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Abstract

If pk(a,m;n) denotes the number of partitions of n into kth powers with a number
of parts that is congruent to a modulo m, recent work of the author (2020) showed
that p2(0, 2;n) ∼ p2(1, 2;n) and that the sign of the difference p2(0, 2;n)− p2(1, 2;n)
alternates with the parity of n as n → ∞. The aim of this paper is to study this
problem in its full generality. By an analytic argument using the circle method and
an upper bound on exponential Gauss sums related to center density estimates arising
from the sphere packing problem, we prove that the same results hold for any k ≥ 2. In
addition, by a purely combinatorial argument, we show that the sign of the difference
pk(0, 2;n)− pk(1, 2;n) alternates with the parity of n for a larger class of partitions.
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1 Introduction and statement of results

1.1 Motivation

A partition of a positive integer n is a non-increasing sequence (often written as a sum) of
positive integers, called parts, that add up to n. By p(n) we denote the number of partitions
of n, and by convention we let p(0) = 1. For example, p(4) = 5 as the partitions of 4 are 4,
3+1, 2+2, 2+1+1, and 1+1+1+1, this being the case of unrestricted partitions. One can
also consider, however, restricted partitions with various conditions imposed on their parts.
Generally, these are partitions with all parts being in a set S satisfying certain properties.
If S ⊆ N is any (finite or infinite) set, we denote by pS(n) the number of partitions of n
into parts that all belong to the set S. If S = N, then pS(n) = p(n).

In the particular case when S = {nk : n ∈ N} is the set of perfect kth powers, with
k ∈ N, we will use the shorthand notation pk(n) instead. It is with this class of restricted
partitions that the current paper will mostly be concerned. Additionally, we let pS(m;n)
denote the number of partitions of n with exactly m parts, all from S, and pS(a,m;n) that
of partitions of n with a number of parts, all from S, which is congruent to a modulo m. The
quantities pk(m;n) and pk(a,m;n) are defined in a similar fashion for the special case when
S = {nk : n ∈ N} as explained above. Answering a conjecture formulated by Bringmann
and Mahlburg [7], the author proved the following [8].
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Theorem 1 (Ciolan [8]). As n → ∞, we have

p2(0, 2;n) ∼ p2(1, 2;n) ∼
p2(n)

2

and {
p2(0, 2;n) > p2(1, 2;n) if n is even,

p2(0, 2;n) < p2(1, 2;n) if n is odd.
(1.1)

The statement of Theorem 1, which is about partitions into squares, raises the natural
question whether the same type of result holds for partitions into higher powers, or, more
generally, into parts that are certain polynomial functions. Also, one might wonder whether
similar results hold for moduli m > 2.

1.2 Historical background

The earliest result of which the author is aware in the literature goes back to 1876 and is due
to Glaisher [15], who proved that p1(0, 2;n)− p1(1, 2;n) = (−1)npo(n), where po(n) counts
partitions of n into odd parts without repetitions. To compute asymptotics for p(n), Hardy
and Ramanujan [16] designed the famous circle method, a breakthrough of their times, while
Wright [26] improved on their method and computed asymptotics for pk(n). More recently,
Vaughan [25] gave a simpler asymptotic formula for k = 2. His approach was extended to
any k ≥ 2 by Gafni [13], who also found asymptotics for the number of partitions into kth
prime powers [14], whereas Berndt, Malik and Zaharescu [6] further generalized the results
from [13] to partitions into kth powers in a residue class.

Roth and Szekeres [20] computed asymptotics for pU (n) in the case when U = {un}n≥1

is a sequence of positive integers which is increasing for n ≥ n0 and which satisfies a few
growth properties, see conditions (I)–(II) from [20, p. 241], under the restriction that no
repeated parts are allowed. Liardet and Thomas [17] computed pU (n) while removing this
condition and allowing repetitions. An example of such a set U = {un}n≥1 is given by
un = f(n), where f is a polynomial such that f(N) ⊆ N and with the property that for
every prime p there exists an integer n such that p ∤ f(n). Certainly, f(n) = nk is such a
polynomial, for any k ∈ N. Most recently, Zhou [27] proved that if U = {f(n)}n≥1, with
f : N → N a polynomial function satisfying similar conditions to those from [20], then

pU (a,m;n) ∼ pU (n)

m

holds uniformly as n → ∞ for all m = o
(
n

1
2+2 deg f (log n)−

1
2

)
, for any 0 ≤ a ≤ m − 1.

However, the methods from [27] do not help in proving the inequalities (1.1).

In a modest attempt to paint a full picture of this otherwise very rich and active area,
we mention also the work of Dunn and Robles [12], who, using polylogarithms and the
Matsumoto-Weng zeta function (see [19]), studied partitions into polynomial parts and
established asymptotics for pAf

, where f ∈ Z[x] is any polynomial such that f(N) ⊆ N and
Af = {f(n) : n ∈ N}.
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1.3 Statement of results

The purpose of this paper is two-fold. First, we prove that Theorem 1 extends, indeed, to
partitions into perfect kth powers, for any k ≥ 2. Second, we investigate whether inequalities
of the form (1.3) hold for more general types of partitions. For this purpose, we would like
to give both an analytic and a combinatorial proof to Theorem 2, since we believe that the
two approaches, independent of one another, are instructive in their own right.

Theorem 2. For any k ≥ 2 we have, as n → ∞,

pk(0, 2;n) ∼ pk(1, 2;n) ∼
pk(n)

2
(1.2)

and {
pk(0, 2;n) > pk(1, 2;n) if n is even,

pk(0, 2;n) < pk(1, 2;n) if n is odd.
(1.3)

The analytic approach relies on Wright’s modular transformations for partitions into
kth powers [26], on a modification of Meinardus’s Theorem [18] on asymptotics of infinite
product generating functions which combines the circle and the saddle-point method, and on
estimates of exponential Gauss sums; in particular, we invoke a bound that was established
by Banks and Shparlinski [5] with the somewhat unexpected and surprising help of the
effective lower estimates on center density found by Cohn and Elkies [10] in their work on
the sphere packing problem.

We find the connection between our partition question and the sphere packing problem
to be rather interesting, and it is also this precise step that allows for a generalization to
k ≥ 2 of the argument given in [8] for dealing with the case k = 2.While the equidistribution
statement follows as a particular case of Corollary 1.2 from [27], our argument, which is
independent from that in [27], proves both the equidistribution and the inequalities.

