Combinatorial proofs of two q-binomial coefficient identities by Ji-Cai Liu ${ }^{(1)}$, YuAn-YuAn $\mathrm{ZHAO}^{(2)}$

Abstract

We present combinatorial proofs of two q-binomial coefficient identities, which give two new q-analogues of the binomial coefficient identity: $$
\sum_{k=-\lfloor n / 2\rfloor}^{\lfloor n / 2\rfloor}(-1)^{k}\binom{2 n}{n+2 k}=2^{n}
$$ where $\lfloor x\rfloor$ denotes the integral part of real x. Key Words: q-binomial coefficient, q-binomial theorem, combinatorial proof. 2020 Mathematics Subject Classification: Primary 05A19; Secondary 05A10.

1 Introduction

There are many q-analogues of the following binomial coefficient identity:

$$
\begin{equation*}
\sum_{k=-\lfloor n / 2\rfloor}^{\lfloor n / 2\rfloor}(-1)^{k}\binom{2 n}{n+2 k}=2^{n} \tag{1.1}
\end{equation*}
$$

such as

$$
\begin{align*}
& \sum_{k=-\lfloor n / 2\rfloor}^{\lfloor n / 2\rfloor}(-1)^{k} q^{2 k^{2}}\left[\begin{array}{c}
2 n \\
n+2 k
\end{array}\right]=\left(-q ; q^{2}\right)_{n}, \tag{1.2}\\
& \sum_{k=-\lfloor n / 2\rfloor}^{\lfloor n / 2\rfloor}(-1)^{k} q^{2 k^{2}+k}\left[\begin{array}{c}
2 n \\
n+2 k
\end{array}\right]=\left(1+q^{n}\right)\left(-q^{2} ; q^{2}\right)_{n-1}, \tag{1.3}\\
& \sum_{k=-\lfloor n / 2\rfloor}^{\lfloor n / 2\rfloor}(-1)^{k} q^{2 k^{2}+2 k}\left[\begin{array}{c}
2 n \\
n+2 k
\end{array}\right]=q^{n-1}(1+q)\left(-q ; q^{2}\right)_{n-1}, \tag{1.4}
\end{align*}
$$

where $\lfloor x\rfloor$ denotes the integral part of real x. Here and throughout this paper, the q-shifted factorials are given by $(a ; q)_{n}=(1-a)(1-a q) \cdots\left(1-a q^{n-1}\right)$ for $n \geq 1$ and $(a ; q)_{0}=1$,
and the q-binomial coefficients are defined as

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}= \begin{cases}\frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}} & \text { if } 0 \leqslant k \leqslant n \\
0 & \text { otherwise }\end{cases}
$$

We refer the interested reader to [2, 4, 5] for (1.2) and (1.3). In 2014, Guo and Zhang [3] gave combinatorial proofs of (1.2)-(1.4). The purpose of this note is to establish another two q-analogues of (1.1), which appear to be new.

Theorem 1. For any positive integer n, we have

$$
\begin{align*}
& \sum_{k=-\lfloor n / 2\rfloor}^{\lfloor n / 2\rfloor}(-1)^{k} q^{2 k^{2}+3 k}\left[\begin{array}{c}
2 n \\
n+2 k
\end{array}\right] \\
& =\frac{q^{n-1}+q^{n+1}+q^{2 n-1}+q^{2 n+1}-q^{3 n}+q^{2 n}+q^{n}-1}{q}\left(-q^{2} ; q^{2}\right)_{n-2} . \tag{1.5}
\end{align*}
$$

Theorem 2. For any positive integer n, we have

$$
\begin{align*}
& \sum_{k=-\lfloor n / 2\rfloor}^{\lfloor n / 2\rfloor}(-1)^{k} q^{2 k^{2}+4 k}\left[\begin{array}{c}
2 n \\
n+2 k
\end{array}\right] \\
& =\frac{q^{2 n-2}+q^{2 n+1}+q^{2 n-1}+q^{2 n+2}-q^{4 n}+2 q^{2 n}-1}{q^{2}}\left(-q ; q^{2}\right)_{n-2} . \tag{1.6}
\end{align*}
$$

It is clear that letting $q \rightarrow 1$ in (1.5) and (1.6) leads us to the binomial coefficient identity (1.1). Inspired by Guo and Zhang's method [3], we shall present combinatorial proofs of (1.5) and (1.6) in Sections 2 and 3, respectively.

