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Abstract

It is known from Kummer-Dedekind factorization theorem that roots of a polyno-
mial congruence modulo a prime ideal are one to one correspondence to degree one
prime ideals in its extension field. In this note, we give a generalization of this well
known fact.
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1 Introduction

Throughout this note, let A be a Dedekind domain with fraction field K, L be a finite
separable extension of K and B be the integral closure of A in L. It is well known that B
is also a Dedekind domain. Suppose L = K(α) for some α ∈ B. Let m(x) ∈ A[x] be the
monic minimal polynomial of α. Denote by F the conductor of A[α] in B, i.e.,

F := {a ∈ B | aB ∈ A[α]}.

We have the famous Kummer-Dedekind Theorem (cf. [2], Proposition 8.3, Chapter 1) for
the factorization of prime ideals of A in B.

Theorem 1. Let p be a prime ideal of A such that pB + F = B. Assume m(x) ≡
m1(x)

e1 · · ·mr(x)
er mod p, wherem1, . . . ,mr are monic polynomials in A[x] whose residues

mod p are irreducible. Then

(1.1) Pi = pB +mi(α)B, i = 1, . . . , r,

are prime ideals of B above p. The inertia degree fi of Pi equals to the degree of mi, and
one has

pB = Pe1
1 · · ·Per

r .

Recall that Pi is said to be ramified if ei > 1, otherwise it is unramified, and Pi is
a degree one ideal if its inertia degree is one. If Pi is of degree one, then (1.1) becomes
Pi = pB + (α − v)B, which is denoted by Pi = (α − v, p) sometimes, for some v ∈ A
satisfying m(v) ≡ 0 mod p. The one to one correspondence between the degree one ideals
over p and the roots of the polynomial congruence m(v) ≡ 0 mod p is implied in Theorem
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1. The main purpose of the article is to extend this correspondence to a more general
setting.

We start with a generalization of degree one prime ideals. Obviously a prime ideal P of
B is of degree one if and only if

B/P ∼= A/(P ∩A).

This enables us to generalize the definition of degree one prime ideals. Let b be any ideal
of B and a := b ∩ A. Then A/a is a subring of B/b. We say that b is of degree one if
A/a ∼= B/b. We have the following result for degree one ideals.

Theorem 2. Let b ⊂ B be an ideal and b = Pk1
1 · · ·Pks

s be its unique factorization into
prime ideals. Denote by pi = Pi ∩ A. Then b is a degree one ideal if and only if all the
following three are true:

(a) each Pi is of degree one;
(b) ki = 1 if Pi is ramified;
(c) for each pair of i, j with 1 ≤ i < j ≤ s, pi and pj are relatively prime.

To state our main result, we introduce some notations. Let α1, ..., αn be elements in B
such that L = K(α1, ..., αn). Denote by gi(x) the monic minimal polynomial of αi over K.

Let di be the discriminant of gi, i.e., di is the discriminant of 1, αi, ..., α
deg gi−1
i with respect

to the field extension K(αi)/K. Suppose that

(1.2) [L : K] =

n∏
i=1

[K(αi) : K].

Then gi(x) is again the minimal polynomial of αi over K(α1, ..., α̂i, ..., αn), where α̂i means
the term αi is omitted.

Theorem 3. Let αi, gi and di be given as above such that (1.2) is true. For an ideal a ⊂ A
satisfying that aA+ diA = A for all 1 ≤ i ≤ n, let

R := {(v1, ..., vn) ∈ (A/a)n | gi(vi) ≡ 0 mod a}

and
I := {b ⊂ B | b is of degree one with b ∩A = a}.

Define
φ((v1, ..., vn)) := (α1 − v1, ..., αn − vn, a), ∀(v1, ..., vn) ∈ R,

where (α1 − v1, ..., αn − vn, a) denotes the ideal of B generated by α1 − v1, ..., αn − vn and
a. Then φ is a bijection from R to I, and its inverse is

ψ : I → R, ψ(b) := (α1 mod b, ..., αn mod b).

When A is the ring of integers, it is known that (1.2) is true if di, dj are relatively prime
for each pair of 1 ≤ i < j ≤ n. The following corollary of Theorem 3 is used in [3] to study
the distribution of roots of a system of polynomial congruences.

