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Abstract

Let R = Zp + uZp + u2Zp be a commutative ring with u3 = u and p is an odd

prime. The ZpR-additive cyclic codes can be considered as R[x]-submodules of
Zp[x]

<xα−1>
×

R[x]

<xβ−1>
, for some positive integers α and β. In this paper, we study the algebraic

structure of ZpR-additive cyclic codes of length (α, β). To do this, we determine their
generator polynomials and minimal generating sets. Moreover, we discuss the duality
of the ZpR-additive cyclic codes and obtain their generator polynomials. We also study
the structure of additive constacyclic codes and quantum codes over ZpR.
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1 Introduction

Codes over finite rings have studied since 1970s. Cyclic codes are the important class of linear
codes. In 1973, Delsarte [10] introduced the additive codes in terms of association schemes
as the subgroups of a commutative group which provides a generalization of cyclic codes.
Over the past twenty years or so, by using different techniques, there have appeared in the
literature several results giving generalizations of cyclic codes. Some of them can be found
in [1, 5, 7, 8, 9, 17]. Recently, codes over mixed alphabet rings viewed as submodules have
studied. In one of the such studied, Aydogdu et al. [3] have introduced and described the
algebraic properties of Z2(Z2 + uZ2)-additive codes with u2 = 0. Also, they determined the
standard forms of generator and parity check matrices for these codes. Later, Aydogdu et al.
[4] studied Z2(Z2 + uZ2)-additive cyclic codes and constacyclic codes. They obtained some
optimal binary linear codes as the Gray images of Z2(Z2 + uZ2)-additive cyclic codes. Islam
et al. [16] continued to explore codes over mixed alphabets and they introduced the mixed
alphabets Z4(Z4+uZ4)-additive cyclic codes and constacyclic codes which lead to generalizing
the codes over Z4 as well as Z4 + uZ4, where u

2 = 0. Meanwhile, Diao et al. [11] have
studied the algebraic structure of additive cyclic codes over Zp(Zp + uZp) with u

2 = u. They
constructed some optimal linear codes over finite fields and MDSS codes of these codes and
they also obtained some quantum codes from additive cyclic codes over the ring Zp(Zp+uZp).

After, Bag et al. [6] have studied quantum codes from cyclic codes over the ring
Zp[u]

<u3−u> (see
also [15]). Recently, Hou et al. [14] constructed a class of ZpZp[v]-additive cyclic codes where
v2 = v. They studied the asymptotic properties of this class of codes. The purpose of this
paper is to study the ZpR-additive cyclic codes, where R = Zp + uZp + u2Zp with u3 = u.
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The main motive of this work is to find out the generator polynomial, minimal spanning
set of ZpR-additive cyclic codes and determine the generator polynomials of a dual code.
The paper is organized as follows: In the next section we discuss the structural properties
of ZpR-additive cyclic codes and find the minimal generating sets of these codes. Moreover,
get some properties of separable additive cyclic codes and the Gray image of a additive cyclic
code over ZpR. In Section 3, we determine the generator polynomials of the dual codes of
ZpR-additive cyclic codes. In the final section, we describe ZpR-additive constacyclic codes
and quantum codes.

2 ZpR-additive cyclic codes

In this paper, we determine the minimal generating sets of ZpR-additive cyclic codes. Assume
that Zp is the ring of integers modulo p, where p is an odd prime and suppose that

R = {(1− u2)a+ 2−1(u2 + u)b+ 2−1(u2 − u)c | a, b, c ∈ Zp}

with u3 = u, where (1− u2), 2−1(u2 + u) and 2−1(u2 − u) are orthogonal idempotents of R.
We suppose that a+ ub+ u2c = (1− u2)a+2−1(u2 + u)(a+ b+ c) + 2−1(u2 − u)(a− b+ c) is
an element of R. Then a+ bu+ cu2 is a unit over R if and only if a, a+ b+ c and a− b+ c
are units of Z∗

p = Zp\{0}. It is clear that Zp a subring of the ring R. Being inspired by the
structure of ZpR-additive codes, we define the following set

ZpR = {(a, b)| a ∈ Zp, b ∈ R}.

Consider the map ρ : R → Zp given by

ρ((1− u2)a+ 2−1(u2 + u)b+ 2−1(u2 − u)c) = a,

where a, b, c are arbitrary elements of Zp. Obviously, ρ is a ring homomorphism. So we can
define a multiplication

∗ : R× ZpR → ZpR
d ∗ (a, b) = (ρ(d)a, db),

where d = (1− u2)a+2−1(u2 + u)b+2−1(u2 − u)c ∈ R with a, b, c ∈ Zp. Thus the extension
of multiplication ∗ to (a0, · · · , aα−1, b0, · · · , bβ−1) ∈ Zα

p ×Rβ by the elements of R is defined
by

d ∗ (a, b) = (ρ(d)a0, · · · , ρ(d)aα−1, db0, · · · , dbβ−1),

where a = (a0, a1, · · · , aα−1) ∈ Zα
p and b = (b0, · · · , bβ−1) ∈ Rβ . Now, in view of the above

multiplication, it is easy to see that Zα
p ×Rβ is an R-module.

Definition 1. Suppose that C is a non-empty subset of Zα
p ×Rβ. Then C is called a ZpR-

additive code if C is an R-submodule of Zα
p ×Rβ .

Now, consider a Gray map

ϕ : R → Z3
p

ϕ((1− u2)a+2−1(u2 + u)b+ 2−1(u2 − u)c) = (a, b, c),
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where a, b, c ∈ Zp. The map ϕ is linear and its extension is

ϕ : Rβ → Z3β
p

ϕ(s0, · · · , sβ−1) = (a0, · · · , aβ−1, b0, · · · , bβ−1, c0, · · · , cβ−1),

where si = (1 − u2)ai + 2−1(u2 + u)bi + 2−1(u2 − u)ci ∈ R for i = 0, · · · , β − 1. Now, with
the aid of the map ϕ, we define a Gray map φ as follows:

φ : Zα
p ×Rβ → Zα+3β

p

φ(d0, · · · , dα−1, s0, · · · , sβ−1) = (d0, · · · , dα−1, ϕ(s0, · · · , sβ−1)),

where di ∈ Zp for i = 0, · · · , α − 1. The image C = φ(C) of a ZpR-additive code over Zp is
said to be a ZpR-linear code of length n = α+ 3β.

Definition 2. For a codeword x ∈ Zn
p = {(x1, · · · , xn) xi ∈ Zp}, the Hamming weight of x

is defined as the number of non-zero coordinate positions, which is denoted by wH(x).

