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Abstract

In this paper, we first prove second main theorems with weighted counting functions
for holomorphic maps from a complex disk ∆(R) ⊂ C with finite growth index into
Pn(C). Then we apply these theorems to solve the algebraic dependence problems of
holomorphic maps sharing moving hyperplanes in general position.
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1 Introduction

In 1990’s, W. Stoll, M. Ru [11] as well as M. Shirosaki [15, 16] began to study the second
main theorems for meromorphic maps into projective spaces Pn(C) with moving hyper-
planes. M. Ru [12] was also the first one who proved the second main theorem with trun-
cated counting functions for holomorphic maps of C into Pn(C) and moving hyperplanes in
2001. After that, these results have been reproved and extended by many authors, such as
[18], [13], [6], [4], [7], . . .

In 2020, M. Ru and N. Sibony [14] introduced a new class of holomorphic maps into
Pn(C), which has finite growth index. In their paper, they gave the second main theorem
for holomorphic maps from a disk ∆(R) ⊂ C into Pn(C) involving hyperplanes in general
position, where ∆(R) = {z ∈ C; |z| < R}, (0 < R ≤ +∞). Very recently, S. D. Quang [8]
proved the second main theorem for holomorphic maps from disks with moving hyperplanes.

To state Quang’s results as well as ours, we recall the following.
Let {ai}qi=1 be q holomorphic maps of ∆(R) into Pn(C)∗ with reduced representations

ai = (ai0 : · · · : ain) (1 ≤ i ≤ q). The family {ai}qi=1 is said to be in general position if
det(aij l; 0 ≤ j ≤ n, 0 ≤ l ≤ n) ̸≡ 0 for any 1 ≤ i0 < · · · < in ≤ q. Let Mm be the field of all
meromorphic functions on ∆(R). Denote by R{ai}q

i=1
⊂ Mm the smallest subfield which

contains C and all aik

ail
with ail ̸≡ 0 (for brevity we will write R if there is no confusion).

Let f : ∆(R) → Pn(C) be a holomorphic map with a reduced representation (f0 : · · · :
fn), where f0, . . . , fn are holomorphic functions on ∆(R) without common zeros. Then
rankR(f) is defined as the rank of the set {f0, . . . , fn} over the field R.
According to M. Ru-N. Sibony [14], the growth index of f is defined by

cf = inf

{
c > 0

∣∣∣∣∫ R

0

exp(cTf (r))dr = +∞

}
.
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For convenient, we will set cf = +∞ if
{
c > 0

∣∣∫ R

0
exp(cTf (r))dr = +∞

}
= ∅.

In [8] and [9], S. D. Quang proved the second main theorems for holomorphic maps from
disks with moving hyperplanes as well as moving hypersurfaces. We state here the second
main theorems with moving hyperplanes.

Theorem A (see [8, Theorems 1.1]) Let f : ∆(R) → Pn(C) (0 < R ≤ +∞) be a holo-
morphic map. Let {ai}qi=1 (q ≥ 2n − k + 2) be holomorphic maps of ∆(R) into Pn(C)∗ in
general position such that (f, ai) ̸≡ 0 (1 ≤ i ≤ q), where k + 1 = rankR(f). Let γ(r) be a

non-negative measurable function defined on (0, R) with
∫ R

0
γ(r)dr = ∞. Then, for every

ε > 0, the following assertions hold:

(a)
∥∥
E
Tf (r) ≤

n+ 2

q − (n− k)

q∑
i=1

N
[k]
(f,ai)

(r) + δ(n, k)
(
(1 + ε) log γ(r) + ε log r

)
+ S(r),

(b)
∥∥
E
Tf (r) ≤

k(k + 2)

q − 2(n− k)

q∑
i=1

N
[1]
(f,ai)

(r) + δ(n, k)
(
(1 + ε) log γ(r) + ε log r

)
+ S(r),

where S(r) = O
(
log Tf (r) + max1≤i≤q Tai

(r)
)
and δ(n, k) =

k(k + 2)(n+ 1)

2(n+ 2)
.

If we assume further that q > (n− k)(k + 1) + n+ 2 then

(c)
∥∥
E
Tf (r) ≤

k + 2

q

q∑
i=1

N
[k]
(f,ai)

(r) +
k(k + 1)

2

(
(1 + ε) log γ(r) + ε log r

)
+ S(r).

Here the notation ∥E means the inequality holds for all r ∈ (0, R) outside a subset E
with

∫
E
γ(r)dr < +∞.

In 2016, S. D. Quang [6] first gave the second main theorem with weighted counting
functions and thanks to this result, he can study the algebraic problem to the more general
case. Our first purpose of this paper is to prove some weighted second main theorems
and then apply them to prove the algebraic theorems for the holomorphic maps with finite
growth index from disks into Pn(C).

Theorem 1 and Theorem 2 stated below are our generalizations of Theorem A(b) and
Theorem A(c) respectively to the case of weighted ones.