Whereas the combinatorial approach simplifies our work greatly in establishing the
inequalities (1.3), it is not of much help in proving equidistribution results, at least not
in a more general framework. Nevertheless, it allows us to prove the following.

Theorem 3. Let α be any positive integer and let f : N → N be an increasing function
such that

a) f(1) = 1;

b) f(n) is odd if n is odd;

c) f(2n) = 2αf(n) for every n ∈ N.

If S = {f(n)}n≥1, then {
pS(0, 2;n) ≥ pS(1, 2;n) if n is even,

pS(0, 2;n) ≤ pS(1, 2;n) if n is odd,
(1.4)

and the inequalities are strict for any large enough n.

As it is easy to see that the power functions fk(n) = nk satisfy the conditions of Theorem
3 (with α = 2k−1), the inequalities (1.3) follow as an immediate consequence of the above
result.
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1.4 Notation

Before proceeding further, let us introduce some notation used in the sequel. By ζn =
e

2πi
n we will denote the standard primitive nth root of unity. Whenever required to take

logarithms or to extract roots of complex numbers, we will use principal branches, and the
principal branch of the complex logarithm will be denoted by Log. The “little” and “big oh”
notation o and O are used throughout with their standard meaning, and we will also make
use of the Vinogradov symbol �, writing f � g to denote the fact that f(x) = O(g(x)) as
x → ∞. For reasons of space, we will sometimes use exp(z) instead of ez.

1.5 Outline

The paper is structured as follows. In Section 2 we use generating functions to give a
reformulation of our problem. In Section 3 we discuss the combinatorial approach and we
give the proof of Theorem 3. In Section 4 we present the strategy of the analytic proof
and we discuss the similarities and differences with the proof of the same result from [8] in
the case k = 2. This will also be done, throughout the paper, in the form of commentaries
placed at the end of the relevant sections. We consider this to be for the benefit of the
reader interested in comparing the present paper with [8]. In Sections 5 and 6 we prove two
estimates which, combined, will provide the analytic proof of Theorem 2, given in Section
7. We conclude this paper by proposing some open problems and future research directions
in Section 8.

2 A reformulation

2.1 Generating functions

It is well-known (see, for example, [1, Ch. 1]) that

∞∏
n=1

(1− qn
k

)−1 =

∞∑
n=0

pk(n)q
n, (2.1)

where, as usual, for τ ∈ H (the upper half-plane) we set q = e2πiτ . Letting

Hk(q) =

∞∑
n=0

pk(n)q
n, Hk(w; q) =

∞∑
ℓ=0

∞∑
n=0

pk(ℓ;n)w
ℓqn, Hk,a,m(q) =

∞∑
n=0

pk(a,m;n)qn,

it is not difficult to see, from the orthogonality relations satisfied by the roots of unity, that

Hk,a,m(q) =
1

m
Hk(q) +

1

m

m−1∑
j=1

ζ−aj
m Hk(ζ

j
m; q). (2.2)

Using, in turn, (2.2) and eq. (2.1.1) from [1, p. 16], we obtain

Hk,0,2(q)−Hk,1,2(q) = Hk(−1; q) =

∞∏
n=1

1

1 + qnk ,
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and, on substituting q 7→ −q, we have

Hk(−1;−q) =

∞∏
n=1

1

1 + (−q)nk =

∞∏
n=1

1

(1 + q2knk)(1− q(2n+1)k)

=

∞∏
n=1

(1− q2
knk

)2

(1− q2k+1nk)(1− qnk)
. (2.3)

On noting now that

Hk(−1;−q) = Hk,0,2(−q)−Hk,1,2(−q) =

∞∑
n=0

ak(n)q
n,

where

ak(n) =

{
pk(0, 2;n)− pk(1, 2;n) if n is even,

pk(1, 2;n)− pk(0, 2;n) if n is odd,

we see that proving the inequalities from Theorem 2 is equivalent to showing that the
coefficients ak(n) of the infinite product Hk(−1;−q), expressed as a q-series, are positive
as n → ∞. For simplicity, we will denote Gk(q) = Hk(−1;−q). In order to extract more
information about the coefficients ak(n), one might try to compute them asymptotically.
Indeed, this is the motivation of our analytic approach, and this is what we are going to do
in Sections 4–7.

3 A combinatorial approach

The attentive reader (and especially the reader familiar with partition generating functions)
might have noticed that all the previous identities hold not only for partitions into parts
from the set {nk : n ∈ N} but, more generally, for any set S ⊆ N of positive integers.
Therefore, all steps in Section 2.1 can be redone with any set S instead of the set of kth
powers. In this regard, identity (2.1) becomes∏

n∈S

(1− qn)−1 =

∞∑
n=0

pS(n)q
n,

and all the other identities following it, including the orthogonality relation (2.2), turn into
their corresponding analogues. More precisely, for a given (infinite) set S ⊆ N, if we let

aS(n) =

{
pS(0, 2;n)− pS(1, 2;n) if n is even,

pS(1, 2;n)− pS(0, 2;n) if n is odd,

and

HS(w; q) =

∞∑
m=0

∞∑
n=0

pS(m;n)wmqn,

then we obtain

HS(−1;−q) =
∏
n∈S

1

1 + (−q)n
=

∞∑
n=0

aS(n)q
n.
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In Section 2.1, in the particular case when S = {nk : n ∈ N}, we expressed the above
product as shown in (2.3). However, we can rewrite this product in another way. Indeed,
if S = {f(n) : n ∈ N} with f : N → N as in Theorem 3, we have

HS(−1;−q) =
∏
ℓ∈S

1− (−q)ℓ

1− (−q)2ℓ
=
∏
n≥1

1− (−q)f(n)

1− (−q)2f(n)

=
∏
n≥1

1− (−q)f(2n)

1− q2f(n)

∏
n≥1

(
1− (−q)f(2n−1)

)
=
∏
n≥1

1− qf(2n)

1− q2f(n)

∏
n≥1

(
1 + qf(2n−1)

)
, (3.1)

where the last identity follows from the fact that f satisfies properties b) and c) of Theorem
3. In light of c), we further have