Let C be a cyclic code over Zp. The Hamming distance between two codewords x, y ∈ C
is defined as dH(x, y) = wH(x− y) and defined the minimum Hamming distance of C over Zp

as dH(C) = min{dH(x, y) | x 6= y for all x, y ∈ C}.

Definition 3. Let w = (w0, · · · , wα−1,w0, · · · ,wβ−1) be an element of Zα
p × Rβ . The Lee

weight of w is defined as
wL(w) = wH(φ(w)).

For any elements v, w ∈ Zα
p × Rβ , the Lee distance is dL(v, w) = wL(v − w). An inner

product for elements v = (v0, · · · , vα−1, v0, · · · , vβ−1), w = (w0, · · · , wα−1,w0,
· · · ,wβ−1) of Zα

p ×Rβ is defined as

v · w = (1− u2)

α−1∑
i=0

viwi +

β−1∑
j=0

vjwj .

Assume that C is a ZpR-additive code. Then the dual code of C, denoted by C⊥, is defined
to be

C⊥ = {v ∈ Zα
p ×Rβ | v · u = 0 for all u ∈ C}.

Put Rα,β := Zp[x]/〈xα − 1〉 × R[x]/〈xβ − 1〉. Identifying each v = (a, b) ∈ Zα
p ×Rβ with of

polynomials (a(x), b(x)), where a(x) =
∑α−1

i=0 aix
i ∈ Zp[x]/〈xα − 1〉 and b(x) =

∑β−1
j=0 bjx

j

∈ R[x]/〈xβ − 1〉, we get a one-to-one correspondence between Zα
p × Rβ and Rα,β . For any

f(x) =
∑
fix

i ∈ R[x] and (a(x), b(x)) ∈ Rα,β , we define the product f(x) ∗ (a(x), b(x)) =
(ρ(f(x))a(x), f(x)b(x)), where ρ(f(x)) =

∑
ρ(fi)x

i.

Definition 4. A ZpR- additive code C of length (α, β) is called a ZpR-additive cyclic code
if, for any z = (c0, · · · , cα−1, r0, · · · , rβ−1) ∈ C, we have

σα,β(z) = (cα−1, c0, · · · , cα−2, rβ−1, r0, · · · , rβ−2) ∈ C,

where σα,β is a permutation of Zα
pRβ.
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Definition 5. A ZpR-additive code C is cyclic in Zα
p × Rβ if and only if C is an R[x]-

submodule of Rα,β.

Definition 6. A unique monic polynomial of the lowest degree for a non-zero submodule M
of Rα,β is called a generator polynomial. For a ZpR-additive cyclic code C, this generator
polynomial is called a generator polynomial C.

In the following theorem, we determine the generator polynomial of the ZpR-additive
cyclic code C.

Theorem 1. Let C be a ZpR-additive cyclic code of length (α, β). Then C is an R[x]-
submodule of Rα,β given by

C = 〈(f(x), 0), (l(x), (1− u2)f1(x) + 2−1(u2 + u)f2(x) + 2−1(u2 − u)f3(x))〉,

where f(x)|(xα − 1), fi(x)|(xβ − 1) for i = 1, 2, 3, and also f(x), l(x) ∈ Zp[x]/〈xα − 1〉,
fi(x) ∈ R[x]/〈xβ − 1〉 for i = 1, 2, 3.

Proof. Assume that the map

η : Zp[x]/〈xα − 1〉 × R[x]/〈xβ − 1〉 → R[x]/〈xβ − 1〉 given by

(a(x), b(x)) 7→ b(x)

is the projection map. Clearly, the map η is an R[x]-module homomorphism with

Ker(η) = {(f ′(x), 0) ∈ C| f ′(x) ∈ Zp[x]/〈xα − 1〉}.

Put S := {f ′(x) ∈ Zp/〈xα − 1〉|(f ′(x), 0) ∈ Ker(η)}. It is clear that S is a principal ideal.
Therefore, there exists a monic polynomial f(x) ∈ Zp[x]/〈xα − 1〉 such that S = 〈f(x)〉.
Thus, Ker(η) = 〈(f(x), 0)〉. We know that the homomorphic image of C under η is an ideal
of R[x]/〈xβ − 1〉. By [12, Theorem 4], we have

η(C) = 〈(1− u2)f1(x) + 2−1(u2 + u)f2(x) + 2−1(u2 − u)f3(x)〉,

where fi are monic polynomials over Zp with fi(x)|(xβ − 1) for 1 ≤ i ≤ 3. Since C is an
R[x]-submodule of Rα,β and it is generated by

(f(x), 0), (l(x), (1− u2)f1(x) + 2−1(u2 + u)f2(x) + 2−1(u2 − u)f3(x)),

for some l(x) ∈ Zp[x]/〈xα − 1〉. This means that

C = 〈(f(x), 0), (l(x), (1− u2)f1(x) + 2−1(u2 + u)f2(x) + 2−1(u2 − u)f3(x))〉,

where f(x), l(x) ∈ Zp[x]/〈xα−1〉 and fi(x) ∈ R[x]/〈xβ−1〉, with f(x)|(xα−1) and fi(x)|(xβ−
1) for 1 ≤ i ≤ 3.

Let C = 〈(f(x), 0), (l(x), (1−u2)f1(x)+2−1(u2+u)f2(x)+2−1(u2−u)f3(x))〉 be a ZpR-
additive cyclic code of length (α, β). Assume that Cα (respectively Cβ) is the canonical projec-
tion of C on the first α (respectively last β) coordinates. We know that Cα = 〈gcd(f(x), l(x))〉
is a cyclic code of length α over Zp, and Cβ = 〈(1− u2)f1(x) + 2−1(u2 + u)f2(x) + 2−1(u2 −
u)f3(x)〉 is a cyclic code of length β over R.
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Lemma 1. Let the situation and notation be as in 1. Suppose that C = 〈(f(x), 0), (l(x), (1−
u2)f1(x) + 2−1(u2 + u)f2(x) + 2−1(u2 − u)f3(x))〉 is a ZpR-additive cyclic code. Then ((1−
u2)f1(x) + 2−1(u2 + u)f2(x) + 2−1(u2 − u)f3(x))|(xβ − 1), where fi(x)gi(x) = (xβ − 1) for
1 ≤ i ≤ 3.