Theorem 1. Let f : ∆(R) → Pn(C) (0 < R ≤ +∞) be a holomorphic map. Let
{ai}qi=1 (q ≥ 2n − k + 2) be holomorphic maps of ∆(R) into Pn(C)∗ in general position
such that (f, ai) ̸≡ 0 (1 ≤ i ≤ q), where k + 1 = rankR(f). Let γ(r) be a non-negative

measurable function defined on (0, R) with
∫ R

0
γ(r)dr = ∞. Let λ1, . . . , λq be q positive

numbers with 2(n− k)max1≤i≤q λi ≤
∑q

i=1 λi. Then for every positive number η satifying
η ≥ max1≤i≤q λi, 2(n− k)η ≤

∑q
i=1 λi, and for every ε > 0, the following assertion holds:

∥∥
E

∑q
i=1 λi − 2(n− k)η

k(k + 2)
Tf (r) ≤

q∑
i=1

λiN
[1]
(f,ai)

(r)

+
k(k + 2)(n+ 1)(

∑q
i=1 λi − (n− k)η)

2(n+ 2)

(
(1 + ε) log γ(r) + ε log r

)
+ S(r),

where S(r) = O
(
log Tf (r) + max1≤i≤q Tai(r)

)
.
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Theorem 2. Let f : ∆(R) → Pn(C) (0 < R ≤ +∞) be a holomorphic map. Let
{ai}qi=1 (q > (n − k + 1)(k + 2)) be holomorphic maps of ∆(R) into Pn(C)∗ in general
position such that (f, ai) ̸≡ 0 (1 ≤ i ≤ q), where k + 1 = rankR(f). Let γ(r) be a non-

negative measurable function defined on (0, R) with
∫ R

0
γ(r)dr = ∞. Let λ1, . . . , λq be q

positive numbers with (n− k + 1)(k + 2)max1≤i≤q λi ≤
∑q

i=1 λi. Then for every ε > 0, we
have

∥∥
E

∑q
i=1 λi

k + 2
Tf (r) ≤

q∑
i=1

λiN
[k]
(f,ai)

(r) +
k(k + 1)

∑q
i=1 λi

2(k + 2)

(
(1 + ε) log γ(r) + ε log r

)
+ S(r),

where S(r) = O
(
log Tf (r) + max1≤i≤q Tai

(r)
)
.

Remark. In case f has finite growth index (i.e., cf < +∞), then in Theorem 1 and
Theorem 2, we may take γ(r) = exp

(
(cf + ε)Tf (r)

)
.

As applications of Theorem 1 and Theorem 2, in the next section we will prove algebraic
dependence theorems for holomorphic maps from disks sharing moving hyperplanes, where
all zeros with multiplicities more than a certain number are omitted. To state our results,
we need the following.
In this paper, we call each holomorphic map from ∆(R) into Pn(C)∗ a moving hyperplane in
Pn(C). A moving hyperplane a in Pn(C) is said to be slow with respect to a set {f1, . . . , fM}
of finite growth index holomorphic maps from ∆(R) into Pn(C) if

∥E Ta(r) = o
( M∑
i=1

Tfi(r)
)
,

where E is a subset of (0, R) with
∫
E
e(min1≤j≤M cfj+ε)(

∑M
i=1 Tfi (r))dr < +∞ for some ε > 0

and
∫
E
dr < +∞ if R = +∞.

Let fi : ∆(R) → Pn(C) (1 ⩽ i ⩽ λ) be holomorphic maps with reduced representations
fi := (fi0 : · · · : fin). Let ai : ∆(R) → Pn(C)∗ (1 ⩽ i ⩽ q) be slowly moving hyperplanes in
general position with reduced representations ai := (ai0 : · · · : ain). Suppose that (ft, ai) :=∑n

j=0 ftjaij ̸= 0 for each 1 ≤ t ≤ λ, 1 ≤ i ≤ q and (f1, ai)
−1{0} = · · · = (fλ, ai)

−1{0}. We

put Ai = (f1, ai)
−1{0}.

Denote by T [n+ 1, q] the set of all injective maps from {1, . . . , n+ 1} to {1, . . . , q}. For
each z ∈ ∆(R)\∪β∈T [n+1,q]{z | aβ(1)(z)∧· · ·∧aβ(n+1)(z) = 0}, we define ρ(z) = ♯{j|z ∈ Aj}.
Similarly as [6], we can show that ρ(z) ≤ n.

For any positive number r > 0, define ρ(r) = sup{ρ(z) | |z| ≥ r}, where the supremum
is taken over all z ∈ ∆(R) \ ∪β∈T [n+1,q]{z | gβ(1)(z) ∧ · · · ∧ gβ(n+1)(z) = 0}. Then ρ(r) is a
decreasing function. Let d := limr→+∞ ρ(r) then d ≤ n.

In 2001, M. Ru [12] gave an algebraic dependence theorem for meromorphic maps sharing
several moving hyperplanes. After that, the result of Ru has been generalized by many
authors. As we stated above, by giving the weighted second main theorem (Theorem 1.2,
[6]), S. D. Quang could deal with algebraic dependence problems in case the number l
depending on the moving hyperplanes. It means that for each j, we suppose that there
exists a positive number lj such that fi1 ∧ · · · ∧ filj = 0 on Aj for any lj maps.

On the other hand, in 2017, L. N. Quynh [10] proposed a new technique, by which she
studied the algebraic dependence of meromorphic maps sharing different family of moving
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hyperplanes regardless of multiplicities and obtained the results which are better than
previous ones. Then, based on Quynh’s technique, P. D. Thoan, N. H. Nam and N. V. An
[22] and H. Cao and L. Duan [1] consider the case where the number l in Quynh’s theorem
may vary dependently on the moving hyperplanes like Quang’s.

In Theorem 3 and 4 as follows, we will prove the similar results as in [1] for the case of
holomorphic maps from disks with finite growth index. In concrete, we will prove algebraic
dependence theorems for holomorphic maps from disks sharing moving hyperplanes, where
all zeros with multiplicities more than a certain number are omitted and the number l
depending on the moving hyperplanes.

Our theorems are stated as follows.