HS(−1;−q) =
∏
n≥1

1− q2αf(n)

1− q2f(n)

∏
n≥1

(
1 + qf(2n−1)

)
. (3.2)

Proof of Theorem 3. If α = 1, the first product in the right-hand side of (3.2) vanishes and
the only function satisfying the conditions is f(n) = n, which corresponds to unrestricted
partitions. From (3.2) one recovers precisely Glaisher’s identity mentioned in Section 1.2.
Let us now assume α ≥ 2. Regarded as a series in q2, the first product in (3.2) counts
partitions into parts from S with no part appearing α times, while the second product,
regarded as a series in q, counts partitions into distinct parts from T = {f(2n−1) : n ∈ N}.
Therefore, we obtain

aS(n) =
∑

0≤k≤n

cS,α(k)dT,1(n− k), (3.3)

where cS,α(n) is the number of partitions of n into parts from S with no part appearing
α times, while dT,1(n) is the number of partitions of n into distinct parts from T (we set
cS,α(0) = dT,1(0) = 1). It is now clear that aS(n) ≥ 0 for any n ≥ 1, and that aS(n) > 0
for large enough n.

Combinatorial proof of Theorem 2. As the sets S = {nk : n ∈ N} satisfy the hypotheses of
Theorem 3 for any k ≥ 2 (and, in fact, for any k ≥ 1) the inequalities (1.3) follow as an easy
consequence of Theorem 3. The asymptotics of both cS,α(k) and dT,1(k) can be obtained
as special cases of the work of Liardet and Thomas, see Theorem 14.2 in [17]. Since the
asymptotics will explicitly follow from our analytic proof of Theorem 2, we leave it as an
exercise to the interested reader to derive asymptotics for aS(n) using (3.3) and the results
of [17], and to thus prove the equidistribution.

4 Strategy of the analytic approach

Having discussed the combinatorial approach to Theorems 2 and 3, we will focus from now
on solely on the analytic aspects and on partitions into kth powers. For this, we recall the
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first representation of the product Gk(q) given in (2.3), which says that

Gk(q) =

∞∏
n=1

(1− q2
knk

)2

(1− q2k+1nk)(1− qnk)
=

∞∑
n=0

ak(n)q
n.

Our objective is to compute asymptotics for the coefficients ak(n) and to prove that they
are positive as n → ∞.

4.1 Meinardus’s Theorem

The reader familiar with asymptotics of infinite product generating functions might have
already recognized the similarity between the infinite product expression for Gk(q) and the
one studied by Meinardus in [18], which, on writing q = e−τ with Re(τ) > 0, is of the form

F (q) =

∞∏
n=1

(1− qn)−an =

∞∑
n=0

r(n)qn,

with an ≥ 0. Under certain assumptions on which we do not elaborate now, Meinardus
found asymptotic formulas for the coefficients r(n). More precisely, if the Dirichlet series

D(s) =

∞∑
n=1

an
ns

(s = σ + it)

converges for σ > α > 0 and admits a meromorphic continuation to the region σ > −c0 (0 <
c0 < 1), region in which D(s) is holomorphic everywhere except for a simple pole at s = α
with residue A, then the following holds.

Theorem 4 (Andrews [1, Ch. 6], cf. Meinardus [18]). As n → ∞, we have

r(n) = cnκ exp

(
n

α
α+1

(
1 +

1

α

)
(AΓ(α+ 1)ζ(α+ 1))

1
α+1

)
(1 +O(n−κ1)),

where

c = eD
′(0) (2π(α+ 1))

− 1
2 (AΓ(α+ 1)ζ(α+ 1))

1−2D(0)
2+2α ,

κ =
2D(0)− 2− α

2(α+ 1)
,

κ1 =
α

α+ 1
min

{
c0
α

− δ

4
,
1

2
− δ

}
,

with δ > 0 arbitrary.

Remark 1. We also refer the reader to the work of Debruyne and Tenenbaum [11], who,
under some assumptions, investigated how the saddle-point method (see also Section 7.1)
can be used to derive asymptotic information about pΛ(n) solely from the analytic properties
of the associated Dirichlet series LΛ(s) =

∑
n∈Λ n−s, for certain sets Λ ⊆ N. Their results

generalize and simplify several aspects from [6], [12] and [13]; e.g., they can be used to
compute some constants that are not explicit in the asymptotics of pAf

(n) from [12].
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Returning to our argument, if we write τ = y−2πix, an application of Cauchy’s Theorem
gives

r(n) =
1

2πi

∫
C

F (q)

qn+1
dq = eny

∫ 1
2

− 1
2

F (e−y+2πix)e−2πinxdx, (4.1)

where C is the (positively oriented) circle of radius e−y around the origin. Meinardus found
the estimate stated in Theorem 4 by splitting the integral from (4.1) into two integrals
evaluated over |x| ≤ yβ and over yβ ≤ |x| ≤ 1

2 , for a certain choice of β in terms of α, and
by showing that the former integral gives the main contribution for the coefficients r(n),
while the latter is only an error term.

The positivity condition an ≥ 0 is, however, essential in Meinardus’s proof and, as
one can readily note, this is not satisfied by the factors from the product Gk(q). For this
reason, we have to modify the argument using the circle method and Wright’s modular
transformations [26] for partitions into kth powers. This will show that the integral over
yβ ≤ |x| ≤ 1

2 does not contribute to the main term.
On comparing with what was done for the case k = 2, the reader might notice that,

up to this point, the strategy described here is analogous to that from [8]. The essential
difference is that, in the case k = 2, a numerical check ([8, Lemma 5]) had to be carried
out in order to prove a certain estimate ([8, Lemma 6]). This numerical check was rather
technical and certainly cannot be carried out for all k ≥ 2. In the present paper, we show
how to avoid it by using a bound on Gauss sums due to Banks and Shparlinski [5] and by
modifying a certain step in the argument from [8]. It is precisely this step that allows a
significantly simpler proof and, at the same time, a generalization to any k ≥ 2.