Proof. We know that fi(x)|(xβ −1) for 1 ≤ i ≤ 3. Thus, there are the polynomials gi(x) such
that fi(x)gi(x) = (xβ − 1) for 1 ≤ i ≤ 3. So, we get

((1− u2)f1(x) + 2−1(u2 + u)f2(x) + 2−1(u2 − u)f3(x))((1− u2)g1(x)

+ 2−1(u2 + u)g2(x) + 2−1(u2 − u)g3(x)) = (xβ − 1).

This implies that

((1− u2)f1(x) + 2−1(u2 + u)f2(x) + 2−1(u2 − u)f3(x))|(xβ − 1).

Lemma 2. Let the situation and notation be as in 1. Assume that C is a ZpR-additive cyclic
code and given by

C = 〈(f(x), 0), (l(x), (1− u2)f1(x) + 2−1(u2 + u)f2(x) + 2−1(u2 − u)f3(x))〉,

where fi(x)gi(x) = (xβ − 1) for 1 ≤ i ≤ 3. Thus, f(x)|g1(x)l(x).

Proof. We have

((1− u2)g1(x) + 2−1(u2 + u)g2(x) + 2−1(u2 − u)g3(x))∗
(l(x), (1− u2)f1(x) + 2−1(u2 + u)f2(x) + 2−1(u2 − u)f3(x))

= (l(x)g1(x), 0).

This implies that (l(x)g1(x), 0) ∈ Ker(η). Hence f(x)|l(x)g1(x).

The following corollary is immediate from the above lemma.

Corollary 1. Let the situation and notation be as in 1. Let C be a ZpR-additive code given
by

C = 〈(f(x), 0), (l(x), (1− u2)f1(x) + 2−1(u2 + u)f2(x) + 2−1(u2 − u)f3(x))〉,

where fi(x)gi(x) = (xβ − 1) for 1 ≤ i ≤ 3. Then f(x)|gcd(f(x), l(x)g1(x)).

Definition 7. Let S = {v1, · · · , vn} be a set of vectors.The vectors v1, · · · , vn span a vector
space D of Zp, if

(i) v1, · · · , vn ∈ D,

(ii) u = x1v1 + x2v2 + · · ·+ xnvn for all u ∈ D,xi ∈ Zp with 1 ≤ i ≤ n.

The span vector space is denoted by Span(S).
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Let C be a non-empty subset of Zα
pRβ . If C forms a subspace of Zα

pRβ , then C is called a
linear code. In the next theorem, we obtain a minimal generating set of ZpR-additive cyclic
code.

Theorem 2. Suppose that C is a ZpR-additive cyclic code of length (α, β) and fi(x), gi(x)
are monic polynomials such that fi(x)gi(x) = (xβ − 1) for 1 ≤ i ≤ 3. Let

S1 =

α−deg(f(x))−1∪
i=0

{xi ∗ (f(x), 0)},

S2 =

deg(g1(x))−1∪
i=0

{xi ∗ (l(x), (1− u2)f1(x))},

S3 =

deg(g2(x))−1∪
i=0

{xi ∗ (0, 2−1(u2 + u)f2(x))},

S4 =

deg(g3(x))−1∪
i=0

{xi ∗ (0, 2−1(u2 − u)f3(x))}.

Then S1 ∪ S2 ∪ S3 ∪ S4 is a generating set of C. Furthermore, C has pk codewords, where

k = α− deg(f(x)) + deg(g1(x)) + deg(g2(x)) + deg(g3(x)).

Proof. Assume that c(x) is an arbitrary codeword in C. Then there exist c1(x), c2(x) ∈ R[x]
such that

c(x) = c1(x) ∗ (f(x), 0) + c2(x) ∗ ((1− u2)f1(x)

+ 2−1(u2 + u)f2(x) + 2−1(u2 − u)f3(x)).

If deg(c1(x)) ≤ (α−deg(f(x))−1), then c1(x)∗ (f(x), 0) ∈ Span(S1). Otherwise, by applying
the division algorithm, there exist polynomials q(x) and r(x) in R[x] such that

c1(x) =
(xα − 1)

f(x)
q(x) + r(x),

where deg(r(x)) ≤ (α− deg(f(x))− 1) or r(x) = 0. Hence,

c1(x) ∗ (f(x), 0) = (
xα − 1

f(x)
q(x) + r(x)) ∗ (f(x), 0)

= r(x) ∗ (f(x), 0).

This implies that c1(x) ∗ (f(x), 0) ∈ Span(S1), and so

c2(x) = (1− u2)a(x) + 2−1(u2 + u)b(x) + 2−1(u2 − u)d(x).
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We have

c2(x)∗(l(x), (1− u2)f1(x) + 2−1(u2 + u)f2(x) + 2−1(u2 − u)f3(x))

= ((1− u2)a(x) + 2−1(u2 + u)b(x) + 2−1(u2 − u)d(x))

∗ (l(x), (1− u2)f1(x) + 2−1(u2 + u)f2(x) + 2−1(u2 − u)f3(x))

= a(x) ∗ (l(x), (1− u2)f1(x)) + b(x) ∗ (0, 2−1(u2 + u)f2(x))

+ d(x) ∗ (0, 2−1(u2 − u)f3(x)).

According to Lemma 2, f(x)|l(x)g1(x). Therefore, f(x)h(x) = l(x)g1(x) for some polynomial
h(x). If deg(a(x)) ≤ deg(g1(x))− 1, then a(x) ∗ (l(x), (1− u2)f1(x)) ∈ Span(S2). Otherwise,
by using the division algorithm, there exist q1(x), r1(x) ∈ R[x] such that

a(x) = g1(x)q1(x) + r1(x),

where deg(r1(x)) ≤ deg(g1(x))− 1 or r1(x) = 0. Therefore,

a(x) ∗ (l(x), (1− u2)f1(x)) = (q1(x)g1(x) + r1(x)) ∗ (l(x), (1− u2)f1(x))

= q1(x)(l(x)g1(x), 0) + r1(x) ∗ (l(x), (1− u2)f1(x)).

Hence q1(x) ∗ (l(x)g1(x), 0) ∈ Span(S1) and r1(x) ∗ (l(x), (1 − u2)f1(x)) ∈ Span(S2). If
deg(b(x)) ≤ deg(g2(x))− 1, then b(x) ∗ (0, 2−1(u2 + u)f2(x)) ∈ Span(S3). Again, by applying
the division algorithm, there exist q2(x), r2(x) ∈ R[x] such that

b(x) = g2(x)q2(x) + r2(x),

where deg(r2(x)) ≤ deg(g2(x))− 1 or r2(x) = 0. Thus

b(x) ∗ (0, 2−1(u2 + u)f2(x)) = (g2(x)q2(x) + r2(x)) ∗ (0, 2−1(u2 + u)f2(x))

= r2(x) ∗ (0, 2−1(u2 + u)f2(x)).