Theorem 3. Let f1, . . . , fλ : ∆(R) → Pn(C) be holomorphic maps with cfi < +∞ (i =
1, . . . , λ). Let {ai}qi=1 be slowly (with respect to {f1, . . . , fλ}) moving hyperplanes in Pn(C)
in general position. Let kj(1 ≤ j ≤ q) be positive integers or +∞. Suppose that (fi, aj) ̸≡ 0
and the following conditions hold

i. Supp ν0(f1,aj),≤kj
= · · · = Supp ν0(fλ,aj),≤kj

for each 1 ≤ j ≤ q.

ii. Let l1, . . . , lq be q positive integers with 2 ≤ li ≤ λ such that for any 1 ≤ i1 < · · · <
ilj < q, fi1(z) ∧ · · · ∧ filj (z) = 0 for each z ∈ ∪q

j=1Supp ν
0
(f1,aj),≤kj

.

If k + 1 = max1≤t≤λ{rankR(ft)} and

q∑
j=1

1

kj
<

q(λ+ 1)−
∑q

j=1 lj − 2(n− k)(λ− 1)− dλk(k + 2)

k(k + 2)(λ− 1)

−
λk(k + 2)(n+ 1)

(
q(λ+ 1)−

∑q
j=1 lj

)
4(n+ 2)(λ− 1)

min
1≤i≤λ

cfi .

then f1, . . . , fλ are algebraically dependent over C, i.e fi ∧ . . . ∧ fλ ≡ 0 on ∆(R).

Remark.

1. When R = +∞ and fi is not constant, then cfi = 0, the theorem implies the result
obtained in the Theorem 1.3 in [1].

2. Letting λ = lj = 2, d = 1 and kj = +∞, we deduce the uniqueness theorem:

If q >
2(n+ 2)(2k2 + 2n+ 2k)

2(n+ 2)− k2(k + 2)2(n+ 1)min1≤i≤λ cfi
, then f1 = f2.

When d = 1 and the number of hyperplanes is large enough (q > (n−k)(k+1)+n+2),
we will obtain the following algebraic dependence theorem.

Theorem 4. Let f1, . . . , fλ : ∆(R) → Pn(C) be holomorphic maps with cfi < +∞ (i =
1, . . . , λ). Let {ai}qi=1 be slowly (with respect to {f1, . . . , fλ}) moving hyperplanes in Pn(C)
in general position. Let kj(1 ≤ j ≤ q) be positive integers or +∞. Assume that (fi, aj) ̸≡
0 (1 ≤ i ≤ λ, 1 ≤ j ≤ q) and the following conditions are satisfied.

i.
(
f1, ai

)−1 {0} ∩
(
f1, aj

)−1 {0} = ∅ (1 ≤ i < j ≤ q),
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ii. min
{
1, ν0(f1,aj),≤kj

}
= · · · = min

{
1, ν0(fλ,aj),≤kj

}
for each 1 ≤ j ≤ q.

iii. Let l1, . . . , lq be q positive integers with 2 ≤ li ≤ λ, such that for any increasing
sequence 1 ≤ i1 < · · · < ilj ≤ λ, fi1(z) ∧ · · · ∧ filj (z) = 0, z ∈ ∪q

j=1Supp ν
0
(f1,aj),≤kj

.

Put max {rankR (fi) , 1 ≤ i ≤ λ} = k + 1, where k is a positive integer. In addition, we

suppose that q ≥ (n− k + 1)(k + 2)(λ− 1) for k ≤ n−1
2 , or q ≥ (n+3)2

4 (λ− 1) for k > n−1
2 .

If

q∑
j=1

1

kj + 1− k
<

1

k(k + 2)
− λ

q(λ+ 1)−
∑q

j=1 lj + λ(k − 1)
− k + 1

2(k + 2)
min

1≤i≤λ
cfi

then f1, . . . , fλ are algebraically dependent over C.

Remark.

1. When rankR (fi) = k + 1 and kj = +∞(1 ≤ i ≤ λ, 1 ≤ j ≤ q), we see that the above
inequality becomes

q ≥ max
{
(n− k + 1)(k + 2)(λ− 1),

1

λ+ 1

( q∑
j=1

lj − λ(k − 1) +
2λk(k + 2)

2− k(k + 1) min
1≤i≤λ

cfi

)}
.

Further, when R = +∞ and fi is not constant, then cfi = 0, we deduce the result given
in the Theorem 1.4 in [1].

2. Let λ = l = 2 when kj = +∞, if rankR (f1) = rankR (f2) = k + 1 and

q > max
{
(n− k + 1)(k + 2),

4k(k + 2)

2− k(k + 1) min
i=1,2

cfi
− 2(k − 1)

}
then f1 = f2.
We note that this statement is the result obtained in the uniqueness theorem (Theorem
1.3) in [8].

2 Basic notions and auxiliary results from Nevanlinna
theory

We denote by ∆(R) a disk in C, ∆(R) := {z ∈ C; |z| < R}, (0 < R ≤ +∞). Let ν
be a divisor on ∆(R). We consider ν as a function on ∆(R) with values in Z such that
Supp (ν) := {z; ν(z) ̸= 0} is a discrete subset of ∆(R). Let k be a positive integer or +∞.
The truncated counting function of ν is defined by:

n[k](t) =
∑
|z|≤t

min{k, ν(z)} (0 ≤ t ≤ R) and N [k](r, ν) =

∫ r

r0

n[k](t)− n[k](0)

t
dt.

We will omit the character [k] if k = +∞.
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Let φ : ∆(R) → C ∪ {∞} be a non-constant meromorphic function. We denote by ν0φ
(resp. ν∞φ ) the divisor of zeros (resp. divisor of poles) of φ and set νφ = ν0φ − ν∞φ . As

usual, we will write N
[k]
φ (r) and N

[k]
1/φ(r) for N [k](r, ν0φ) and N [k](r, ν∞φ ) respectively. The

proximity function of φ with respect to the point ∞ is defined by

m(r, φ) =

∫ 2π

0

log+ |φ(retθ)|dθ.