4.2 Two estimates

Keeping the notation introduced in the previous subsection and writing q = e−τ , with
τ = y − 2πix and y > 0, we recall that

Gk(q) =

∞∏
n=1

(1− q2
knk

)2

(1− q2k+1nk)(1− qnk)
. (4.2)

Let s = σ + it and

Dk(s) =

∞∑
n=1

1

nks
+

∞∑
n=1

1

(2k+1nk)s
− 2

∞∑
n=1

1

(2knk)s
= (1 + 2−s(k+1) − 21−sk)ζ(ks),

which is convergent for σ > 1
k = α, has a meromorphic continuation to C and a simple pole

at s = 1
k with residue A = 1

k · 2− k+1
k .

If C is the (positively oriented) circle of radius e−y around the origin, Cauchy’s Theorem
tells us that

ak(n) =
1

2πi

∫
C

Gk(q)

qn+1
dq = eny

∫ 1
2

− 1
2

Gk(e
−y+2πix)e−2πinxdx, (4.3)

for n > 0. Set

β = 1 +
α

2

(
1− δ

2

)
, with 0 < δ <

2

3
, (4.4)
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so that
3k + 1

3k
< β <

2k + 1

2k
, (4.5)

and rewrite
ak(n) = Ik(n) + Jk(n),

where

Ik(n) = eny
∫ yβ

−yβ

Gk(q)e
−2πinxdx and Jk(n) = eny

∫
yβ≤|x|≤ 1

2

Gk(q)e
−2πinxdx.

As already mentioned, the idea is that the main contribution for ak(n) is given by Ik(n),
which we are able to estimate using standard integration techniques. Showing that Jk(n)
is an error term will prove to be much trickier.

5 The main term Ik(n)

In this section, we prove the following estimate.

Lemma 1. If |x| ≤ 1
2 and |Arg (τ)| ≤ π

4 , then

Gk(e
−τ ) = 2−

k−1
2 exp

(
AΓ

(
1

k

)
ζ

(
1 +

1

k

)
τ−

1
k +O(yc0)

)
holds uniformly in x as y → 0, for any 0 < c0 < 1.

Proof. By taking logarithms in (4.2), we obtain

Log (Gk(e
−τ )) =

∞∑
k=1

1

k

∞∑
n=1

(
e−knkτ + e−2k+1knkτ − 2e−2kknkτ

)
.

Using the Mellin inversion formula (see, e.g., [4, p. 54]) we get

e−τ =
1

2πi

∫ σ0+i∞

σ0−i∞
τ−sΓ(s)ds

for Re(τ) > 0 and σ0 > 0, thus

Log (Gk(e
−τ )) =

1

2πi

∫ α+1+i∞

α+1−i∞
Γ(s)

∞∑
k=1

1

k

∞∑
n=1

((knkτ)−s + (2k+1knkτ)−s − 2(2kknkτ)−s)ds

=
1

2πi

∫ k+1
k +i∞

k+1
k −i∞

Γ(s)Dk(s)ζ(s+ 1)τ−sds. (5.1)

By assumption,
|τ−s| = |τ |−σet·Arg (τ) ≤ |τ |−σe

π
4 |t|.

Well-known results (see, e.g., [2, Corollary 1.4.4] and [23, Ch. 5.1]) state that the bounds

Dk(s) = O(|t|c1), ζ(s+ 1) = O(|t|c2), Γ(s) = O
(
e−

π|t|
2 |t|c3

)
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hold uniformly in σ for −c0 ≤ σ ≤ k+1
k = α+1 as |t| → ∞, for any 0 < c0 < 1 and for some

c1, c2, c3 > 0, which means that we may shift the path of integration from σ = α + 1 to
σ = −c0 (we impose the condition c0 < 1 to avoid the poles of Γ(s)). A quick computation

gives Dk(0) = 0 and D′
k(0) = − (k−1) log 2

2 . The integrand in (5.1) has poles at s = 1
k and

s = 0, with residues equal to τ−
1
k and − (k−1) log 2

2 respectively, whereas the remaining
integral equals

1

2πi

∫ −c0+i∞

−c0−i∞
τ−sΓ(s)D(s)ζ(s+ 1)ds � |τ |c0

∫ ∞

0

tc1+c2+c3e−
πt
4 dt

� |τ |c0 = |y − 2πix|c0 ≤ (
√
2y)c0 ,

since (again by the assumption)

2π|x|
y

= tan(|Arg (τ)|) ≤ tan
(π
4

)
= 1.

Integration along the shifted contour now gives

Log (Gk(e
−τ )) =

(
AΓ

(
1

k

)
ζ

(
1 +

1

k

)
τ−

1
k − (k − 1) log 2

2

)
+O(yc0),

which concludes the proof.

Commentary. This part is a straightforward generalization of [8, Lemma 1]. We thought
it best for the reader to keep the reasoning here as close as possible to that presented in [8,
§3.2]. On replacing k = 2, the proof of [8, Lemma 1] can be easily traced back.

6 The error term Jk(n)

This section is dedicated to proving that Jk(n) does not contribute to the main term of the
coefficients ak(n). More precisely, we prove the following estimate.

Lemma 2. There exists ε > 0 such that, as y → 0,

Gk(e
−τ ) = O

(
exp

(
AΓ

(
1

k

)
ζ

(
1 +

1

k

)
y−

1
k − cy−ε

))
(6.1)

holds uniformly in x with yβ ≤ |x| ≤ 1
2 , for some c > 0.

The proof is slightly more involved and will come in several steps. We start by describing
the setup needed to apply the circle method.

6.1 Circle method

Inspired by Wright [26], we consider the Farey dissection of order
⌊
y−

k
k+1
⌋
of the circle C

over which we integrate in (4.3). We further distinguish two kinds of arcs:

(i) major arcs, denoted Ma,b, such that b ≤ y−
1

k+1 ;
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(ii) minor arcs, denoted ma,b, such that y−
1

k+1 < b ≤ y−
k

k+1 .

In what follows, we express any τ ∈ Ma,b ∪ma,b in the form

τ = y − 2πix = τ ′ − 2πi
a

b
, (6.2)

with τ ′ = y − 2πix′. From basics of Farey theory it follows that

|x′| ≤ y
k

k+1

b
. (6.3)

For a neat introduction to Farey fractions and the circle method, the reader is referred to
[4, Ch. 5.4].

6.2 Modular transformations

Recalling the definition of Hk(q), we can rewrite (4.2) as

Gk(q) =
Hk(q)Hk(q

2k+1

)

Hk(q2
k)2

. (6.4)

In order to obtain more information about Gk(q), we would next like to use Wright’s
transformation law [26, Theorem 4] for the generating function Hk(q) of partitions into kth
powers.