Furthermore, we have r2(x) ∗ (0, 2−1(u2 + u)f2(x)) ∈ Span(S3).
Now, if deg(d(x)) ≤ deg(g3(x))− 1, then d(x) ∗ (0, 2−1(u2 − u)f3(x)) ∈ Span(S4). Finally, by
using the division algorithm, there exist q3(x), r3(x) ∈ R[x] such that

d(x) = g3(x)q3(x) + r3(x),

where deg(r3(x)) ≤ deg(g3(x))− 1 or r3(x) = 0. Therefore,

d(x) ∗ (0, 2−1(u2 − u)f3(x)) = (g3(x)q3(x) + r3(x)) ∗ (0, 2−1(u2 − u)f3(x))

= r3(x) ∗ (0, 2−1(u2 − u)f3(x)).

Thus we can assume that d(x) ∗ (0, 2−1(u2 − u)f3(x)) ∈ Span(S4). Clearly, the elements in
S1∪S2∪S3∪S4 are R-linearly independent, and so S1∪S2∪S3∪S4 is a minimal generating
set of C as an R-module. Moreover, |C| = pk, where

k = α− deg(f(x)) + deg(g1(x)) + deg(g2(x)) + deg(g3(x)).
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Definition 8. Let C be a ZpR-additive linear code. Then C is called a self-orthogonal ZpR-
additive code if C ⊆ C⊥.

Lemma 3. Suppose that C is a self orthogonal ZpR-additive cyclic code. Then φ(C) is a
self-orthogonal code.

Proof. Let x = (x0, · · · , xα−1, x0, · · · , xβ−1) and y = (y0, · · · , yα−1, y0, · · · , yβ−1) be code-
words in C, where xi = (1 − u2)ai + 2−1(u2 + u)bi + 2−1(u2 − u)ci and yi = (1 − u2)ai +
2−1(u2 + u)bi + 2−1(u2 − u)ci with ai, ai, bi, bi, ci, ci ∈ Zp for 0 ≤ i ≤ β − 1. Then

x · y = (1− u2)

α−1∑
i=0

(xiyi) +

β−1∑
j=0

(xjyj)

= (1− u2)

α−1∑
i=0

(xiyi) +

β−1∑
j=0

((1− u2)ajaj + 2−1(u2 + u)bjbj + 2−1(u2 − u)cjcj)

= 0.

This implies that

α−1∑
i=0

(xiyi) = 0,

β−1∑
j=0

(ajaj) = 0,

β−1∑
j=0

(bjbj) = 0,

β−1∑
j=0

(cjcj) = 0,

over Zp. Thus φ(x) · φ(y) = 0. Hence φ(C) is self orthogonal.

Definition 9. A ZpR-additive code C is called separable if C is the direct product of Cα and
Cβ, that is, C = Cα × Cβ and l = 0.

Lemma 4. Let the situation and notation be as in 1 and let

C = 〈(f(x), 0), (0, (1− u2)f1(x) + 2−1(u2 + u)f2(x) + 2−1(u2 − u)f3(x))〉

be a ZpR-additive cyclic code. Then C = Cα×Cβ is a separable code, where Cα is a Zp-cyclic
code and Cβ is a cyclic code over R.

Proof.

(cα, cβ) ∈ C ⇔ cα = w1f(x), and

cβ = w2((1− u2)f1(x) + 2−1(u2 + u)f2(x) + 2−1(u2 − u)f3(x))

⇔ cα ∈ Cα = 〈f(x)〉 and

cβ ∈ Cβ = 〈(1− u2)f1(x) + 2−1(u2 + u)f2(x) + 2−1(u2 − u)f3(x)〉
⇔ C = Cα × Cβ , where Cα = 〈f(x)〉 and

Cβ = 〈(1− u2)f1(x) + 2−1(u2 + u)f2(x) + 2−1(u2 − u)f3(x)〉.
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Proposition 1. Let C be a ZpR-additive cyclic code of length (α, β). Then C is a separable
code if and only if Cα is a cyclic code of length α over Zp and Cβ is a cyclic code of length
β over R.

Proof. Let C be a separable code. Suppose that (a0, · · · , aα−1, b0, · · · , bβ−1) is a codeword in
C, where (a0, · · · , aα−1) ∈ Cα and (b0, · · · , bβ−1) ∈ Cβ . It is clear that

(aα−1, a0, · · · , aα−2, bβ−1, b0, · · · , bβ−2) ∈ C.

So (aα−1, a0, · · · , aα−2) ∈ Cα and (bβ−1, b0, · · · , bβ−2) ∈ Cβ .
For the converse implication, assume that Cα (respectively Cβ) is a cyclic code over Zp

(respectively R). Then (aα−1, a0, · · · , aα−2) ∈ Cα and (bβ−1, b0, · · · , bβ−2) ∈ Cβ . These
imply that (aα−1, a0, · · · , aα−2, bβ−1, b0, · · · , bβ−2) belongs to Cα × Cβ = C.

Lemma 5. Let C = Cα × Cβ be a separable additive code of length α + β over ZpR. Then
C⊥ ⊆ C if and only if C⊥

α ⊆ Cα and C⊥
β ⊆ Cβ .

Proof. Let C⊥
α ⊆ Cα and C⊥

β ⊆ Cβ . Then we get C⊥
α × C⊥

β ⊆ C. Conversely, suppose that

C⊥ ⊆ C. Obviously, C⊥
α ⊆ C and C⊥

β ⊆ C. Thus, the sentence is completed.

Note that the converse implication in Lemma 2.14 is not true in general. Moreover,
C⊥ 6= C⊥

α × C⊥
β in general.

3 Duality of ZpR-additive cyclic codes

In this section, we shall study the properties of the duality of ZpR-additive cyclic codes. In
[11, Theorem 4.1], it was shown that the dual code of a ZpR-additive cyclic code is also a
ZpR-additive cyclic. Hence, we denote

C⊥ = 〈(f(x), 0), (l(x), (1− u2)f1(x) + 2−1(u2 + u)f2(x) + 2−1(u2 − u)f3(x))〉,

where f i(x)gi(x) = xβ − 1 in R[x] for 1 ≤ i ≤ 3 and f(x), l(x) ∈ Zp[x]/〈xα − 1〉 with
f(x)|(xα−1), deg(l(x)) ≤ deg(f(x)) and f(x)|l(x)g1(x). Recall that the reciprocal polynomial
of a polynomial p(x) is xdeg(p(x))p(x−1) and is denoted by p∗(x). As in the theory of dual
cyclic codes, the reciprocal polynomials play an important role on our method in this section.
We denote the polynomial

∑m−1
i=0 xi by θm(x) in which m denotes the least common multiple

of α and β.

