a number of generators of C.

Remark 3.4. A Standard fact for finite length module M is that lR(M
∨) = lR(M). It is

worth noting that this fails in general for C-Matlis duality, where C is semidualizing. For
example, if (R,m) is Artinian local and not Gorenstein, with M = R/m and C = ER(R/m),
thenM∨C ∼= HomR(R/m, R), so lR(M)∨C = typeR > 1 = lR(M). This example also shows
that modules of finite length will rarely be C-Matlis reflexive.

It is known that if R is a complete ring, then ER(R/m) is a Matlis reflexive R-module.
In this regard, in the following it is shown that HomR(C,ER(R/m)) is a C-Matlis reflexive
R-module, where C is a semidualizing module over complete ring R.

Corollary 3.5. Let R be a complete ring and let C be a semidualizing R-module. Then
HomR(C,ER(R/m)) is C-Matlis reflexive.

Proof. By [4, Theorem 3.4.1(6)], we have HomR(ER(R/m),ER(R/m)) ∼= R, since R is com-
plete. Therefore, (HomR(C,ER(R/m)))∨∨ ∼= HomR(C,ER(R/m)) by [4, Theorem 3.2.11].
Now the assertion follows from Proposition 3.3(i) and Fact 2.4.
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Remark 3.6. Note that ER(R/m) is an injective cogenerator for R-modules. That means,
HomR(M,ER(R/m)) ̸= 0 for any R-module M ̸= 0. Also, for any R-module M ̸= 0, we
have C ⊗RM ̸= 0, by Fact 2.2(ii), and so

HomR(M,HomR(C,ER(R/m))) ∼= HomR(C ⊗RM,ER(R/m))

̸= 0.

Theorem 3.7. Let C be a semidualizing R-module, and let R̂ be the m-adic completion of
R. Then the following statements hold.

(i) HomR(C
∨, C∨) ∼= R̂.

(ii) R̂⊗R HomR(C,ER(R/m)) ∼= HomR(C,ER(R/m)).

(iii) HomR̂(Ĉ,ER̂(R̂/m̂)) ∼= HomR(C,ER(R/m)), as R̂-modules.

(iv) If M is a finitely generated R-module, then (M∨C )∨C ∼= HomR(C,C ⊗R M̂).

(v) HomR(C,ER(R/m)) is Artinian as R-module and R̂-module.

Proof. (i) In the following sequence, the first isomorphism follows from adjointness, the
second isomorphism follows from [4, Theorem 3.4.1], and the last one follows from [4,

Theorem 3.2.14], since R̂ is a flat R-module.

HomR(C
∨, C∨) = HomR(C

∨,HomR(C,ER(R/m)))
∼= HomR(C,C

∨∨)

∼= HomR(C, Ĉ)

∼= HomR(C,C ⊗R R̂)
∼= R̂.

(ii) In the following sequence, the first isomorphism follows from [4, Theorem 3.2.14],

since R̂ is a flat R-module, and the second isomorphism follows from [4, Theorem 3.4.1(4)].

R̂⊗R HomR(C,ER(R/m)) ∼= HomR(C, R̂⊗R ER(R/m))
∼= HomR(C,ER(R/m)).

(iii) In the following sequence, the first isomorphism follows form [4, Theorem 3.4.1(5)],
and the second isomorphism follows from adjointness.

HomR̂(Ĉ,ER̂(R̂/m̂)) ∼= HomR̂(C ⊗R R̂,ER(R/m))

∼= HomR(C,HomR̂(R̂,ER(R/m)))
∼= HomR(C,ER(R/m)).

(iv) By Proposition 3.2(ii), we have (M∨C )∨C ∼= HomR(C,C ⊗RM∨∨). Now the asser-
tion follows from [4, Theorem 3.4.1 (8)].

(v) The assertion follows from [4, Corollary 3.4.4], since C is a Noetherian R-module.
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In the following theorem, we give a characterization of Artinian modules.

Theorem 3.8. Let C be a semidualizing R-module and let M be an R-module. If M is
Artinian, then HomR(C,M) ⊆ HomR(C,ER(R/m)n) for some n ⩾ 1. In the case that M
is finitely generated the converse also holds.

Proof. LetM be an Artinian R-module. Then there exists n ⩾ 1 such thatM ⊆ ER(R/m)n,
by [4, Theorem 3.4.3]. So, HomR(C,M) ⊆ HomR(C,ER(R/m)n). For the reverse, let
M be a finitely generated R-module such that HomR(C,M) ⊆ HomR(C,ER(R/m)n) for
some n ⩾ 1. Note that HomR(C,ER(R/m)n) ∼= (C∨)n is an Artinian R-module, by [4,
Corollary 3.4.4]. Hence HomR(C,M) is an Artinian R-module. Assume that M ̸= 0. Then
HomR(C,M) ̸= 0, by Fact 2.2(ii). So,

{m} = AssR(HomR(C,M))

= SuppR(C) ∩AssR(M)

= Spec(R) ∩AssR(M).

Therefore, AssR(M) = {m} and so, M is an Artinian R-module.

Remark 3.9. LetM and N be R-modules such that SuppR(N) = Spec(R). Then the proof
of Theorem 3.8 shows thatM is Artinian if and only if HomR(N,M) ⊆ HomR(N,ER(R/m)n)
for some n ⩾ 1.

Theorem 3.10. Let C be a semidualizing R-module, and let M be an R-module. Then the
following statements hold.

(i) If M is Noetherian, then M∨C is Artinian.

(ii) If M∨C is Artinian, then C ⊗RM is Noetherian.

(iii) If M is Artinian, then M∨C is Noetherian provided that R is complete.

Proof. (i): Assume that M is finitely generated. Then so is C ⊗R M , which implies that
M∨C ∼= (C ⊗RM)∨ is Artinian by [4, Corollary 3.4.4].

(ii): Assume that M∨C is Artinian. Then so is (C ⊗RM)∨. Now the assertion follows
from [4, Corollary 3.4.4].

(iii) Assume that R is complete and M is Artinian. Then M∨ is Noetherian by [4,
Theorem 3.4.7]. Also Proposition 3.2(ii) implies that M∨C ∼= HomR(C,M

∨), and so M∨C

is Noetherian.

Remark 3.11. Note that Theorem 3.10 holds true for any finitely generated R-module C;
we do not have to assume that C is semidualizing.
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