Before doing so, we need to introduce a bit of notation. In what follows, 0 ≤ a < b are
assumed to be coprime positive integers (with the requirement that a = 0 if and only if
b = 1), with b1 the least positive integer such that b | b21 and b = b1b2. First, set

j = j(k) = 0, ωa,b = 1

if k is even, and

j = j(k) =
(−1)

1
2 (k+1)

(2π)k+1
Γ(k + 1)ζ(k + 1), ωa,b = exp

(
π

(
1

b2

b∑
h=1

hdh − 1

4
(b− b2)

))

if k is odd, where 0 ≤ dh < b is defined by the congruence

ah2 ≡ dh (mod b)

and where, for 1 ≤ r ≤ k, we set

µh,r =

{
dh

b if r is odd,
b−dh

b if r is even,

for dh 6= 0. If dh = 0, we set µh,r = 1. Further, let

Sk(a, b) =

b∑
n=1

exp

(
2πiank

b

)
(6.5)
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be the so-called Gauss sum (of order k), and

Λa,b =
Γ
(
1 + 1

k

)
b

∞∑
m=1

Sk(ma, b)

m1+ 1
k

. (6.6)

Finally, put

Ca,b =

(
b1
2π

) k
2

ωa,b

and

Pa,b(τ
′) =

b∏
h=1

k∏
r=1

∞∏
ℓ=0

(1− g(h, ℓ, r))
−1

,

with

g(h, ℓ, r) = exp

(
(2π)

k+1
k (ℓ+ µh,r)

1
k e

πi
2k (2r+k+1)

b k
√
τ ′

− 2πih

b

)
.

Having introduced all the required objects, we can now state Wright’s modular transfor-
mation [26, Theorem 4], which says, in our notation, that

Hk(q) = Hk

(
e

2πia
b −τ ′

)
= Ca,b

√
τ ′ejτ

′
exp

(
Λa,b
k
√
τ ′

)
Pa,b(τ

′). (6.7)

On combining (6.4) and (6.7) we obtain, for some positive constant C that can be made
explicit if necessary,

Gk(q) = Cejτ
′
exp

(
λa,b
k
√
τ ′

)
Pa,b(τ

′)P ′
a,b(2

k+1τ ′)

P ′′
a,b(2

kτ ′)2
, (6.8)

where

P ′
a,b = P 2k+1a

(b,2k+1)
, b

(b,2k+1)

, P ′′
a,b = P 2ka

(b,2k)
, b

(b,2k)

and

λa,b = Λa,b + 2−
k+1
k Λ 2k+1a

(2k+1,b)
, b

(2k+1,b)

− Λ 2ka

(2k,b)
, b

(2k,b)

. (6.9)

6.3 Gauss sums

As we shall soon see, a crucial step in our proof is finding an upper bound for Re(λa,b) or,
what is equivalent, a bound for |λa,b|. This is given by the following sharp estimate found
by Banks and Shparlinski [5] for the Gauss sums defined in (6.5).

Theorem 2 ([5, Theorem 1]). For any coprime positive integers a, b with b ≥ 2 and any
k ≥ 2, we have

|Sk(a, b)| ≤ Ab1−
1
k , (6.10)

where A = 4.709236 . . . .
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The constant A is known as Stechkin’s constant. Stechkin [22] conjectured in 1975 that
the quantity

A = sup
b,n≥2

max
(a,b)=1

|Sk(a, b)|
b1−

1
k

is finite, this being proven in 1991 by Shparlinski [21]. In the absence of any effective bounds
on the sums Sk(a, b), the precise value of A remained a mystery until 2015 when, using the
work of Cochrane and Pinner [9] on Gauss sums with prime moduli and that of Cohn and
Elkies [10] on lower bounds for the center density in the sphere packing problem, Banks
and Shparlinski [5] were finally able to determine it. Coming back to our problem, we can
now prove the following estimate.

Lemma 3. If 0 ≤ a < b are coprime integers with b ≥ 2 and A is Stechkin’s constant, we
have

|λa,b| < 4A · Γ
(
1 +

1

k

)
ζ

(
1 +

1

k

)
b−

1
k

∑
d|b

1

d
.

Proof. Let us first give a bound for |Λa,b|. If we recall (6.6) and write Λa,b = Γ
(
1 + 1

k

)
Λ∗
a,b,

we have, on using the fact that Sk(ma, b) = dSk

(
ma
d , b

d

)
to prove the second equality below,

and on replacing m 7→ md and d 7→ b
d to prove the third and fourth respectively,

Λ∗
a,b =

1

b

∞∑
m=1

Sk(ma, b)

m1+ 1
k

=
1

b

∑
d|b

∑
m≥1

(m,b)=d

dSk

(
ma
d , b

d

)
m1+ 1

k

=
1

b

∑
d|b

d
∑
m≥1

(m,b/d)=1

Sk

(
ma, b

d

)
(md)1+

1
k

=
1

b

∑
d|b

d−
1
k

∑
m≥1

(m,b/d)=1

Sk

(
ma, b

d

)
m1+ 1

k

=
1

b

∑
d|b

(
b

d

)− 1
k ∑

m≥1
(m,d)=1

Sk(ma, d)

m1+ 1
k

=
1

b1+
1
k

∑
d|b

d
1
k

∑
m≥1

(m,d)=1

Sk(ma, d)

m1+ 1
k

.

Using the previous identity, the definition of Λa,b and estimate (6.10), we obtain

|Λa,b| ≤
Γ
(
1 + 1

k

)
b1+

1
k

∑
d|b

d
1
k

∑
m≥1

(m,d)=1

|Sk(ma, d)|
m1+ 1

k

≤
Γ
(
1 + 1

k

)
b1+

1
k

∑
d|b

d
1
k

∑
m≥1

(m,d)=1

Ad1−
1
k

m1+ 1
k

≤
AΓ

(
1 + 1

k

)
ζ
(
1 + 1

k

)
b1+

1
k

∑
d|b

d =
AΓ

(
1 + 1

k

)
ζ
(
1 + 1

k

)
b1+

1
k

∑
d|b

b

d

= A · Γ
(
1 +

1

k

)
ζ

(
1 +

1

k

)
b−

1
k

∑
d|b

1

d
.