Proposition 2. For any positive integers m and n, we have

xnm − 1 = (xn − 1)θm(xn).

Definition 10. Let v(x) = (v(x), v(x)) and w(x) = (w(x),w(x)) be elements in Rα,β. We
define the map

Ω : Rα,β ×Rα,β → R[x]/〈xm − 1〉
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by defining

Ω(v(x),w(x)) = (1− u2)v(x)θm
α
(xα)xm−1−deg(w(x))w∗(x)

+ v(x)θm
β
(xβ)xm−1−deg(w(x))w∗(x) mod (xm − 1)

The map Ω is a bilinear map between R[x]-modules.
By using a method similar that used in the proof of Proposition 1 in [11], one can establish

the next proposition.

Proposition 3. Assume that v = (v, v), w = (w,w) ∈ Zα
p ×Rβ. Then v is orthogonal to w

and all its shifts if and only if
Ω(v(x),w(x)) = 0.

Proposition 4. Suppose that v = (v(x), v(x)) and w = (w(x),w(x)) are elements in Rα,β

such that Ω(v(x),w(x)) = 0. If v(x) or w(x) equals 0, then v(x)w∗(x) ≡ 0 mod (xα − 1)
over Zp. If v(x) = 0 or w(x) = 0, then v(x)w∗(x) ≡ 0 mod (xβ − 1) over R.

Proof. The proof process is the same as that of Proposition 2 in [11].

Lemma 6. Suppose that C = 〈(f(x), 0), (l(x), (1 − u2)f1(x) + 2−1(u2 + u)f2(x) + 2−1(u2 −
u)f3(x))〉 is a ZpR-additive cyclic code. Then

| Cα | = pα−deg(gcd(f(x),l(x))), | Cβ |= p3β−deg(f1(x))−deg(f2(x))−deg(f3(x)),

| (Cα)
⊥ | = pdeg(gcd(f(x),l(x))), | (Cβ)

⊥ |= pdeg(f1(x))+deg(f2(x))+deg(f3(x)),

| (C⊥)α | = pdeg(f(x)), | 2−1(u2 − u)(C⊥)β |= pdeg(f3(x)),

| (C⊥)β | = pdeg(f1(x))+deg(f2(x))+deg(f3(x))+deg(f(x))−deg(gcd(f(x),l(x))),

| (1− u2)Cβ | = pβ−deg(f1(x)), | 2−1(u2 + u)Cβ |= pβ−deg(f2(x)),

| 2−1(u2 − u)Cβ | = pβ−deg(f3(x)), | (1− u2)(Cβ)
⊥ |= pdeg(f1(x)),

| 2−1(u2 + u)(Cβ)
⊥ | = pdeg(f2(x)), | 2−1(u2 − u)(Cβ)

⊥ |= pdeg(f3(x)),

| (1− u2)(C⊥)β | = pdeg(f1(x))+deg(f(x))−deg(gcd(f(x),l(x))),

| 2−1(u2 + u)(C⊥)β | = pdeg(f2(x)).

Proof. We know that Cα = 〈gcd(f(x), l(x))〉 and that Cβ = 〈(1 − u2)f1(x) + 2−1(u2 +
u)f2(x) + 2−1(u2 − u)f3(x)〉, which are cyclic codes of lengths α (over Zp) and β (over R),
respectively. Thus | Cα |= pα−deg(gcd(f(x),l(x))) and | Cβ |= p3β−deg(f1(x))−deg(f2(x))−deg(f3(x)).
Furthermore, one can calculate the size of each codes (C⊥)α, (C

⊥)β .
From Theorem 4 in [12], we have that (1 − u2)Cβ = 〈(1 − u2)f1(x)〉, 2−1(u2 + u)Cβ =

〈2−1(u2 + u)f2(x)〉 and 2−1(u2 − u)Cβ = 〈2−1(u2 − u)f3(x)〉. Hence, | 2−1(u2 + u)Cβ |=
pβ−deg(f2(x)), | (1−u2)Cβ |= pβ−deg(f1(x)), | 2−1(u2−u)Cβ |= pβ−deg(f3(x)). So, one can easily
obtain the size of | (1−u2)(Cβ)

⊥ |, | (1−u2)(C⊥)β |, | 2−1(u2+u)(Cβ)
⊥ |, | 2−1(u2+u)(C⊥)β |,

| 2−1(u2 − u)(Cβ)
⊥ |, | 2−1(u2 − u)(C⊥)β |.
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We determine the degree of the generator polynomials of a dual code. These results can
be helpful to determine the generator polynomials of a dual code.

Theorem 3. Let C = 〈(f(x), 0), (l(x), (1−u2)f1(x)+ 2−1(u2 +u)f2(x)+ 2−1(u2 −u)f3(x))〉
be a ZpR-additive cyclic code and with dual code

C⊥ = 〈(f(x), 0), (l(x), (1− u2)f1(x) + 2−1(u2 + u)f2(x) + 2−1(u2 − u)f3(x))〉.

Then

deg(f(x)) = α− deg(gcd(f(x), l(x))),

deg(f1(x)) = β − deg(f1(x))− deg(f(x)) + deg(gcd(f(x), l(x))),

deg(f2(x)) = β − deg(f2(x)),

deg(f3(x)) = β − deg(f3(x)).

Proof. It is easy to see that (Cα)
⊥ is a cyclic code and that is generated by f(x). There-

fore | (Cα)
⊥ |= pα−deg(f(x)). According to Lemma 6, | (Cα)

⊥ |= pdeg(gcd(f(x),l(x))). Then
deg(f(x)) = α − deg(gcd(f(x), l(x))). Also, we know that (1 − u2)(C⊥)β is a cyclic code
and that is generated by (1 − u2)f1(x). Moreover, by Lemma 6, | (1 − u2)(C⊥)β |=
pdeg(f1(x)+deg(f(x))−deg(gcd(f(x),l(x))).

Hence deg(f1(x)) = β − deg(f1(x)) − deg(f(x)) + deg(gcd(f(x), l(x))). Now, one can
show that 2−1(u2 + u)(C⊥)β is a cyclic code and that is generated by 2−1(u2 + u)f2(x).