2 Proof of Theorem 1

Let $S=\left\{a_{1}, \cdots, a_{2 n}\right\}$ be a set of $2 n$ elements, and let

$$
\begin{aligned}
\mathscr{F} & =\{A \subseteq S: \# A \equiv n \quad(\bmod 2)\} \\
\mathscr{G} & =\left\{A \subseteq S: \#\left(A \cap\left\{a_{2 i-1}, a_{2 i}\right\}\right)=1, \quad \text { for all } i=1, \cdots, n\right\}
\end{aligned}
$$

For any $A \in \mathscr{F}$, we associate A with a $\operatorname{sign} \operatorname{sgn}(A)=(-1)^{(\# A-n) / 2}$ and a weight $\|A\|=$ $\sum_{a \in A} a$. By the q-binomial theorem [1, Theorem 3.3]:

$$
(-q z ; q)_{n}=\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right] z^{k} q^{\binom{k+1}{2}}
$$

we have

$$
\sum_{\substack{A \subset[n] \tag{2.1}\\
\# A=k}} q^{\|A\|}=\left[\begin{array}{l}
n \\
k
\end{array}\right] q^{\binom{k+1}{2}}
$$

where $[n]=\{1, \cdots, n\}$.
Let $\left\{a_{2 i-1}, a_{2 i}\right\}=\{-i, i\}$, for $i=1, \cdots, n-2,\left\{a_{2 n-3}, a_{2 n-2}\right\}=\{0, n\}$ and $\left\{a_{2 n-1}, a_{2 n}\right\}=$ $\{n-1, n+1\}$. Note that S is obtained by $[2 n]$ by a shift $-(n-1)$:

$$
S=\{2-n, 3-n, \cdots, n-2, n-1, n, n+1\} .
$$

By using (2.1), we obtain

$$
\begin{align*}
\sum_{A \in \mathscr{F}} \operatorname{sgn}(A) q^{\|A\|} & =\sum_{k=-\lfloor n / 2\rfloor}^{\lfloor n / 2\rfloor} \sum_{\substack{A \subseteq S \\
\# A=n+2 k}} \operatorname{sgn}(A) q^{\|A\|} \\
& \left.=\sum_{k=-\lfloor n / 2\rfloor}^{\lfloor n / 2\rfloor}(-1)^{k}\left[\begin{array}{c}
2 n \\
n+2 k
\end{array}\right] q^{(n+2 k+1}\right)-(n+2 k)(n-1) \\
& =q^{\frac{n(3-n)}{2}} \sum_{k=-\lfloor n / 2\rfloor}^{\lfloor n / 2\rfloor}(-1)^{k} q^{2 k^{2}+3 k}\left[\begin{array}{c}
2 n \\
n+2 k
\end{array}\right] \tag{2.2}
\end{align*}
$$

On the other hand,

$$
\begin{equation*}
\sum_{A \in \mathscr{F}} \operatorname{sgn}(A) q^{\|A\|}=\sum_{A \in \mathscr{F} \backslash \mathscr{G}} \operatorname{sgn}(A) q^{\|A\|}+\sum_{A \in \mathscr{G}} \operatorname{sgn}(A) q^{\|A\|} \tag{2.3}
\end{equation*}
$$

It is obvious that

$$
\begin{equation*}
\sum_{A \in \mathscr{G}} \operatorname{sgn}(A) q^{\|A\|}=\sum_{A \in \mathscr{G}} q^{\|A\|}=\left(1+q^{n}\right)\left(q^{n-1}+q^{n+1}\right) \prod_{i=1}^{n-2}\left(q^{i}+q^{-i}\right) \tag{2.4}
\end{equation*}
$$