We consider φ as a holomorphic map into P1(C) and denote by Ω1 the Fubini-Study form
on P1(C). The characteristic function of φ is defined by

Tφ(r) =

∫ r

0

dt

t

∫
|z|<t

φ∗Ω1.

By Jensen’s formula, we have

Tφ(r) = m(r, φ) +N1/φ(r) +O(1).

Let f : ∆(R) → Pn(C) be a holomorphic map with a reduced representation (f0 : · · · :
fn), where f0, . . . , fn are holomorphic functions on ∆(R) without common zeros. Let H be a
hyperplane in Pn(C) defined by H := {(ω0 : · · · : ωn);

∑n
i=0 aiωi = 0}, where ai (0 ≤ i ≤ n)

are constants, not all zero. We define

(f,H) =

n∑
i=0

aifi.

The function (f,H) depends on the choices of the reduced representation of f and the
presentation of H, but the divisor ν(f,H) is well-defined, not depending on these choices.
The proximity function of f with respect to H is defined by

mf (r,H) =

∫ 2π

0

log
∥f∥(retθ) · ∥H∥
|(f,H)(retθ)|

dθ,

where ∥f∥ = (|f0|2 + · · · + |fn|2)1/2 and ∥H∥ = (|a0|2 + · · · + |an|2)1/2. The characteristic
function of f (with respect to the Fubini-Study form Ωn on Pn(C)) is defined by

Tf (r) :=

∫ r

0

dt

t

∫
|z|<t

f∗Ωn.

The first main theorem states that

Tf (r) = mf (r,H) +N(f,H)(r) +O(1).

Now we denote by µf1∧···∧fλ the divisor associated to f1 ∧ · · · ∧ fλ. According to [17],
we have the first main theorem as follows.

Theorem 5 (The first main theorem for general position [17], p. 326). Let fi : Cm →
Pn(C), 1 ≤ i ≤ k be meromorphic maps located in general position. Assume that 1 ≤ k ≤ n.
Then

Nµf1∧···∧fλ
(r) +m (r, f1 ∧ · · · ∧ fλ) ≤

∑
1≤i≤λ

Tfi(r) +O(1).
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3 Proofs of the weighted second main theorems

Proof of Theorem 1

In order to show that the theorem holds, we need the following lemma which is a claim
obtained in the proof of Theorem 1.1 in [8].

Lemma 6 ([8], Equation 2.10). With the same assumption of f, {ai}(i = 1, . . . q) and
γ(r) as in Theorem 1, for every ε > 0, there exist a subset J ⊂ {1, . . . , 2n − k + 2} with

|J | = d+ 2 (≤ n+ 2) and a positive integer n0 ≤ k(k + 2)

d+ 2
such that

∥∥
E

Tf (r) ≤
∑
j∈J

N
[n0]
(f,aj)

(r) +
n0(♯J − 1)

2

(
(1 + ε) log γ(r) + ε log r

)
+ S(r),

where S(r) = O
(
log Tf (r) + max1≤i≤q Tai

(r)
)
.

We denote by I the set of all permutations of the set {1, . . . , q}. For each element
I = (i1, . . . , iq) ∈ I, we set

MI = {r ∈ (0, R) | N [1]
(f,ai1

)(r) ≤ · · · ≤ N
[1]
(f,aiq )

(r)}.

We now consider an element I = (i1, . . . , iq) of I, for instance I = (1, 2, . . . , q). Applying
Lemma 6, there is a subset J ⊂ {1, 2, . . . , 2n− k + 2} with |J | = d+ 2 such that∥∥

E
Tf (r) ≤

∑
j∈J

N
[n0]
(f,aj)

(r) +
n0(♯J − 1)

2

(
(1 + ε) log γ(r) + ε log r

)
+ S(r).

Put J ′ = {1, 2, . . . , 2n− k+2}\J and J ′′ = {1, 2, . . . , q}\{1, 2, . . . , 2n− k+2}. We see that
|J ′| = 2n− k − d and J ∪ J ′ ∪ J ′′ = {1, 2, . . . , q}.

Now we take η ∈
[
max
1≤i≤q

λi,

∑q
i=1 λi

2(n− k)

]
. Because

q∑
i=1

λi − |J ′|η =

q∑
i=1

λi − (2n− k + 2− (d+ 2))η

and k ≤ d ≤ n, then we find that

0 <

q∑
i=1

λi − 2(n− k)η ≤
q∑

i=1

λi − |J ′|η ≤
q∑

i=1

λi − (n− k)η. (7)

This implies that

∥∥
E

( q∑
i=1

λi − |J ′|η
)
Tf (r) ≤

( q∑
i=1

λi − |J ′|η
)(∑

j∈J

N
[n0]
(f,aij

)(r)
)

+
n0(♯J − 1)

(∑q
i=1 λi − |J ′|η

)
2

(
(1 + ε) log γ(r) + ε log r

)
+ S(r).
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On the other hand, since
∑
j∈J ′

λij − |J ′|η ≤ 0, we deduce that

( q∑
i=1

λi − |J ′|η
)∑
t∈J

N
[n0]
(f,ait )

(r)

=
( ∑
j∈J∪J ′′

λij

)∑
t∈J

N
[n0]
(f,ait )

(r) +
(∑
j∈J ′

λij − |J ′|η)
)∑
t∈J

N
[n0]
(f,ait )

(r)

≤ (
∑

j∈J∪J ′′

λij )
∑
t∈J

N
[n0]
(f,ait )

(r).