Hence | 2−1(u2 + u)(C⊥)β |= pβ−deg(f2(x)), and so | 2−1(u2 + u)(C⊥)β |= pdeg(f2(x)). Thus
deg(f2(x)) = β − deg(f2(x)). Clearly, (2−1(u2 − u)(C⊥)β) = 〈2−1(u2 − u)f3(x)〉 is a cyclic
code. In view of Lemma 6, we have | 2−1(u2 − u)(C⊥)β |= pdeg(f3(x)). Thus deg(f3(x)) =
β − deg(f3(x)).

Proposition 5. Suppose that C = 〈(f(x), 0), (l(x), (1−u2)f1(x)+2−1(u2+u)f2(x)+2−1(u2−
u)f3(x))〉 is a ZpR-additive cyclic code, where fi(x)gi(x) = xβ − 1 for 1 ≤ i ≤ 3. Let

C⊥ = 〈(f(x), 0), (l(x), (1− u2)f1(x) + 2−1(u2 + u)f2(x) + 2−1(u2 − u)f3(x))〉,

where fi(x)gi(x) = xβ − 1 for i = 1, 2, 3. Then

f(x) = (xα − 1)/gcd(f(x), l(x))∗.

Proof. Since (f(x), 0) ∈ C⊥, we have that Ω((f(x), 0), (f(x), 0)) = 0 and that

Ω((l(x), (1− u2)f1(x) + 2−1(u2 + u)f2(x) + 2−1(u2 − u)f3(x)), (f(x), 0)) = 0.

According to Proposition 4, f(x)f
∗
(x) ≡ 0 and l(x)f

∗
(x) ≡ 0 mod (xα − 1) over Zp.

Therefore, gcd(l(x), f(x))f
∗
(x) ≡ 0 mod (xα − 1). Hence, there exists ν ∈ Zp such that

gcd(f(x), l(x))f
∗
(x) = ν(xα − 1). Furthermore, gcd(f(x), l(x)) | (xα − 1). Then we may

assume ν = 1. Hence f(x) = (xα − 1)/(gcd(f(x), l(x))∗.
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Proposition 6. Suppose that C = 〈(f(x), 0), (l(x), (1−u2)f1(x)+2−1(u2+u)f2(x)+2−1(u2−
u)f3(x))〉 is a ZpR-additive cyclic code, where fi(x)gi(x) = (xβ − 1) for all 1 ≤ i ≤ 3, and let

C⊥ = 〈(f(x), 0), (l(x), (1− u2)f1(x) + 2−1(u2 + u)f2(x) + 2−1(u2 − u)f3(x))〉,

where f i(x)gi(x) = (xβ − 1) for 1 ≤ i ≤ 3. Then

f1(x) = (xβ − 1)gcd(f(x), l(x))∗/f∗(x)f1(x)
∗.

Proof. Clearly

(1− u2)f(x)/gcd(f(x), l(x)) ∗ (l(x), (1− u2)f1(x) + 2−1(u2 + u)f2(x)

+ 2−1(u2 − u)f3(x))− l(x)/gcd(f(x), l(x)) ∗ (f(x), 0)
= (0, (1− u2)f1(x)f(x)/gcd(f(x), l(x))) ∈ C.

Furthermore,

(1− u2)∗(l(x), (1− u2)f1(x) + 2−1(u2 + u)f2(x) + 2−1(u2 − u)f3(x))

= (l(x), (1− u2)f1(x)) ∈ C⊥.

Thus

Ω((0, (1− u2)f(x)f1(x)/gcd(f(x), l(x))), (l(x), (1− u2)f1(x))) = 0.

In view of Proposition 4, we have

(1− u2)(f(x)/gcd(f(x), l(x))) f1(x)f
∗
1(x) ≡ 0 mod (xβ − 1).

Therefore

(1− u2)(f(x)/gcd(f(x), l(x)))f1(x)f
∗
1(x) = υ(xβ − 1).

Since f1(x) | (xβ − 1), (f(x)f1(x)/gcd(f(x), l(x)))
∗ | (xβ − 1), according to Proposition 3, we

have
deg(f1(x)) = β − deg(f1(x))− deg(f(x)) + deg(gcd(f(x), l(x))).

Thus we may assume that υ = 1, and so

f1(x) = (xβ − 1)gcd(f(x), l(x))∗/f∗(x)f∗1 (x).

Proposition 7. Suppose that C = 〈(f(x), 0), (l(x), (1−u2)f1(x)+2−1(u2+u)f2(x)+2−1(u2−
u)f3(x))〉 is a ZpR-additive cyclic code, where fi(x)gi(x) = (xβ − 1) for 1 ≤ i ≤ 3, and let

C⊥ = 〈(f(x), 0), (l(x), (1− u2)f1(x) + 2−1(u2 + u)f2(x) + 2−1(u2 − u)f3(x))〉,

where f i(x)gi(x) = (xβ − 1) for 1 ≤ i ≤ 3. Then

f2(x) = (xβ − 1)/f∗2 (x).
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Proof. Clearly

2−1(u2 + u) ∗ (l(x), (1− u2)f1(x) + 2−1(u2 + u)f2(x)

+ 2−1(u2 − u)f3(x)) = (0, 2−1(u2 + u)f2(x)) ∈ C⊥.

Hence

Ω((0, 2−1(u2 + u)f2(x)), (l(x), (1− u2)f1(x)

+ 2−1(u2 + u)f2(x) + 2−1(u2 − u)f3(x))) = 0.

Now, by Lemma 3, we obtain 2−1(u2 + u)f2(x)f
∗
2(x) ≡ 0 mod (xβ − 1). Thus 2−1(u2 +

u)f2(x)f
∗
2(x) = ζ(xβ − 1), for some ζ ∈ R[x]. Since f2(x)|(xβ − 1), f

∗
2(x)|(xβ − 1) for some

ζ ∈ R[x], we have ζ = 1. Thus f2(x) = (xβ − 1)/f∗2 (x).

By using the method similar that used in the proof of Proposition 7, one can establish the
next proposition.

Proposition 8. Suppose that C = 〈(f(x), 0), (l(x), (1−u2)f1(x)+2−1(u2+u)f2(x)+2−1(u2−
u)f3(x))〉 is a ZpR-additive cyclic code, where fi(x)gi(x) = (xβ − 1) for all 1 ≤ i ≤ 3, and let

C⊥ = 〈(f(x), 0), (l(x), (1− u2)f1(x) + 2−1(u2 + u)f2(x) + 2−1(u2 − u)f3(x))〉,

where f i(x)gi(x) = (xβ − 1) for all 1 ≤ i ≤ 3. Then

f3(x) = (xβ − 1)/f∗3 (x).