We define the involution f on $\mathscr{F} \backslash \mathscr{G}$ as follows:

$$
f(A)= \begin{cases}A \cup\left\{a_{2 i-1}, a_{2 i}\right\}, & \text { if }\left\{a_{2 i-1}, a_{2 i}\right\} \cap A=\emptyset \\ A \backslash\left\{a_{2 i-1}, a_{2 i}\right\}, & \text { if }\left\{a_{2 i-1}, a_{2 i}\right\} \subseteq A\end{cases}
$$

where i is the first number such that $\#\left(A \cap\left\{a_{2 i-1}, a_{2 i}\right\}\right) \neq 1$. Let

$$
\mathscr{H}=\left\{A \in \mathscr{F} \backslash \mathscr{G}: \exists 1 \leq i \leq n-2, \text { s.t. } \#\left(A \cap\left\{a_{2 i-1}, a_{2 i}\right\}\right) \neq 1\right\} .
$$

The involution f is closed, weight-preserving, and sign-reversing on \mathscr{H}. Thus,

$$
\begin{equation*}
\sum_{A \in \mathscr{F} \backslash \mathscr{G}} \operatorname{sgn}(A) q^{\|A\|}=\sum_{A \in(\mathscr{F} \backslash \mathscr{G}) \backslash \mathscr{H}} \operatorname{sgn}(A) q^{\|A\|} \tag{2.5}
\end{equation*}
$$

Note that $A \in(\mathscr{F} \backslash \mathscr{G}) \backslash \mathscr{H}$ if and only if A belongs to one of the following types:

$$
\begin{aligned}
& \left\{b_{1}, \cdots, b_{n-2}\right\} \\
& \left\{b_{1}, \cdots, b_{n-2}, a_{2 n-3}, a_{2 n-2}\right\} \\
& \left\{b_{1}, \cdots, b_{n-2}, a_{2 n-1}, a_{2 n}\right\} \\
& \left\{b_{1}, \cdots, b_{n-2}, a_{2 n-3}, a_{2 n-2}, a_{2 n-1}, a_{2 n}\right\}
\end{aligned}
$$

where $b_{i} \in\left\{a_{2 i-1}, a_{2 i}\right\}$. It follows that

$$
\begin{equation*}
\sum_{A \in(\mathscr{F} \backslash \mathscr{G}) \backslash \mathscr{H}} \operatorname{sgn}(A) q^{\|A\|}=\left(-1+q^{n}+q^{2 n}-q^{3 n}\right) \prod_{i=1}^{n-2}\left(q^{i}+q^{-i}\right) \tag{2.6}
\end{equation*}
$$

Combining (2.3)-(2.6) gives

$$
\begin{align*}
& \sum_{A \in \mathscr{F}} \operatorname{sgn}(A) q^{\|A\|} \\
& =\left(q^{n-1}+q^{n+1}+q^{2 n-1}+q^{2 n+1}-q^{3 n}+q^{2 n}+q^{n}-1\right) \prod_{i=1}^{n-2}\left(q^{i}+q^{-i}\right) \tag{2.7}
\end{align*}
$$

It follows from (2.2) and (2.7) that

$$
\begin{aligned}
& \sum_{k=-\lfloor n / 2\rfloor}^{\lfloor n / 2\rfloor}(-1)^{k} q^{2 k^{2}+3 k}\left[\begin{array}{c}
2 n \\
n+2 k
\end{array}\right] \\
& =\left(q^{n-1}+q^{n+1}+q^{2 n-1}+q^{2 n+1}-q^{3 n}+q^{2 n}+q^{n}-1\right) q^{\frac{n(n-3)}{2}} \prod_{i=1}^{n-2}\left(q^{i}+q^{-i}\right) \\
& =\frac{q^{n-1}+q^{n+1}+q^{2 n-1}+q^{2 n+1}-q^{3 n}+q^{2 n}+q^{n}-1}{q}\left(-q^{2} ; q^{2}\right)_{n-2},
\end{aligned}
$$

as desired.