In other words, we have the following estimations( ∑
j∈J∪J ′′

λij

)∑
t∈J

N
[n0]
(f,ait )

(r) = |J |
∑

j∈J∪J ′′ λij

|J |
∑
j∈J

λijN
[n0]
(f,aij

)(r)

= |J |
(∑

t∈J

λitN
[n0]
(f,ait )

(r) +
∑
t∈J

(∑j∈J∪J ′′ λij

|J |
− λit

)
N

[n0]
(f,ait )

(r)

)

≤ |J |
(∑

t∈J

λitN
[n0]
(f,ait )

(r) +

(∑
t∈J

(∑j∈J∪J ′′ λij

|J |
− λit

))
N

[n0]
(f,ai2n−k+3

)(r)

)
= |J |

(∑
t∈J

λitN
[n0]
(f,ait )

(r) +
∑
t∈J ′′

λitN
[n0]
(f,ai2n−k+3

)(r)

)
≤ |J |

(∑
t∈J

λijN
[n0]
(f,aij

)(r) +
∑
t∈J ′′

λitN
[n0]
(f,ait )

(r)

)

≤ |J |
q∑

j=1

λijN
[n0]
(f,aij

)(r)

≤ |J |n0

q∑
j=1

λijN
[1]
(f,aij

)(r)

≤ k(k + 1)(d+ 2)

d+ 2

q∑
j=1

λijN
[1]
(f,aij

)(r)

≤ k(k + 1)

q∑
j=1

λijN
[1]
(f,aij

)(r).

For r ∈ MI , from these above estimations, we get∥∥
E

( q∑
i=1

λi − |J ′|η
)
Tf (r) ≤ k(k + 1)

q∑
i=1

λiN
[1]
(f,ai)

(r)

+
n0(♯J − 1)

(∑q
i=1 λi − |J ′|η

)
2

(
(1 + ε) log γ(r) + ε log r

)
+ S(r).

(8)
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In addition, we have

n0(♯J − 1)

2
≤ k(k + 2)(d+ 1)

2(d+ 2)
≤ k(k + 2)(n+ 1)

2(n+ 2)
. (9)

Combining (7), (9) and (8), we obtain

∥∥
E

∑q
i=1 λi − 2(n− k)η

k(k + 2)
Tf (r) ≤

q∑
i=1

λiN
[1]
(f,ai)

(r)

+
k(k + 2)(n+ 1)(

∑q
i=1 λi − (n− k)η)

2(n+ 2)

(
(1 + ε) log γ(r) + ε log r

)
+ S(r).

(10)

We see that
⋃

I∈I NI = (0, R) and inequality (10) holds for every r ∈ (0, R) outside a
subset E with

∫
E
γ(r)dr < +∞. Hence, the theorem is proved.

Proof of Theorem 2

The theorem will be proved based on the following lemma which is also a result given in
the proof of Theorem 1.1.c in [8].

Lemma 11 ([8], Claim in the proof of Theorem 1.1.c). Let f , {ai} and γ(r) be the same
as in Theorem 2. Then for every ε > 0, we have

∥∥
E

Tf (r) ≤
k+1∑
j=0

N
[k]
(f,aij

)(r) +
k(k + 1)

2
((1 + ε) log γ(r) + ε log r) + S(r),

where S(r) = O
(
log Tf (r) + max1≤i≤q Tai

(r)
)
.

We denote by I the set of all permutations of the set {1, . . . , q}. For each element
I = (i1, . . . , iq) ∈ I, we set

NI = {r ∈ (0, R) | N [k]
(f,ai1 )

(r) ≤ · · · ≤ N
[k]
(f,aiq )

(r)}.

For all r ∈ NI , we see that

k+1∑
j=0

N
[k]
(f,aij

)(r) ≤ N
[k]
(f,a1)

(r) +

n+1∑
i=n−k+2

N
[k]
(f,ai)

(r) +N
[k]
(f,a(n−k+1)(k+1)+1)

(r)

≤ 1

n− k + 1

(n−k+1∑
i=1

N
[k]
(f,ai)

(r) +

(n−k+1)(k+1)∑
i=n−k+2

N
[k]
(f,ai)

(r) +

(n−k+1)(k+2)∑
i=(n−k+1)(k+1)+1

N
[k]
(f,ai)

(r)

)

=
1

n− k + 1

(n−k+1)(k+2)∑
j=1

N
[k]
(f,ai)

(r).
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This follows that

(

q∑
i=1

λi)

k+1∑
j=0

N
[k]
(f,aij

)(r) ≤
∑q

i=1 λi

n− k + 1

(n−k+1)(k+2)∑
j=1

N
[k]
(f,ai)

(r)

=
(n− k + 1)(k + 2)

n− k + 1

(n−k+1)(k+2)∑
j=1

( ∑q
i=1 λi

(n− k + 1)(k + 2)
N

[k]
(f,ai)

(r)

)

≤ (k + 2)

(n−k+1)(k+2)∑
j=1

λijN
[k]
(f,ai)

(r)


+ (k + 2)

(n−k+1)(k+2)∑
j=1

( ∑q
i=1 λi

(n− k + 1)(k + 2)
− λij

)
N

[k]
(f,ai)

(r)

= (k + 2)

q∑
i=1

λiN
[k]
(f,ai)

(r).

Combining Lemma 11 together with these above estimations, we have

∥∥
E

∑q
i=1 λi

k + 2
Tf (r) ≤

q∑
i=1

λiN
[k]
(f,ai)

(r) +
k(k + 1)

∑q
i=1 λi

2(k + 2)
((1 + ε) log γ(r) + ε log r) + S(r),

for all r ∈ NI .
Repeating again the argument in the proof of Theorem 1, we have the desired conclusion
in Theorem 2.

