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Abstract

Two classes of infinite series involving central binomial coefficients are evaluated
in closed forms, including a solution to the problem proposed recently by Ribeiro
(2018).
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1 Introduction and motivation

Let R, N and Z stand, respectively, for the sets of real numbers, natural numbers and
integers with N0 = N ∪ {0}. The aim of this paper is to evaluate, for m ∈ N0, λ ∈ N and
λ ∈ 1

2 + Z, the infinite series Tm(1, λ) in closed forms, where Tm(x, λ) is defined by

Tm(x, λ) =

∞∑
n=0

(
2n
n

)
xn+λ

4n(n+ λ)m+1
.

This is inspired by the following problem proposed recently by Ribeiro [4], who asks
to prove the formula:

∞∑
n=0

(
2n
n

)
4n(2n+ 1)3

=
π3

48
+
π ln2 2

4
. (1.1)

We shall organize the paper as follows. In the next section, we shall first derive
a closed form expression for the generating function of Tm(x, λ) by iterating integrals,
and then establish, by means of partial fractions and the Γ-function expansions, two
main theorems for infinite series Tm(1, λ) and Tm(1, 12 + µ) with m ∈ N0, λ ∈ N and
µ ∈ Z, which express these two infinite series as finite convolutions concerning the Bell
polynomials. As applications, the paper will end with Section 3, where several closed
formulae are presented for specific triplet {m,λ, µ}.

2 Main results and proofs

Define the infinite series by

fλ(x) :=

∞∑
n=0

(
2n

n

)
xn+λ

4n
.
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According to the binomial series

1√
1− x

=

∞∑
n=0

(
− 1

2

n

)
(−x)n =

∞∑
n=0

(
2n

n

)
xn

4n
,

we have that

fλ(x) =

∞∑
n=0

(
2n

n

)
xn+λ

4n
=

xλ√
1− x

.

For λ > 0, it is trivial to see that

T0(x, λ) =

∫ x

0

fλ(x0)

x0
dx0 =

∞∑
n=0

(
2n
n

)
xn+λ

4n(n+ λ)
,

T1(x, λ) =

∫ x

0

T0(x1, λ)

x1
dx1 =

∫ x

0

dx1
x1

∫ x1

0

fλ(x0)

x0
dx0,

T2(x, λ) =

∫ x

0

T1(x2, λ)

x2
dx2 =

∫ x

0

dx2
x2

∫ x2

0

dx1
x1

∫ x1

0

fλ(x0)

x0
dx0.

Proceeding by induction, we can show that

Tm(x, λ) =

∫ x

0

Tm−1(xm, λ)

xm
dxm

=

∫ x

0

dxm
xm

∫ xm

0

dxm−1

xm−1
· · ·

∫ x2

0

dx1
x1

∫ x1

0

fλ(x0)

x0
dx0,

where the integration domain is determined by

0 ≤ x0 ≤ x1 ≤ x2 ≤ · · · ≤ xm ≤ x.

We can reformulate, by reversing the integral order, the multiple integral as

Tm(x, λ) =

∫ x

0

fλ(x0)

x0
dx0

∫ x

x0

dx1
x1

· · ·
∫ x

xm−2

dxm−1

xm−1

∫ x

xm−1

dxm
xm

.

For the last expression of Tm(x, λ), evaluating the right most integral for xm∫ x

xm−1

dxm
xm

= lnx− lnxm−1,

then the penultimate one for xm−1∫ x

xm−2

lnx− lnxm−1

xm−1
dxm−1 =

(lnx− lnxm−2)
2

2!
,

until the second integral for x1∫ x

x0

(lnx− lnx1)
m−1

(m− 1)!x1
dx1 =

(lnx− lnx0)
m

m!
;
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we reduce finally Tm(x, λ) to the following single integral expression:

Tm(x, λ) =

∫ x

0

(lnx− lnx0)
m

m!

fλ(x0)

x0
dx0.

Next, consider the generating function

∞∑
m=0

Tm(x, λ)ym =

∫ x

0

fλ(x0)

x0

∞∑
m=0

(lnx− lnx0)
mym

m!
dx0

=

∫ x

0

fλ(x0)

x0
ey(ln x−ln x0)dx0

=

∫ x

0

( x

x0

)y xλ−1
0√
1− x0

dx0.

When x = 1, by evaluating the beta integral∫ 1

0

xλ−y−1
0 (1− x0)

− 1
2 dx0 = B

(1
2
, λ− y

)
=

√
π Γ(λ− y)

Γ( 12 + λ− y)
,

we obtain the following closed expression in terms of the Γ-function quotient.

Lemma 1. Let y be an indeterminate and λ a real number subject to λ ̸∈ Z\N0. Then
we have the generating function

∞∑
m=0

Tm(1, λ)ym =

√
π Γ(λ− y)

Γ( 12 + λ− y)
.