Proposition 9. Assume that C = 〈(f(x), 0), (l(x), (1−u2)f1(x)+2−1(u2+u)f2(x)+2−1(u2−
u)f3(x))〉 is a ZpR-additive cyclic code, and let

C⊥ = 〈(f(x), 0), (l(x), (1− u2)f1(x) + 2−1(u2 + u)f2(x) + 2−1(u2 − u)f3(x))〉,

where f i(x)gi(x) = xβ − 1 for i = 1, 2, 3. Then

l(x) = ϑ(xβ − 1)/f∗(x), where

ϑ = −xm−deg(f1(x))+deg(l(x))(l∗(x)/deg(f(x), l(x))∗)−1 mod f∗(x)/gcd(f(x), l(x))∗.

Proof. The proof is similar to that of Proposition 6 in [11].

4 Quantum constacyclic code from ZpR-additive consta-
cyclic codes

Let λ be a unit element in R with λ2 = 1. A linear code C of length n over R is called λ-
constacyclic if, for every codeword (c0, c1, · · · , cn−1) in C, we have (λcn−1, c0, · · · , cn−2) ∈ C.
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It is well known that a λ-constacyclic code of length n over R can be identified with an ideal
in the quotient ring R[x]/〈xn − λ〉. The R-module isomorphism as follows:

Γ : Rn → R[x]/〈xβ − λ〉
(c0, c1, · · · , cn−1) 7→ (c0 + c1x+ · · ·+ cn−1x

n−1) mod(xβ − λ).

In the case when λ = 1, λ-constacyclic codes are just cyclic codes and while λ = −1, λ-
constacyclic codes are known as negacyclic codes. Put

Rα,β,λ = Zp[x]/〈xα − 1〉 × R[x]/〈xβ − λ〉.

Let C be a code of length n over R, and Γ(C) be its polynomial representation, that is,

Γ(C) = {
n−1∑
i=0

rix
i | (r0, r1, · · · , rn−1) ∈ C}.

It is easy to see that:

Lemma 7. Let C be a λ-constacyclic code, where λ = δ + θu + µu2 of length n over R.
Then C = 〈(1 − u2)f1(x) + 2−1(u2 + u)f2(x) + 2−1(u2 − u)f3(x)〉, where f1(x) generates a
δ-constacyclic code with f1(x)|(xβ − δ), f2(x) generates a (δ + θ + µ)-constacyclic code with
f2(x)|(xβ − (δ + θ + µ)) and f3(x) generates a (δ − θ + µ)-constacyclic code with f3(x)|(xβ −
(δ − θ + µ)). Moreover, fi(x) are the monic polynomials for all 1 ≤ i ≤ 3.

Proof. It is similar to the proof of Theorem 3.2 appeared in [2].

Theorem 4. Let C be a ZpR-additive constacyclic code of length (α, β) over R. Then C is
a ZpR-submodule of Rα,β,λ given by

C = 〈(f(x), 0), (l(x), (1− u2)f1(x) + 2−1(u2 + u)f2(x) + 2−1(u2 − u)f3(x))〉,

where f1(x) generates a δ-constacyclic code with f1(x)|(xβ − δ), f2(x) generates a (δ+θ+µ)-
constacyclic code with f2(x)|(xβ − (δ+ θ+µ)), f3(x) generates a (δ− θ+µ)-constacyclic code
with f3(x)|(xβ − (δ − θ + µ)) and f(x)|(xα − 1). Moreover, f(x) and fi(x) are the monic
polynomials for i = 1, 2, 3.

Proof. Consider the projection map

ψ : Zp[x]/〈xα − 1〉 × R[x]/〈xβ − λ〉 → R[x]/〈xβ − λ〉
(a(x), b(x)) 7→ b(x),

where a(x) ∈ Zp[x]/〈xα − 1〉, b(x) ∈ R[x]/〈xβ − λ〉. It is clear that the map ψ is an R[x]-
module homomorphism. Suppose that C is a ZpR-additive constacyclic code. Then ψ(C) is
an R[x]-submodule of R[x]/〈xβ − λ〉. Hence, by Lemma 7,

ψ(C) = 〈(1− u2)f1(x) + 2−1(u2 + u)f2(x) + 2−1(u2 − u)f3(x)〉,
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where f1(x)|(xβ − δ), f2(x)|(xβ − (δ+ θ+µ)), f3(x)|(xβ − (δ− θ+µ)). Furthermore, we have
Ker(ψ) = {(h(x), 0) ∈ C | h(x) ∈ Zp[x]/〈xα − 1〉}. Define

D = {h(x) ∈ Zp[x]/〈xα − 1〉 | (h(x), 0) ∈ Ker(ψ)}.

Obviously, D is an ideal of the principal ring Zp[x]/〈xα − 1〉. Hence, D = 〈f(x)〉. Thus
Ker(ψ) = 〈(f(x), 0)〉. Moreover, there exists l(x) ∈ Zp[x]/〈xα − 1〉 such that

C = 〈(f(x), 0), (l(x), (1− u2)f1(x) + 2−1(u2 + u)f2(x) + 2−1(u2 − u)f3(x))〉,

where f(x)|(xα − 1), f1(x)|(xβ − δ), f2(x)|(xβ − (δ + θ + µ)), f3(x)|(xβ − (δ − θ + µ)).

Definition 11. The ZpR-additive code C is called constacyclic code if, for any codeword
z = (c0, c1, · · · , cα−1, r0, r1, · · · , rβ−1) in C, we have

σλ,β(z) = (cα−1, c0, · · · , cα−2, λrβ−1, r0, · · · , rβ−2) ∈ C.

Lemma 8. Let C be a ZpR-additive code of length (α, β). Then C is a ZpR-additive con-
stacyclic code if and only if it is a ZpR[x]-submodule of Rα,β,λ.

Definition 12. [18] Let n be a positive integer and 1 ≤ l ⪇ n. Let C be a linear code of length
n over R. Then C is called a quasi-cyclic code of index l if for any (c0, c1, · · · , cn−1) ∈ C, we
have

(cn−l, cn−l+1, · · · , cn−1, c0, · · · , cn−l−1) ∈ C.

Definition 13. [13, Definition 2] Let m1,m2, · · · ,ml be positive integers and Ri =
R[x]

〈xmi − 1〉
for i = 1, · · · , l. Then an R[x]-submodule R = R1 × R2 × · · · × Rl is called a generalized
quasi-cyclic code of length (m1, · · · ,ml) with index l over R. If m = mi for i = 1, · · · , l, then
C is called a quasi-cyclic code with length ml.