4 Proofs of algebraic dependence theorems

The following lemmas and claims obtained in [10] and [6] for the case of meromorphic maps
from Cm into Pn(C). With the same arguments in these proofs, we can show that they also
true for holomorphic maps from ∆(R) into Pn(C) in our situation. Therefore, here we just
state results without presenting proofs. We also note that, in the case of R = +∞, the
Theorem 3 and 4 have already been proved in [1]. Then in the following proofs, we only
consider the case where R < +∞.

Proof of Theorem 3

Lemma 12 ([10], Claim 3.1). For every 1 ≤ i ≤ λ, 1 ≤ j ≤ q and 1 ≤ k ≤ n, we have

N
[k]
(f,aj),≤kj

(r) ≥ kj + 1

kj + 1− k
N

[k]
(f,aj)

(r)− k

kj + 1− k
Tf (r).

Lemma 13 ([6], Claim 4.2). For every 1 ≤ t ≤ λ, we have

q∑
j=1

(λ− lj + 1)min
{
1, ν(ft,aj)(z)

}
≤ dµf1∧···∧fλ(z) + q(λ− 1)

∑
β

µaβ(1)∧···∧aβ(n+1)
(z).
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for each z /∈ A, where the sum is taken over all injective map β : {1, 2, . . . , n + 1} →
{1, 2, . . . , q}.

It suffices to prove the theorem in the case of λ ≤ n+ 1. Suppose that f1 ∧ · · · ∧ fλ ̸≡ 0.

Since ν
[1]
(fi,aj),≤kj

(z) ≤ ν
[1]
(fi,aj)

(z), then it follows from Lemma 13 that

q∑
j=1

(λ− lj + 1)N
[1]
(ft,aj),≤kj

(r) ≤
q∑

j=1

(λ− lj + 1)N
[1]
(ft,aj)

(r)

≤ dNµf1∧...∧fλ
(r) + q(λ− 1)

∑
β∈T [n+1,q]

Nµaβ(1)∧···∧aβ(n+1)
(r)

≤ d

λ∑
i=1

Tfi(r) + q(λ− 1)
∑

β∈T [n+1,q]

n+1∑
i=1

Taβ(i)
(r)

= d

λ∑
i=1

Tfi(r) + o

(
max
1≤i≤λ

Tfi(r)

)
.

Using Lemma 12, we deduce that

d

λ∑
i=1

Tfi(r) ≥
q∑

j=1

(λ− lj + 1)N
[1]
(ft,aj),≤kj

(r) + o

(
max
1≤i≤λ

Tfi(r)

)

≥
q∑

j=1

(λ− lj + 1)

(
kj + 1

kj
N

[1]
(ft,aj)

(r)− 1

kj
Tfi(r)

)
+ o

(
max
1≤i≤λ

Tfi(r)

)

≥
q∑

j=1

(λ− lj + 1)N
[1]
(ft,aj)

(r)−
q∑

j=1

λ− lj + 1

kj
Tfi(r) + o

(
max
1≤i≤λ

Tfi(r)

)
.

Hence, by summing up both sides of these inequalities, we get

dλ

λ∑
i=1

Tfi(r)+

q∑
j=1

λ∑
i=1

λ− lj + 1

kj
Tfi(r) ≥

q∑
j=1

λ∑
i=1

(λ− lj + 1)N
[1]
(ft,aj)

(r)+o

(
max
1≤i≤λ

Tfi(r)

)
.

Put λi = λ− li + 1, i = 1, . . . , q, kt + 1 = rankR{ai}(ft), t = 1, . . . , λ and k = max1≤t≤λ kt.
We can easily see that

2(n− kt) max
1≤j≤q

(λ− lj + 1) ≤ 2n(λ− 1) ≤ q ≤
q∑

j=1

(λ− lj + 1).

This follows that

2(n− k)maxλi ≤
q∑

j=1

λi.
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From Theorem 1, for any η ∈
[
max
1≤i≤q

λi,

∑q
i=1 λi

2(n− k)

]
, we have

∥∥
E

q(λ+ 1)−
∑q

j=1 lj − 2 (n− kt) η

kt (kt + 2)
Tft(r) ≤

q∑
j=1

(λ− lj + 1)N [1]
(
r, ν(ft,aj)

)
+ δ(kt)

(
(1 + ε) log(γt) + ε log r

)
+ S(r),

where δ(kt) =
kt(kt + 2)(n+ 1)(

∑q
i=1 λi − (n− kt)η)

2(n+ 2)
.

On the other hand,

q(λ+ 1)−
∑q

j=1 lj − 2nη + 2kη

k(k + 2)
≤

q(λ+ 1)−
∑q

j=1 lj − 2nη + 2ktη

kt (kt + 2)

and

kt(kt + 2)(n+ 1)(
∑q

i=1 λi − (n− kt)η)

2(n+ 2)
≤

k(k + 2)(n+ 1)(
∑q

i=1 λi − (n− k)η)

2(n+ 2)
.

Moreover, we take γt(r) = exp{
(
min1≤i≤λ cfi + ε

)∑λ
i=1 Tfi(r)}. Then we have

∥∥
E

q(λ+ 1)−
∑q

j=1 lj − 2(n− k)η

k(k + 2)

λ∑
i=1

Tfi(r)

≤ dλ

λ∑
i=1

Tfi(r) +

λ∑
i=1

q∑
j=1

λ− lj + 1

kj
Tfi(r)

+ λδ(k)
(
(1 + ε)

(
min

1≤i≤λ
cfi + ε

) λ∑
i=1

Tfi(r) + ε log r
)
+ S(r).