Remark. The last formula is, in fact, a formal power series identity for the inde-
terminates y and λ ∈ R with λ ̸∈ Z\N0, where the domain for λ has been extended by
analytic continuation from its initial condition λ > 0.

2.1 Evaluation of Tm(1, λ) with λ ∈ N
By making use of the recurrence relation of the Γ-function, we can rewrite the generating
function as

∞∑
m=0

Tm(1, λ)ym =
√
π
(1− y)λ−1

( 12 − y)λ
× Γ(1− y)

Γ( 12 − y)
, (2.1)

where the shifted factorial is given by

(x)n =
Γ(x+ n)

Γ(x)
=

{
1, n = 0;

x(x+ 1) · · · (x+ n− 1), n ∈ N.

Recall the Γ-function expansions (cf. Rainville [3, §9] and Chu [2])

Γ(1− y) = exp

{ ∞∑
i=1

σi
i
yi
}
, (2.2)

Γ( 12 − y) =
√
π exp

{ ∞∑
i=1

τi
i
yi
}
; (2.3)
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where the sequences {σi, τi} are defined by the Riemann zeta function

σ1 = γ, σm = ζ(m), m = 2, 3, · · · ;
τ1 = γ + 2 ln 2, τm = (2m − 1)ζ(m), m = 2, 3, · · · ;

with γ being the usual Euler–Mascheroni constant

γ = lim
n→∞

{ n∑
k=1

1

k
− lnn

}
.

Define further the θ-sequence by

θk =
σk − τk

k

which can be expressed explicitly as

θ1 = −2 ln 2 and θk =
2− 2k

k
ζ(k) for k = 2, 3, · · · .

Then we can expand the Γ-function quotient

√
π
Γ(1− y)

Γ( 12 − y)
= exp

{ ∞∑
k=1

θky
k

}
=

∞∑
n=0

ynBn(θ1, θ2, · · · , θn), (2.4)

where the Bell polynomials are defined by

Bn(x1, x2, · · · , xn) :=
∑

k1+2k2+···+nkn=n
ki≥0: i=1,2,··· ,n

xk1
1 x

k2
2 · · ·xkn

n

k1!k2! · · · kn!
. (2.5)

For the quotient of shifted factorials, we can decompose it by partial fractions

(1− y)λ−1

( 12 − y)λ
=

λ∑
i=1

αi

i− 1
2 − y

,

where the coefficients αi is given explicitly by

αi = (−1)λ−i

(
λ− 1

i− 1

)(
i− 3

2

λ− 1

)
.

By extracting the coefficient of yk

ρk(λ) := [yk]
(1− y)λ−1

( 12 − y)λ
= [yk]

λ∑
i=1

αi

i− 1
2

∞∑
k=0

( y

i− 1
2

)k

we get

ρk(λ) =

λ∑
i=1

(−1)λ−i

(i− 1
2 )

k+1

(
λ− 1

i− 1

)(
i− 3

2

λ− 1

)
. (2.6)

Combining (2.1) with (2.4) and (2.6), we find the explicit formula for Tm(1, λ).
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Theorem 2 (m ∈ N0 and λ ∈ N). Let Bn and ρk(λ) be defined respectively by (2.5) and
(2.6). Then there holds the summation formula

∞∑
n=0

(
2n
n

)
4n(n+ λ)m+1

=

m∑
k=0

ρk(λ)Bm−k(θ1, θ2, · · · , θm−k).

2.2 Evaluation of Tm(1, 1
2
+ µ) with µ ∈ Z

Replacing λ by µ+ 1
2 in Lemma 1 with µ ∈ Z, we get

∞∑
m=0

Tm(1, 12 + µ)ym =
√
π
Γ( 12 + µ− y)

Γ(1 + µ− y)
=

√
π
( 12 − y)µ

(1− y)µ
×

Γ( 12 − y)

Γ(1− y)
.

Analogously, we have the expansion

√
π
Γ( 12 − y)

Γ(1− y)
= π exp

{
−

∞∑
k=1

θky
k

}
= π

∞∑
n=0

ynBn(−θ1,−θ2, · · · ,−θn), (2.7)

and the partial fraction decompositions

µ ≥ 0
( 12 − y)µ

(1− y)µ
= 1 +

µ∑
i=1

βi
i− y

,

µ < 0
( 12 − y)µ

(1− y)µ
=

(y)−µ

( 12 + y)−µ

= 1 +

−µ∑
i=1

γi

i− 1
2 + y

;

where

βi = (−1)µ−i−1

(
µ− 1

i− 1

)(
i− 1

2

µ

)
µ,

γi = (−1)µ−i

(
−µ− 1

i− 1

)(
i− 1

2

−µ

)
µ.