Corollary 1. For 1 ≤ i ≤ n, let gi(x) be a monic irreducible polynomial over Z with
discriminant di, and αi be a root of gi in Q̄. Suppose that (di, dj) = 1 for all 1 ≤ i < j ≤ n.
Then for any positive integer l with (l, di) = 1 for 1 ≤ i ≤ n, each degree one ideal of
Q(α1, ..., αn) above l can be written as (α1 − v1, ..., αn − vn, l), where vi satisfy gi(vi) ≡ 0
mod l and are uniquely determined up to modulo l.
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2 Proofs

Proof of Theorem 2. For any prime ideal p that appears in the set {pi : 1 ≤ i ≤ s}, we have

A ∩ b = A ∩
( ∏

1≤i≤s
pi=p

Pki
i ·

∏
1≤i≤s
pi ̸=p

Pki
i

)
=

(
A ∩

∏
1≤i≤s
pi=p

Pki
i

)
·
(
A ∩

∏
1≤i≤s
pi ̸=p

Pki
i

)
.

It is easy to see that

A ∩
∏

1≤i≤s
pi=p

Pki
i = min

1≤i≤s
pi=p

{A ∩Pki
i },

where min 1≤i≤s
pi=p

{A∩Pki
i } denotes the smallest ideal of the form A∩Pki

i with pi = p. From

the two equations we may conclude that there are integers i1, ..., it such that

A ∩Pk1
1 · · ·Pks

s = (A ∩P
ki1
i1

) · · · (A ∩P
kit
it

),

and A ∩Pil are different prime ideals in A for all 1 ≤ l ≤ t. So A/(A ∩ b) is a subring of⊕s
i=1A/(A∩Pki

i ). Moreover, since each A/(A∩Pki
i ) is a subring of B/Pki

i , it follows that⊕s
i=1A/(A ∩Pki

i ) is a subring of B/b. Therefore b is a degree one ideal if and only if

A/(A ∩ b) ∼=
s⊕

i=1

A/(A ∩Pki
i ) ∼= B/b.

The first ∼= happens if and only if A ∩Pk1
1 , ..., A ∩Pks

s are pairwisely coprime. The second
∼= holds if and only if A/(A ∩Pki

i ) ∼= B/Pki
i for each i, if and only if each Pi is of degree

one and ki = 1 for ramified Pi. This proves Theorem 2. 2

Proof of Theorem 3. Let v1, .., vn be elements of A such that gi(vi) ≡ 0 mod a. First
we show (α1 − v1, . . . , αn − vn, a) ⊂ B is a degree one ideal.

If a is a prime ideal, then (α1 − v1, a) is a degree one prime ideal of K(α1). By (1.2),
one deduces that g2(x) is the monic minimal polynomial of α2 over K(α1). Then the

discriminant of 1, α2, α
2
2..., α

deg g2−1
2 with respect to the field extension K(α1, α2)/K(α1)

is also d2. Let B1, B1,2 be the integral closure of A in K(α1) and K(α1, α2) respectively.
Then the conductor of B1[α2] in B1,2 divides d2. So by (a, d2) = 1, we derive that (α1 −
v1, α2 − v2, a) is a degree one prime ideal of K(α1, α2). Inductively we can show that
(α1 − v1, . . . , αi − vi, a) is a degree one prime ideal of K(α1, ..., αi) for all i with 1 ≤ i ≤ n.
Specially, (α1 − v1, . . . , αn − vn, a) is a degree one prime ideal of L if a is a prime ideal of
A. We can also see that (v′1, . . . , v

′
n, a) is different from (v1, . . . , vn, a) if (v′1, . . . , v

′
n) and

(v1, . . . , vn) are different elements of R.
Assume a is a power of a prime ideal. Write a = pk. Claim that

(α1 − v1, ..., αn − vn, p
k) = (α1 − v1, ..., αn − vn, p)

k.

The ideal (α1 − v1, ..., αn − vn, p) has been proved to be a degree one prime ideal. On the
other hand (α1 − v1, ..., αn − vn, p) is unramified if p is relatively prime to each di. So one
deduces from the claim and Theorem 2 that (α1 − v1, ..., αn − vn, p

k) is a degree one ideal.
We show the validity of the claim below.
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Denote again by B1 the integral closure of A inK(α1) and (α1−v1, a) the ideal generated
by α1 − v1 and a in B1. We have already known (α1 − v1, p) is a prime ideal of degree one.
In addition (α1 − v1, p) is the only prime ideal of B1 that divides both α1 − v1 and pB1.
Then α1−v1 = (α1−v1, p)lI for l > 0 and some ideal I ⊂ B1 with I+pB1 = B1. It follows
that

NB1/A((α1 − v1)B1) = g1(v1)A = plNB1/A(I),

where NB1/A denotes the ideal norm of B1/A and we used the fact that NB1/A((α1 −
v1, p)

l) = pl. From g1(v1) ≡ 0 mod pk and (NB1/A(I), p) = 1, one induces l ≥ k. So

(α1 − v1, p
k) = (α1 − v1, p)

k.