The claim follows on applying this bound and using the modulus inequality in (6.9).
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Remark 2. The fact that Sk(a, b) � b1−
1
k was known; see, for instance, [24, Theorem 4.2].

This means that instead of the Stechkin constant A in Lemma 3, we would have a constant
Ak depending on k, which would already be enough for our purposes, as it will be revealed
shortly in the proof of Lemma 2. While a universal bound like Stechkin’s constant A is not
needed for the proof and a constant depending on k would suffice, we thought it instructive
to present this elegant argument and to point out a remarkable connection between power
partitions and the sphere packing problem.

6.4 Final estimates

We are now getting closer to our purpose and we only need a few last steps before giving
the proof of Lemma 2. Let us begin by estimating the factors of the form Pa,b appearing
in (6.8).

Lemma 4. If τ ∈ Ma,b ∪ma,b, then

log |Pa,b(τ
′)| � b as y → 0.

Proof. Using (6.3) and letting y → 0, we have

|τ ′|1+ 1
k = (y2 + 4π2x′2)

k+1
2k ≤

(
y2 +

4π2y
2k

k+1

b2

) k+1
2k

≤ c4y

b
k+1
k

=
c4Re (τ

′)

b
k+1
k

,

for some c4 > 0. Thus, [26, Lemma 4] gives

|g(h, ℓ, r)| ≤ e−c5(ℓ+1)
1
k ,

with c5 = 4 k√2π
kc4

, which in turn leads to

| log |Pa,b(τ
′)|| ≤

b∑
h=1

k∑
r=1

∞∑
ℓ=1

| log(1− g(h, ℓ, r))| ≤ kb

∞∑
ℓ=1

∣∣ log (1− e−c5(ℓ+1)
1
k
)∣∣� b,

concluding the proof.

The next result gives a bound for Gk(q) on the minor arcs. As it is an immediate
consequence of replacing a = 1

k , b =
1

k+1 , c = 2k−1, γ = ε and N = y−1 in [26, Lemma 17],
we omit its proof.

Lemma 5. If ε > 0 and τ ∈ ma,b, then

|Log (G(q))| �ε y
k2k−1−k−1

k(k+1)
−ε.

Remark 3. Note that k2k−1 > k+1 for any k ≥ 2, therefore the exponent of y in Lemma
5 is positive for a small enough choice of ε > 0.

At last, we need the following estimate, a modified version of [8, Lemma 6].
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Lemma 6. If 0 ≤ a < b are coprime integers with b ≥ 2 and x /∈ Q, as y → 0 we have, for
some c > 0,

Re

(
λa,b
k
√
τ ′

)
≤ λ0,1 − c

k
√
y

. (6.11)

Proof. Note that

λ0,1 = 2−
k+1
k Λ0,1 = 2−

k+1
k Γ

(
1 +

1

k

)
ζ

(
1 +

1

k

)
. (6.12)

Writing τ ′ = y + ity for some t ∈ R, we have

Re

(
λa,b
k
√
τ ′

)
=

1
k
√
y
Re

(
λa,b

k
√
1 + it

)
=

1
k
√
y
Re

(
λa,b

2k
√
1 + t2e

i
k arctan t

)
=

1

k
√
y 2k
√
1 + t2

(
cos

(
arctan t

k

)
Re (λa,b) + sin

(
arctan t

k

)
Im (λa,b)

)
.

Taking absolute values, we obtain∣∣∣∣Re( λa,b
k
√
τ ′

)∣∣∣∣ ≤ 2|λa,b|
k
√
y 2k
√
1 + t2

. (6.13)

Denoting fk(t) =
1

2k√1+t2
, we see that fk(t) → 0 as |t| → ∞. Note now that the choice of x

is independent from that of y, and recall from (6.2) that τ ′ = y − 2πix′, with x′ = x − a
b ,

hence t = − x′

2πy . The assumption x /∈ Q implies x′ 6= 0, hence |t| → ∞ and, consequently,

fk(t) → 0 as y → 0. The existence of a constant c > 0 such that inequality (6.11) holds as
y → 0 follows now on invoking (6.12), (6.13) and Lemma 3.

6.5 Estimate for Jk(n)

We are now equipped with all the machinery needed for Lemma 2.

Proof of Lemma 2. If τ ∈ ma,b, the statement holds trivially by an application of Lemma
5. According to Remark 3, for any small enough ε > 0, the exponent of y in the estimate
from Lemma 5 is positive. To conclude the claim, we note that as y → 0, a negative power
of y dominates any positive power of y (hence the error term in Lemma 2 absorbs that from
Lemma 5).

Let us therefore assume now that τ ∈ Ma,b, and we first consider the behavior near 0,

corresponding to a = 0, b = 1, τ = τ ′ = y − 2πix. Writing yβ = y
2k+1
2k −ε with ε > 0 (here

we use the second inequality from (4.5)) and setting b = 1 in (6.3), we have

y
2k+1
2k −ε ≤ |x| = |x′| ≤ y

k
k+1 . (6.14)

By (6.8) we get

Gk(q) = Cejτ exp

(
λ0,1

k
√
τ

)
P0,1(τ)P0,1(2

k+1τ)

P0,1(2kτ)2
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for some C > 0. Thus, by Lemma 4 we obtain

log |Gk(q)| =
λ0,1

k
√

|τ |
+ jy +O(1).

Using (6.14) to prove the first inequality below and expanding into Taylor series to prove
the second, we have, on letting y → 0,

1
k
√
|τ |

=
1
k
√
y

1(
1 + 4π2x2

y2

) 1
2k

≤ 1
k
√
y

1(
1 + 4π2y

1
k−2ε

) 1
2k

≤ 1
k
√
y

(
1− c6y

1
k−2ε

)

for some c6 > 0, and this concludes the proof in this case.