Denote by δi,j the usual Kronecker delta with δi,i = 1 and δi,j = 0 for i ̸= j. Extracting
the coefficients of yk from the factorial quotients

ϕk(µ) := [yk]
( 12 − y)µ

(1− y)µ
= [yk]

{
1 +

µ∑
i=1

βi

∞∑
k=0

yk

ik+1

}
= δ0,k +

µ∑
i=1

βi
ik+1

,

ψk(µ) := [yk]
(y)−µ

( 12+y)−µ

= [yk]

{
1 +

−µ∑
i=1

γi

∞∑
k=0

(−y)k

(i− 1
2 )

k+1

}
= δ0,k −

−µ∑
i=1

γi

( 12−i)k+1
;

we can express them in binomial sums

ϕk(µ) = δ0,k −
µ∑

i=1

(−1)µ−i

ik

(
µ

i

)(
i− 1

2

µ

)
, (2.8)

ψk(µ) = δ0,k −
−µ∑
i=1

(−1)µ−i

( 12 − i)k

(
−µ− 1

i− 1

)(
i− 3

2

−µ− 1

)
. (2.9)

Summing up, we have established the following summation formulae.
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Theorem 3 (m ∈ N0 and µ ∈ Z). Let Bn, ϕk(µ) and ψk(µ) be defined respectively by
(2.5), (2.8) and (2.9). Then the following formulae hold:

µ ≥ 0

∞∑
n=0

(
2n
n

)
4n(n+ µ+ 1

2 )
m+1

= π

m∑
k=0

ϕk(µ)Bm−k(−θ1,−θ2, · · · ,−θm−k),

µ < 0

∞∑
n=0

(
2n
n

)
4n(n+ µ+ 1

2 )
m+1

= π

m∑
k=0

ψk(µ)Bm−k(−θ1,−θ2, · · · ,−θm−k).

3 Examples

Based on Theorems 2 and 3, we have devised appropriately Mathematica commands that
can be utilized to evaluate Tm(1, λ) and Tm(1, 12+µ) for any specific triplet {m,λ, µ} with
m,λ ∈ N and µ ∈ Z. Several elegant formulae are highlighted below as exemplification.

The informed reader may notice that the series corresponding to m = 0 are not
recorded because in this case, the series can simply be evaluated by the well–known
theorem of Gauss for the 2F1(1)-series (cf. Bailey[1, §1.3]). In addition, we point out that
most of the identities given below don’t seem to have appeared previously, except for
the two series labeled by µ = 0 in Example 2 and Example 4, where the former can be
located in Zucker [5, Equation 2.16], while the latter confirms the formula (1.1) proposed
by Ribeiro [4].

Example 1 (m = 1 in Theorem 2: 1 ≤ λ ≤ 5).

λ = 1

∞∑
n=0

(
2n
n

)
4n(n+ 1)2

= 4− 4 ln 2.

λ = 2

∞∑
n=0

(
2n
n

)
4n(n+ 2)2

=
4

9
(5− 6 ln 2).

λ = 3

∞∑
n=0

(
2n
n

)
4n(n+ 3)2

=
8

225
(47− 60 ln 2).

λ = 4

∞∑
n=0

(
2n
n

)
4n(n+ 4)2

=
16

3675
(319− 420 ln 2).

λ = 5

∞∑
n=0

(
2n
n

)
4n(n+ 5)2

=
64

99225
(1879− 2520 ln 2).
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Example 2 (m = 1 in Theorem 3: −3 ≤ µ ≤ 3).

µ = −3

∞∑
n=0

(
2n
n

)
4n(2n− 5)2

=
4π

15
.

µ = −2

∞∑
n=0

(
2n
n

)
4n(2n− 3)2

=
π

3
.

µ = −1

∞∑
n=0

(
2n
n

)
4n(2n− 1)2

=
π

2
.

µ = 0

∞∑
n=0

(
2n
n

)
4n(2n+ 1)2

=
π

2
ln 2.

µ = 1

∞∑
n=0

(
2n
n

)
4n(2n+ 3)2

=
π

8

{
2 ln 2− 1

}
.

µ = 2

∞∑
n=0

(
2n
n

)
4n(2n+ 5)2

=
π

64
{12 ln 2− 7}.

µ = 3

∞∑
n=0

(
2n
n

)
4n(2n+ 7)2

=
π

384

{
60 ln 2− 37

}
.

Example 3 (m = 2 in Theorem 2: 1 ≤ λ ≤ 5).

λ = 1

∞∑
n=0

(
2n
n

)
4n(n+ 1)3

=
1

3

{
24− π2 − 24 ln 2 + 12 ln2 2

}
.

λ = 2

∞∑
n=0

(
2n
n

)
4n(n+ 2)3

=
2

27

{
56− 3π2 − 60 ln 2 + 36 ln2 2

}
.