Letting r → +∞ (r /∈ E) and letting ε → 0+, we get

q∑
j=1

λ− 1

kj
≥

q∑
j=1

λ− lj + 1

kj

≥
q(λ+ 1)−

∑q
j=1 lj − 2(n− k)η

k(k + 2)
− dλ

−
λk(k + 2)(n+ 1)

(
q(λ+ 1)−

∑q
j=1 lj − (n− k)η

)
2(n+ 2)

min
1≤i≤λ

cfi .

(14)

In other words, we see that

λ− 1 ≤ max
1≤i≤q

λi ≤ η ≤
∑q

j=1 λj

2(n− k)
=

q(λ+ 1)−
∑q

j=1 lj

2(n− k)
.
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It follows from (14) that

q∑
j=1

λ− 1

kj
≥

q∑
j=1

λ− lj + 1

kj

≥
q(λ+ 1)−

∑q
j=1 lj − 2(n− k)(λ− 1)

k(k + 2)
− dλ

−
λk(k + 2)(n+ 1)

(
q(λ+ 1)−

∑q
j=1 lj

)
4(n+ 2)

min
1≤i≤λ

cfi .

Therefore

q∑
j=1

1

kj
≥

q(λ+ 1)−
∑q

j=1 lj − 2(n− k)(λ− 1)− dλk(k + 2)

k(k + 2)(λ− 1)

−
λk(k + 2)(n+ 1)

(
q(λ+ 1)−

∑q
j=1 lj

)
4(n+ 2)(λ− 1)

min
1≤i≤λ

cfi .

It is a contradiction. The proof of Theorem 1.3 is finished.

Proof of Theorem 4

Lemma 15 ([10], Claim 3.3). Let hi : ∆(R) → Pn(C)(1 ≤ i ≤ p ≤ n+ 1) be meromorphic

maps with reduced representations hi := (hi0 : · · · : hin), ai := (ai0 : · · · : ain). Put h̃ :=
((hi, a1) : · · · : (hi, an+1)), and assume that a1, . . . , an+1 are located in general position such
that (hi, aj) ̸= 0 (1 ≤ i ≤ p, 1 ≤ j ≤ n + 1). Let z0 be a point of ∆(R) such that

(a1 ∧ · · · ∧ an+1) (z0) ̸= 0. Then (h1∧· · ·∧hp)(z0) = 0 if and only if (h̃1∧· · ·∧ h̃p)(z0) = 0.

Now we put J = {j1, . . . , jλ} , Jc = {1, . . . , q}\J and

BJ =


(f1, aj1) · · · (fλ, aj1)
(f1, aj2) · · · (fλ, aj2)

...
...

...
(f1, ajλ) · · · (fλ, ajλ)

 ,

then we have the following lemma.

Lemma 16 ([10], Claim 3.4). If BJ is nondegenerate, i.e., detBJ ̸≡ 0, then

νf̃1∧···∧f̃λ
≥
∑
j∈J

(
min

1≤i≤λ

{
ν0(fi,aj),≤kj

}
−min

{
1, ν0(fi,aj),≤kj

})

+

q∑
j=1

(λ− lj + 1)min
{
1, ν0(fi,aj),≤kj

}

on the set ∆(R)\
(
aj1∧...∧ajλ

)−1

(0), where f̃i := ((fi, aj1) : · · · : ((fi, ajλ) .
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It suffices to prove the theorem in the case of λ ≤ n+1. Suppose that f1 ∧ · · · ∧ fλ ̸≡ 0.
For ε > 0, we put

γ(r) = exp{
(
min

1≤i≤λ
cfi + ε

) λ∑
i=1

Tfi(r)}.

We see that
∫ R

0
γ(r)dr = ∞.

For each j, 1 ≤ j ≤ q, we set

Nj(r) =

λ∑
i=1

N
[k]
(fi,aj),≤kj

(r)− ((λ− 1)k + 1)N
[1]
(fi,aj),≤kj

(r).

and for each permutation I = (j1, . . . , jq) of (1, . . . , q), we also put

TI =
{
r ∈ (0, R) | Nj1(r) ≥ · · · ≥ Njq (r)

}
.

It is clear that
⋃

I TI = (0, R). Therefore, there exists a permutation, for instance, it is
I1 = (1, . . . , q) such that

∫
TI1

γ(r)dr = ∞. Then, we have

N1(r) ≥ N2(r) ≥ · · · ≥ Nq(r).

By the assumption that f1∧· · ·∧fλ ̸≡ 0, there exists ordered set of indices J = {j1, · · · , jλ}
with 1 = j1 < · · · < jλ ≤ n+ 1 such that detBJ ̸≡ 0. We note that

N1(r) = Nj1(r) ≥ Nj2(r) ≥ · · · ≥ Njλ(r) ≥ Nn+1(r),

for each r ∈ TI1 . We see that min1≤i≤λ bi ≥
∑λ

i=1 min {k, bi} − (λ − 1)k, for every non-
negative integers λ and b1, . . . , bλ. Lemma 16 implies that

∑
j∈J

(
λ∑

i=1

min
{
k, ν0(fi,aj),≤kj

}
− ((λ− 1)k + 1)min

{
1, ν0(fi,aj),≤kj

})

+

q∑
j=1

(λ− lj + 1)min
{
1, ν0(fi,aj),≤kj

}
≤ µf̃1∧···∧f̃λ

.

on the set ∆(R)\(aj1 ∧ · · · ∧ ajλ)
−1(0). Integrating both sides of the inequality, we get

∑
j∈J

(
λ∑

i=1

N
[k]
(fi,aj),≤kj

(r)− ((λ− 1)k + 1)N
[1]
(f1,aj),≤kj

(r)

)

+

q∑
j=1

(λ− lj + 1)N
[1]
(f1,aj),≤kj

(r) ≤ Nf̃1∧···∧f̃λ
(r) = NdetBJ

(r).