To complete the proof, let τ ∈ Ma,b, with 2 ≤ b ≤ y−
1

k+1 . We distinguish two cases.
First, let us deal with the case when x /∈ Q. By (6.8) and Lemma 4 we obtain

log |Gk(q)| = Re

(
λa,b
k
√
τ ′

)
+ jy +O

(
y−

1
k+1

)
= Re

(
λa,b
k
√
τ ′

)
+O

(
y−

1
k+1

)
(6.15)

as y → 0. Since by Lemma 6 there exists c7 > 0 such that

Re

(
λa,b
k
√
τ ′

)
≤ λ0,1 − c7

k
√
y

, (6.16)

we infer from (6.16) that, as y → 0, we have

log |Gk(q)| ≤
λ0,1 − c8

k
√
y

for some c8 > 0 and the proof is concluded under the assumption that x /∈ Q.
Finally, assume that x = a

b , that is, x
′ = 0 and τ = y−2πiab . We claim that the estimate

(6.1) is satisfied with the same implied constant, call it C1. Suppose by sake of contradiction
that this is not the case. Then there exist infinitely small values of y > 0 for which

|Gk(e
−τ )| ≥ C2 exp

(
λ0,1

k
√
y
− cy−ε

)
,

with C2 > C1. However, we can pick now x′ /∈ Q infinitely small and set τ1 = y −
2πi

(
x′ + a

b

)
. For a fixed choice of y, we have t → 0 as x′ → 0; thus, by the same cal-

culation done in the proof of Lemma 6, we obtain

Re

(
λa,b

k
√
τ ′1

)
→ Re

(
λa,b

k
√
y

)
= Re

(
λa,b
k
√
τ ′

)
, (6.17)

since fk(t) → 1. On noting that Re(τ ′1) = Re(τ) = y, while clearly all factors of the form
|Pa,b(kτ

′
1)| tend to |Pa,b(kτ

′)| as x′ → 0, we obtain a contradiction, in the sense that, on
one hand, (6.15) and (6.17) yield

|Gk(e
−τ1)| → |Gk(e

−τ )|
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as x′ → 0, whereas on the other, for a sufficiently small choice of y > 0, we have

|Gk(e
−τ )| − |Gk(e

−τ1)| ≥ (C2 − C1) exp

(
λ0,1

k
√
y
− cy−ε

)
,

quantity which gets arbitrarily large for sufficiently small choices of y > 0.

Commentary. It is in this part where our proof differs substantially from that given in [8]
in the case k = 2. More precisely, [8, Lemma 5] was needed to prove the inequality (6.11)
for all values of y, inequality which was then used in the estimates made in the proof of
[8, Lemma 2], the equivalent of Lemma 2 from the present paper. However, we are only
interested in establishing the estimates from Lemma 2 on letting y → 0, which is why we
only need the bound (6.11) to hold as y → 0. The argument presented in Lemma 6 further
tells us that, in order for this to happen, the estimate (6.10), obtained using the bound on
Gauss sums found by Banks and Shparlinski [5], is enough. As a consequence, we can avoid
the rather involved numerical check done in [8, Lemma 5], a check which we would, in fact,
not even be able to implement for all values k ≥ 2. In particular, the present argument
gives a simplified proof of the results from [8].

7 Analytic proof of Theorem 2

In this section we give the analytic proof of Theorem 2. Having already proven the two
estimates from Lemmas 1–2, the rest is only a matter of careful computations. The reader
is reminded that, because of the reformulation from Section 2.1, what we are interested in
is computing asymptotics for the coefficients

ak(n) = eny
∫ 1

2

− 1
2

Gk(e
−y+2πix)e−2πinxdx. (7.1)

7.1 Saddle-point method

Recall that, as defined in Section 4.2, we denote α = 1
k and A = 1

k · 2− k+1
k , notation which

we keep, for simplicity, in what follows. Before delving into the proof, we make a particular
choice for y as a function of n. More precisely, let

y = n− 1
α+1 (AΓ(α+ 1)ζ(α+ 1))

1
α+1 . (7.2)

The reason for this choice of y is motivated by the saddle-point method. As the maximum
absolute value of the integrand from (7.1) occurs for x = 0, around which point Lemma 1
tells us that the integrand is well approximated by

exp(AΓ(α)ζ(α+ 1)y−α + ny),

the saddle-point method suggests maximizing this expression, that is, solving

d

dy
(exp(AΓ(α)ζ(α+ 1)y−α + ny)) = 0,

which leads to the value of y from (7.2).
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7.2 Completing the proof

We have now all ingredients necessary to conclude the proof of Theorem 2. The proof
merely consists of a skillful computation, which can be carried out in two ways. Since
Lemma 1 and Lemma 2 are completely analogous to the two estimates found by Meinardus
(combined in the Hilfssatz from [18, p. 390]), one way is to follow his approach and carry
out the same computations done in [18, pp. 392–394]. The second way is slightly more
explicit and is based entirely on the computation done in the proof of the case k = 2 from
[8, pp. 139–141]. For sake of completeness and for comparison with the corresponding
computation, we will sketch in what follows the main steps of the argument, while leaving
some details and technicalities as an exercise for the interested reader.

Analytic proof of Theorem 2. We begin by proving the inequalities (1.3). By Lemma 2 and
(7.2) we have

Jk(n) = eny
∫
yβ≤|x|≤ 1

2

G(e−y+2πix)e−2πinxdx

= eny
∫
yβ≤|x|≤ 1

2

O
(
exp(y−αAΓ(α)ζ(α+ 1)− cy−ε)

)
dx

= eny ·O
(
exp(y−αAΓ(α)ζ(α+ 1)− cy−ε)

)
= O

(
exp

(
n

α
α+1

(
1 +

1

α

)
(AΓ(α+ 1)ζ(α+ 1))

1
α+1 − C1n

ε1

))
as n → 0, with ε1 = kε

k+1 > 0 and some C1 > 0.
We now compute the main asymptotic contribution. Let n ≥ n1 be large enough so that

yβ−1 ≤ 1
2π . This choice allows us to apply Lemma 1, as it ensures |x| ≤ 1

2 and |Arg (τ)| ≤ π
4 .

From Lemma 1 we get

Ik(n) =
eny

2
k−1
2

∫ yβ

−yβ

exp
(
AΓ(α)ζ(α+ 1)τ−α +O(yε)− 2πinx

)
dx. (7.3)

Writing

τ−α =
1
k
√
τ
=

1
k
√
y
+

(
1
k
√
τ
− 1

k
√
y

)
,

we can further express (7.3) as

Ik(n) =
eny

2
k−1
2

∫ yβ

−yβ

exp

(
B
k
√
y
+B

(
1
k
√
τ
− 1

k
√
y

)
− 2πinx+O(yc0)

)
dx

= E
∫ yβ

−yβ

exp

 B
k
√
y

 1

k

√
1− 2πix

y

− 1

− 2πinx+O(yc0)

 dx,

where we set B = AΓ(α)ζ(α+1) and E = 2−
k−1
2 exp

((
1 + 1

α

)
n

α
α+1 (αB)

1
α+1

)
for simplicity.