Lemma 9. Suppose that C is a ZpR-additive constacyclic code of length (α, β). Then φ(C)
is a generalized quasi-cyclic code of length (α, 3β) over Zp.

Proof. The proof can be easily obtained.

Corollary 2. Let C be a ZpR-additive constacyclic code of length (α, α). Then φ(C) is a
quasi-cyclic code of length 4α and index 2 over Zp.

Proof. The proof follows from Definition 13 and Lemma 9.

The following lemma is immediate from [6].

Lemma 10. Let C = 〈(1−u2)f1(x)+2−1(u2+u)f2(x)+2−1(u2−u)f3(x)〉 be a λ-constacyclic
code of length β over R, where λ = δ+θu+µu2, and let δ = ±1, δ+θ+µ = ±1, δ−θ+µ = ±1.
Then C⊥ ⊆ C if and only if

xα − δ ≡ 0 mod f1(x)f
∗
1 (x),

xβ − (δ + θ + µ) ≡ 0 mod f2(x)f
∗
2 (x) and

xβ − (δ − θ + µ) ≡ 0 mod f3(x)f
∗
3 (x).
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Proposition 10. Let C = 〈(1−u2)f1+2−1(u2+u)f2+2−1(u2−u)f3〉 be a λ- constacyclic code
of length β over R, where λ = δ + θu+ µu2. If, there exists a dual containing λ-constacyclic
code of length β over R, then

λ ∈ {±1,±(1− u− u2),±(1 + u− u2),±(1− 2u2)}.

Proof. Suppose that C is a dual containing λ-constacyclic code over β, where λ = δ+θu+µu2.
By Lemma 7, f1(x) generates a δ-constacyclic code over Zp, f2(x) generates a (δ − θ + µ)-
constacyclic code, and also f3(x) generates a (δ+ θ+µ)-constacyclic code. By Lemma 10, we
get δ = ±1, δ − θ + µ = ±1 and δ + θ + µ = ±1.
Set δ = 1. Then

1. If δ − θ + µ = 1 and δ + θ + µ = 1, then θ = µ = 0 implying λ = 1.

2. If δ−θ+µ = 1 and δ+θ+µ = −1, then θ = −1, µ = −1. This means that λ = 1−u−u2.

3. If δ−θ+µ = −1 and δ+θ+µ = −1, then θ = 1, µ = −1. This implies that λ = 1+u−u2.

4. If δ−θ+µ = −1 and δ+θ+µ = −1, then θ = 0, µ = −2. This means that λ = 1−2u2.

Similarly, we set δ = −1 to deduce that λ = −1+2u2,−1+u+u2,−1−u+u2,−1, respectively.

In the following corollary, we shall establish a generalization of Lemma 10 to ZpR-additive
codes.

Corollary 3. Let C = Cα×Cβ be a separable ZpR-additive constacyclic code of length α+β
with λ = δ + θu + µu2, where Cα = 〈f(x)〉 and Cβ = 〈(1 − u2)f1(x) + 2−1(u2 + u)f2(x) +
2−1(u2 − u)f3(x)〉 with conditions δ = ±1, δ+ θ+ µ = ±1, δ− θ+ µ = ±1. Then C⊥ ⊆ C if
and only if the following conditions are satisfied

xα − 1 ≡ 0 mod (f(x)f∗(x)),

xβ − δ ≡ 0 mod (f1(x)f
∗
1 (x)),

xβ − (δ + θ + µ) ≡ 0 mod (f2(x)f
∗
2 (x)),

xβ − (δ − θ + µ) ≡ 0 mod (f3(x)f
∗
3 (x)).

Lemma 11. [6]. Let C be a (δ + θu+ µu2)-constacyclic code of length s over R. If C⊥ ⊆ C,
then there exists a quantum error-correcting code with parameters [[3s, 2k− 3s,≥ dG]]q where
dG is the minimum Gray weight of C and k is the dimension of the code ϕ1(C).

From Corollary 3 and Lemma 11, we can construct non-binary quantum codes as follows.

Theorem 5. Let C = 〈(f(x), 0), (0, (1 − u2)f1(x) + 2−1(u2 + u)f2(x) + 2−1(u2 − u)f3(x))〉
be a [α + β, pk, dL] separable ZpR-additive constacyclic code, where dL is the minimum Lee
distance of C. Then there exists a quantum code with parameters [[n, 2k − n,⩾ dL]]p, where
n = α+ 3β.
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Example 1. It is clear that, in Z3[x], we have the following equalities:

x6 − 1 = (1 + x)3(2 + x)3 and

x12 − 1 = (1 + x)3(2 + x)3(1 + x2)3.

Let α = 6 and β = 12. Suppose that f(x) = f1(x) = f2(x) = (1 + x), f3(x) = (1 + x2) and
C = 〈(f(x), 0), (0, (1− u2)f1(x)+ 2−1(u2 + u)f2(x)+ 2−1f3(x))〉. Therefore, C is a separable
additive constacyclic code with parameters [18, 337, 2], where λ = 1+u−u2. As all fi(x)f∗i (x)
divide x12 − 1 for 1 ≤ i ≤ 3, f(x)f∗(x) divide x6 − 1 and C⊥ ⊆ C. Thus, there exists a
quantum code with parameters [[42, 32, 2]]3.

Example 2. Suppose that α = β = 15. It is clear that x15 − 1 = (4 + x)5(1 + x + x2)5 in
Z5[x]. Let f(x) = f1(x) = f2(x) = f3(x) = (1+x+x2) and C = 〈(f(x), 0), (0, (1−u2)f1(x)+
2−1(u2 + u)f2(x) + 2−1(u2 − u)f3(x))〉. So, C is a separable additive constacyclic code with
parameters [30, 552, 3], where λ = 1− u+ u2. Clearly, it satisfies the conditions in Corollary
3. We get a quantum code with parameters [[60, 44, 3]]5.

Conclusion: In this paper, we studied the algebraic structure of additive cyclic codes and
orthogonal codes over ZpR. We obtained the generator polynomials of this family of codes
and their dual codes. We also determined the minimal generating sets of additive cyclic codes.
We described some properties of the Gray image of a additive cyclic code over ZpR be a linear
code over Zp. We also argumented the structure of additive constacyclic codes and quantum
codes and showed that our results can be generalized to ZpR-additive constacyclic codes and
quantum codes.
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