λ = 3

∞∑
n=0

(
2n
n

)
4n(n+ 3)3

=
8

3375

{
1307− 75π2 − 1410 ln 2 + 900 ln2 2

}
.

λ = 4

∞∑
n=0

(
2n
n

)
4n(n+ 4)3

=
16

385875

{
62098− 3675π2 − 66990 ln 2 + 44100 ln2 2

}
.

λ = 5

∞∑
n=0

(
2n
n

)
4n(n+ 5)3

=
32

31255875

{
2197133−132300π2−2367540 ln 2+1587600 ln2 2

}
.
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Example 4 (m = 2 in Theorem 3: −3 ≤ µ ≤ 3).

µ = −3

∞∑
n=0

(
2n
n

)
4n(2n− 5)3

=
π

225

{
60 ln 2− 47

}
.

µ = −2

∞∑
n=0

(
2n
n

)
4n(2n− 3)3

=
π

18

{
6 ln 2− 5

}
.

µ = −1

∞∑
n=0

(
2n
n

)
4n(2n− 1)3

=
π

2

{
ln 2− 1

}
.

µ = 0

∞∑
n=0

(
2n
n

)
4n(2n+ 1)3

=
π

48

{
π2 + 12 ln2 2

}
.

µ = 1

∞∑
n=0

(
2n
n

)
4n(2n+ 3)3

=
π

96

{
π2 − 6− 12 ln 2 + 12 ln2 2

}
.

µ = 2

∞∑
n=0

(
2n
n

)
4n(2n+ 5)3

=
π

256

{
2π2 − 11− 28 ln 2 + 24 ln2 2

}
.

µ = 3

∞∑
n=0

(
2n
n

)
4n(2n+ 7)3

=
π

4608

{
30π2 − 155− 444 ln 2 + 360 ln2 2

}
.

Example 5 (m = 3 in Theorem 2: 1 ≤ λ ≤ 5).

λ = 1

∞∑
n=0

(
2n
n

)
4n(n+ 1)4

=
1

3

{
48− 2π2 − 48 ln 2 + 2π2 ln 2

+24 ln2 2− 8 ln3 2− 12ζ(3)

}
.

λ = 2

∞∑
n=0

(
2n
n

)
4n(n+ 2)4

=
2

81

{
328− 15π2 − 336 ln 2 + 18π2 ln 2

+180 ln2 2− 72 ln3 2− 108ζ(3)

}
.

λ = 3

∞∑
n=0

(
2n
n

)
4n(n+ 3)4

=
4

50625

{
76684− 3525π2 − 78420 ln 2− 27000ζ(3)

+42300 ln2 2 + 4500π2 ln 2− 18000 ln3 2

}
.

λ = 4

∞∑
n=0

(
2n
n

)
4n(n+ 4)4

=
8

40516875

{
25545482−1172325π2−26081160 ln 2−9261000ζ(3)

+14067900 ln2 2+1543500π2 ln 2−6174000 ln3 2

}
.

λ = 5

∞∑
n=0

(
2n
n

)
4n(n+ 5)4

=
32

9845600625

{
1357207508−62147925π2−1384193790 ln 2−500094000ζ(3)

+83349000π2 ln 2+745775100 ln2 2−333396000 ln3 2

}
.
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Example 6 (m = 3 in Theorem 3: −3 ≤ µ ≤ 3).

µ = −3

∞∑
n=0

(
2n
n

)
4n(2n− 5)4

=
π

6750

{
75π2 + 900 ln2 2− 1410 ln 2 + 1307

}
.

µ = −2

∞∑
n=0

(
2n
n

)
4n(2n− 3)4

=
π

216

{
3π2 + 36 ln2 2− 60 ln 2 + 56

}
.

µ = −1

∞∑
n=0

(
2n
n

)
4n(2n− 1)4

=
π

48

{
π2 + 12 ln2 2− 24 ln 2 + 24

}
.

µ = 0

∞∑
n=0

(
2n
n

)
4n(2n+ 1)4

=
π

48

{
π2 ln 2 + 4 ln3 2 + 6ζ(3)

}
.

µ = 1

∞∑
n=0

(
2n
n

)
4n(2n+ 3)4

=
π

192

{
2π2 ln 2− π2 − 6 + 12ζ(3)

+8 ln3 2− 12 ln2 2− 12 ln 2

}
.

µ = 2

∞∑
n=0

(
2n
n

)
4n(2n+ 5)4

=
π

3072

{
24π2 ln 2− 14π2 − 57 + 144ζ(3)

+96 ln3 2− 168 ln2 2− 132 ln 2

}
.

µ = 3

∞∑
n=0

(
2n
n

)
4n(2n+ 7)4

=
π

55296

{
360π2 ln 2− 222π2 − 769 + 2160ζ(3)

+1440 ln3 2− 2664 ln2 2− 1860 ln 2

}
.
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