On denoting u = − 2πx
y , we obtain

Ik(n) =
y E
2π

∫ 2πyβ−1

−2πyβ−1

exp

(
B
k
√
y

(
1

k
√
1 + iu

− 1

)
+ inuy +O(yc0)

)
dx. (7.4)
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We have the Taylor series expansion

1
k
√
1 + iu

= 1− iu

k
− (k + 1)u2

2k2
+O(|u|3),

from where, on recalling that |u| ≤ 2πyβ−1 and using (7.2) to compute B = kny1+
1
k , it

follows that

B
1
k
√
y

(
1

k
√
1 + iu

− 1

)
+ inuy = − Biu

k k
√
y
+ inuy − (k + 1)Bu2

2k2 k
√
y

+O

(
|u|3
k
√
y

)
= − (k + 1)Bu2

2k2 k
√
y

+O
(
n

1
k+1 (1+3k(1−β))

)
.

For an appropriate constant C2, we may then change the integral from (7.4), which we
denote by I, into

I =

∫
|u|≤C2

exp

(
− (k + 1)Bu2

2k2 k
√
y

+O

(
yc0 +

|u|3
k
√
y

))
du

=

∫
|u|≤C2

exp

(
− (k + 1)Bu2

2k2 k
√
y

+O
(
n− kc0

k+1 + n
1+3k(1−β)

k+1

))
du

=

∫
|u|≤C2

exp

(
− (k + 1)Bu2

2k2 k
√
y

)[
1 +

(
exp

(
O
(
n− kc0

k+1 + n
1+3k(1−β)

k+1

))
− 1
)]

du.

From the first inequality in (4.5), we see that 1 + 3k(1− β) < 0, and thus

exp
(
O
(
n− kc0

k+1 + n
1+3k(1−β)

k+1

))
− 1 = exp

(
O
(
n− kc0

k+1 + n− 1
6+

δ
4

))
− 1 = O(n−κ),

where κ = 1
k+1 min

{
kc0,

1
2 − 3δ

4

}
. We further get, on using (4.4) when changing the limits

of integration,

I =

∫
|u|≤C2

exp

(
− (k + 1)Bu2

2k2 k
√
y

)
(1 +O(n−κ))du

= c(n)

∫
|v|≤C3·n

δ
4(k+1)

e−v2

(1 +O(n−κ))dv, (7.5)

where c(n) =
√

2k
k+1 (αBnα)−

1
2(α+1) and C3 > 0 is a constant. By letting n → ∞, and

turning the integral from (7.5) into a Gauss integral, we obtain

I = c(n)
√
π(1 +O(n−κ1)), (7.6)

where κ1 = 1
k+1 min

{
kc0 − δ

4 ,
1
2 − δ

}
. Putting together (7.4), (7.5) and (7.6) we see that, as

predicted by Meinardus (Theorem 3), the main asymptotic contribution for our coefficients
is given by

ak(n) ∼ Cn− α+2
2(α+1) exp

(
n

α
α+1

(
1 +

1

α

)
(AΓ(α+ 1)ζ(α+ 1))

1
α+1

)
, (7.7)
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where

C =
1√

2k(α+ 1)π
(AΓ(α+ 1)ζ(α+ 1))

1
2(α+1) .

This shows that the inequalities in (1.3) are true for n → ∞. The proof is completed either
by adding the estimate (7.7) for ak(n) = (−1)n(pk(0, 2;n)−pk(1, 2;n)) to that obtained by
Wright for pk(n) = pk(0, 2;n) + pk(1, 2;n) (see [26, Theorem 2]), or by invoking the work
of Zhou [27, Corollary 1.2].

8 Open questions

It would be of interest to see if Theorems 1 and 2 admit analogues for moduli m ≥ 3, as
another conjecture formulated in the unpublished manuscript of Bringmann and Mahlburg
[7] states the following.

Conjecture 1 (Bringmann–Mahlburg, 2012). As n → ∞, we have

p2(0, 3;n) ∼ p2(1, 3;n) ∼ p2(2, 3;n) ∼
p2(n)

3
(8.1)

and 
p2(0, 3;n) > p2(1, 3;n) > p2(2, 3;n) if n ≡ 0 (mod 3),

p2(1, 3;n) > p2(2, 3;n) > p2(0, 3;n) if n ≡ 1 (mod 3),

p2(2, 3;n) > p2(0, 3;n) > p2(1, 3;n) if n ≡ 2 (mod 3).

(8.2)

Indeed, the work of Zhou [27] proves the equidistribution statement from (8.1). However,
while the inequalities (8.2) hold for small values of n, numerical experiments reveal the fact
that the pattern loses its structure as n grows larger, and that the signs of the inequalities
change. In this regard, the following variant of this question seems more reasonable.

Let S ⊆ N. If for any n ∈ N we arrange pS(a,m;n) in non-increasing order, we obtain an
m-tuple (pS(i0,m;n), . . . , pS(im−1,m;n)), with {i0, i1, . . . , im−1} = {0, 1, . . . ,m − 1}. We
define a sequence {un}n≥1 of such ordered m-tuples by setting un = (i0, i1, . . . , im−1), with
an increasing cyclic ordering of the arguments in case equalities occur.

Question 1. For the set S = {nk : n ∈ N} of perfect kth powers or, more generally, for
sets S = {f(n)}n≥1 of polynomial functions as those in [17] and [20], does the sequence
{un}n≥1 become periodic?

Question 2. If so, is the statement of Question 1 true for all m ≥ 3?

Finally, we note that, although we could not directly apply Meinardus’s Theorem to
our problem, we did end up nevertheless with the two similar estimates, obtaining the
asymptotics that his theorem would have heuristically predicted. This naturally leads to
the following question.

Question 3. Can Meinardus’s Theorem be strengthened so as to deal with a more general
class of infinite product generating functions than that studied in [18]?
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