(17)

On the other hand, by Jensen’s formula, we obtain

NdetBJ
(r) ≤

∫
S(r)

log |detBJ |σn +O(1) ≤
λ∑

i=1

Tfi(r) + o

(
max
1≤i≤λ

Tfi(r)

)
. (18)
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Set T (r) =
∑λ

i=1 Tfi(r). Combining (17) and (18), we get for all r ∈ I1,

T (r) ≥
λ∑

i=1

Nji(r) +

q∑
j=1

(λ− lj + 1)N
[1]
(f1,aj),≤kj

(r) + o

(
max
1≤i≤λ

Tfi(r)

)

≥λ

q

q∑
j=1

Nj(r) +

q∑
j=1

(λ− lj + 1)N
[1]
(f1,aj),≤kj

(r) + o

(
max
1≤i≤λ

Tfi(r)

)

=

q∑
j=1

(
λ− lj + 1− λ((λ− 1)k + 1)

q

)
N

[1]
(f1,aj),≤kj

(r)

+

q∑
j=1

λ∑
i=1

λ

q
N

[k]
(fi,aj),≤kj

(r) + o

(
max
1≤i≤λ

Tfi(r)

)

≥
q∑

j=1

λ∑
i=1

(
λ− lj + 1

λk
− (λ− 1)k + 1

qk
+

λ

q

)
N

[k]
(fi,aj),≤kj

(r)

+ o

(
max
1≤i≤λ

Tfi(r)

)
.

From Lemma 12 and the above inequality, we have

T (r) ≥
q∑

j=1

λ∑
i=1

(
q (λ− lj + 1) + λ(k − 1)

qλk

)
N

[k]
(fi,aj)

(r)

+

q∑
j=1

(
q (λ− lj + 1) + λ(k − 1)

qλk

)
k

kj + 1− k
T (r) + o

(
max
1≤i≤λ

Tfi(r)

)
.

It follows that

qλk +

q∑
j=1

k

kj + 1− k

(
q (λ− lj + 1) + λ(k − 1)

)
T (r)

≥
q∑

j=1

λ∑
i=1

(
q (λ− lj + 1) + λ(k − 1)

)
N

[k]
(fi,aj)

(r) + o

(
max
1≤i≤λ

Tfi(r)

)
.

(19)

For each 1 ≤ j ≤ q, put λj = q (λ− lj + 1) + λ(k − 1), we see that∑q
i=1 λi

maxλi
≥ q2 + qλ(k − 1)

q(λ− 1) + λ(k − 1)
≥ q

λ− 1
.

In other words,

• If k ≤ n− 1

2
, q ≥ (n− k + 1)(k + 2)(λ− 1), we get

∑q
i=1 λi

maxλi
≥ (n− k + 1)(k + 2) ≥ (n− kt + 1) (kt + 2) .
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• or if k >
n− 1

2
, q ≥ (n+ 3)2

4
(λ− 1), then

∑q
i=1 λi

maxλi
≥ (n+ 3)2

4
≥ (n− kt + 1) (kt + 2) .

In these cases, for 1 ≤ t ≤ λ, taking γt(r) = exp{
(
min1≤i≤λ cfi + ε

)∑λ
i=1 Tfi(r)} and

applying Theorem 2, we get

∥∥
E

q∑
j=1

(
q (λ− lj + 1) + λ(k − 1)

)
N

[k]
(ft,aj)

(r)+

k(k + 1)
∑q

i=1

(
(q (λ− lj + 1) + λ(k − 1)

)
2(k + 2)

(
(1 + ε)

(
min

1≤i≤λ
cfi + ε

)
T (r) + ε log r

)
+ S(r)

≥
∑q

j=1 (q (λ− lj + 1) + λ(k − 1))

k + 2
Tft(r).

(20)

Combining inequalities (19) and (20), we have

∥∥
E

qλk +

q∑
j=1

k

kj + 1− k
(q (λ− lj + 1) + λ(k − 1))T (r)

k(k + 1)
∑q

i=1

(
q (λ− lj + 1) + λ(k − 1)

)
2(k + 2)

(
(1 + ε)

(
min

1≤i≤λ
cfi + ε

)
T (r) + ε log r

)
+ S(r)

≥
λ∑

t=1

∑q
j=1 ((q (λ− lj + 1) + λ(k − 1))

k + 2
Tft(r).

Letting r → R (r ∈ TI1 , r /∈ E) and ε → 0+, we obtain

q
(
q(λ+ 1)−

∑q
j=1 lj + λ(k − 1)

)
k + 2

≤ qλk +

q∑
j=1

k

kj + 1− k

(
q (λ− lj + 1) + λ(k − 1)

)
+

k(k + 1)q
(
q(λ+ 1)−

∑q
j=1 lj + λ(k − 1)

)
2(k + 2)

min
1≤i≤λ

cfi .

Thus

q∑
j=1

1

kj + 1− k
≥ 1

k(k + 2)
− λ

q(λ+ 1)−
∑q

j=1 lj + λ(k − 1)
− k + 1

2(k + 2)
min

1≤i≤λ
cfi .

This is a contradiction. Hence, we have f1 ∧ · · · ∧ fλ ≡ 0.
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