Therefore
(α1 − v1, α2 − v2, p

k) = (α2 − v2, (α1 − v1, p)
k).

Replacing p by (α1 − v1, p) and repeating above discussion, one derives that

(α2 − v2, (α1 − v1, p)
k) = (α2 − v2, α1 − v1, p)

k.

Continue this process by induction on n, we eventually arrived at the claimed equality.
Now we are ready to consider general ideals a. Write a =

∏s
i=1 p

ki
i . We know each

(α1 − v1, ..., αn − vn, p
ki
i ) is of degree one. Since

(α1 − v1, ..., αn − vn, a) ⊂ (α1 − v1, ..., αn − vn, p
ki
i )

for each i with 1 ≤ i ≤ s. So

(α1 − v1, ..., αn − vn, a) ⊂
s∏

i=1

(α1 − v1, ..., αn − vn, p
ki
i ).

By comparing the generators of each side, one is easy to see

s∏
i=1

(α1 − v1, ..., αn − vn, p
ki
i ) ⊂ (α1 − v1, ..., αn − vn,

s∏
i=1

pki
i ).

That is

(α1 − v1, ..., αn − vn, a) =

s∏
i=1

(α1 − v1, ..., αn − vn, pi)
ki .

Then by Theorem 2, (α1 − v1, ..., αn − vn, a) is a degree one ideal. Hence φ defines a map
from R to I. For two different elements (v1, . . . , vn) and (v′1, . . . , v

′
n) of R, there is at least

one pi | a that (v1, . . . , vn, pi
ki) ̸= (v′1, . . . , v

′
n, pi

ki). So (v1, . . . , vn, a) does not coincide with
(v′1, . . . , v

′
n, a), and hence ϕ is injective.

Now it is left to show ψ is the inverse of φ. Let b be any degree one ideal of B with
b∩A = a. Then by B/b ∼= A/a, there are v1, ..., vn ∈ A such that αi ≡ vi mod b, and vi are
uniquely determined up to modulo a. Since αi, vi ∈ K(αi), we have αi ≡ vi mod b∩K(αi).
Denote by Bi the integral closure of A in K(αi). Then

gi(vi)A = NBi/A((αi − vi)Bi) ⊂ NBi/A(b ∩K(αi)) = a.
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So gi(vi) ≡ 0 mod a for each i. Therefore ψ is a map from I to R.
Obviously, ψ · φ = idR. For a given degree one ideal b of B above a, let v1, ..., vn ∈ A

such that αi ≡ vi mod b for each i. Then b divides aB and (αi − vi)B for all i. Hence

b ⊂ (α1 − v1, ..., αn − vn, a).

Note that both of b and (α1 − v1, ..., αn − vn, a) are ideals of degree one above a. By the
definition of degree one ideals over a and Theorem 1.2, for each prime factor p of a, there
is exactly one prime ideal P (resp. P′) above p satisfying that P | (α1 − v1, ..., αn − vn, a)
(resp. P′ | b). Since b contains in (α1 − v1, ..., αn − vn, a),P = P′. It then follows from
B/b ∼= B/(α1 − v1, ..., αn − vn, a) ∼= A/a that

b = (α1 − v1, ..., αn − vn, a).

Thus φ ·ψ(b) = b for any b ∈ I. That is φ ·ψ = idI . This finishes the proof of Theorem 3.
2

Before ending this note, we would like to recall Theorem 88 of [1] and show its relation
with Theorem 3. Let L1, L2 be two number field with relatively prime discriminants and
L := L1L2. Let p be a prime number which factorises in L1 as p = pe11 · · · perr and in L2

as p = q1 · · · qs where p1, ..., pr and q1, ..., qs are distinct prime ideals of L1, L2 respectively.
Then Theorem 88 states that p factorises in L as p =

∏
i,j I

ei
ij where the product is taken

over i = 1, ..., r and j = 1, ..., s and Iij is the greatest common divisor of pi and qj in L.
The ideals Iij are not necessarily prime ideals in L. From Theorem 3 we know that for a
large prime p, if pi, qj are of degree one, then Iij is a prime ideal of degree one. Actually it
is indicated in the proof of Theorem 3 that Iij is a prime ideal if one of pi, qj is of degree
one.
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