3 Proof of Theorem 2

Let

$$
\begin{aligned}
& \left\{a_{2 i-1}, a_{2 i}\right\}=\left\{-i+\frac{1}{2}, i-\frac{1}{2}\right\}, \quad \text { for } i=1, \cdots, n-2 \\
& \left\{a_{2 n-3}, a_{2 n-2}\right\}=\left\{n-\frac{3}{2}, n+\frac{3}{2}\right\}, \\
& \left\{a_{2 n-1}, a_{2 n}\right\}=\left\{n-\frac{1}{2}, n+\frac{1}{2}\right\} .
\end{aligned}
$$

Note that S is obtained by $[2 n]$ by a shift $-(n-3 / 2)$:

$$
S=\left\{-n+\frac{5}{2}, \cdots, n-\frac{5}{2}, n-\frac{3}{2}, n-\frac{1}{2}, n+\frac{1}{2}, n+\frac{3}{2}\right\} .
$$

Following the notation in the previous section and using (2.1), we have

$$
\begin{align*}
\sum_{A \in \mathscr{F}} \operatorname{sgn}(A) q^{\|A\|} & =\sum_{k=-\lfloor n / 2\rfloor}^{\lfloor n / 2\rfloor} \sum_{\substack{A \subseteq S \\
\# A=n+2 k}} \operatorname{sgn}(A) q^{\|A\|} \\
& =\sum_{k=-\lfloor n / 2\rfloor}^{\lfloor n / 2\rfloor}(-1)^{k}\left[\begin{array}{c}
2 n \\
n+2 k
\end{array}\right] q^{\left(n^{n+2 k+1}\right)-\frac{(n+2 k)(2 n-3)}{2}} \\
& =q^{\frac{n(4-n)}{2}} \sum_{k=-\lfloor n / 2\rfloor}^{\lfloor n / 2\rfloor}(-1)^{k} q^{2 k^{2}+4 k}\left[\begin{array}{c}
2 n \\
n+2 k
\end{array}\right] . \tag{3.1}
\end{align*}
$$

By using a similar method as in the previous section, we have

$$
\begin{equation*}
\sum_{A \in \mathscr{G}} \operatorname{sgn}(A) q^{\|A\|}=\left(q^{n-3 / 2}+q^{n+3 / 2}\right)\left(q^{n-1 / 2}+q^{n+1 / 2}\right) \prod_{i=1}^{n-2}\left(q^{-i+1 / 2}+q^{i-1 / 2}\right) \tag{3.2}
\end{equation*}
$$

and

$$
\begin{align*}
\sum_{A \in \mathscr{F} \backslash \mathscr{G}} \operatorname{sgn}(A) q^{\|A\|} & =\sum_{A \in(\mathscr{F} \backslash \mathscr{G}) \backslash \mathscr{H}} \operatorname{sgn}(A) q^{\|A\|} \\
& =\left(-1+2 q^{2 n}-q^{4 n}\right) \prod_{i=1}^{n-2}\left(q^{-i+1 / 2}+q^{i-1 / 2}\right) \tag{3.3}
\end{align*}
$$

Finally, combining (3.1)-(3.3), we complete the proof of (1.6).
Acknowledgement The authors would like to thank the anonymous referee for his/her helpful comments which helped to improve the exposition of the paper. The first author was supported by the National Natural Science Foundation of China (grant 12171370).

References

[1] G. E. Andrews, The Theory of Partitions, Cambridge University Press (1998).
[2] A. Berkovich, S. O. Warnaar, Positivity preserving transformations for q binomial coefficients, Trans. Amer. Math. Soc., 357, 2291-2351 (2005).
[3] V. J. W. Guo, J. Zhang, Combinatorial proofs of a kind of binomial and q-binomial coefficient identities, Ars Combin., 113, 415-428 (2014).
[4] M. E. H. Ismail, D. Kim, D. Stanton, Lattice paths and positive trigonometric sums, Constr. Approx., 15, 69-81 (1999).
[5] A. V. Sills, Finite Rogers-Ramanujan type identities, Electron. J. Combin., 10, R13 (2003).

Received: 22.02.2022
Revised: 05.04.2022
Accepted: 09.04.2022
${ }^{(1)}$ Department of Mathematics, Wenzhou University, Wenzhou 325035, P. R. China E-mail: jcliu2016@gmail.com
${ }^{(2)}$ Department of Mathematics, Wenzhou University, Wenzhou 325035, P. R. China E-mail: yzhao2021@foxmail.com

