Hamiltonicity in directed Toeplitz graphs $T_{n}\langle 1,3 ; 1, t\rangle$
 by
 Shabnam Malik

Abstract

A square matrix of order n is called a Toeplitz matrix if it has constant values along all diagonals parallel to the main diagonal. A directed Toeplitz graph $T_{n}\left\langle s_{1}, \ldots, s_{k} ; t_{1}, \ldots, t_{l}\right\rangle$ with vertices $1,2, \ldots, n$, where the edge (i, j) occurs if and only if $j-i=s_{p}$ or $i-j=t_{q}$ for some $1 \leq p \leq k$ and $1 \leq q \leq l$, is a digraph whose adjacency matrix is a Toeplitz matrix. In this paper, we study hamiltonicity in directed Toeplitz graphs $T_{n}\langle 1,3 ; 1, t\rangle$. We obtain new results and improve existing results on $T_{n}\langle 1,3 ; 1, t\rangle$.

Key Words: Adjacency matrix, Toeplitz graph, Hamiltonian graph, length of an edge.
2010 Mathematics Subject Classification: Primary 05C20; Secondary 05C45.

1 Introduction

Let G be a finite vertex-labeled graph with vertex set $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ and edge set $E(G)$. A graph G^{\prime} is called a subgraph of G if $V\left(G^{\prime}\right) \subset V(G)$ and $E\left(G^{\prime}\right) \subset E(G)$. If $E(G)=\left\{\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right), \ldots,\left(v_{n-1}, v_{n}\right),\left(v_{n}, v_{1}\right)\right\}$, where $v_{i} \neq v_{j}$ for all distinct i, j, then G is called a cycle. A cycle minus one edge is called a path. A cycle that visits each vertex of a graph H is called hamiltonian, and H is then called a hamiltonian graph. We consider here simple graphs, as multiple edges and loops play no role in hamiltonicity. The adjacency matrix $A=\left(a_{i j}\right)_{n \times n}$ of G is the matrix in which $a_{i j}=1$ if v_{i} is adjacent to v_{j} in G, and $a_{i j}=0$ otherwise. The main diagonal is zero, i.e., $a_{i i}=0$ as G has no loop.

A Toeplitz matrix, named so after Otto Toeplitz (1881-1940), is a square matrix which has constant values along all diagonals parallel to the main diagonal. The main diagonal of a Toeplitz adjacency matrix of order n will be labeled 0 . The $n-1$ diagonals above and below the main diagonal will be labeled $1,2, \ldots, n-1$. Let $s_{1}, s_{2}, \ldots, s_{k}$ be the upper diagonals containing ones and $t_{1}, t_{2}, \ldots, t_{l}$ be the lower diagonals containing ones, such that $0<s_{1}<$ $s_{2}<\cdots<s_{k}<n$ and $0<t_{1}<t_{2}<\cdots<t_{l}<n$. Then, the corresponding Toeplitz graph will be denoted by $T_{n}\left\langle s_{1}, s_{2}, \ldots, s_{k} ; t_{1}, t_{2}, \ldots, t_{l}\right\rangle$. That is, $T_{n}\left\langle s_{1}, s_{2}, \ldots, s_{k} ; t_{1}, t_{2}, \ldots, t_{l}\right\rangle$ is the graph with vertices $1,2, \ldots, n$, in which the edge (i, j) occurs, if and only if $j-i=s_{p}$ or $i-j=t_{q}$ for some p and $q(1 \leq p \leq k, 1 \leq q \leq l)$, see an example in Figure 1. The edges of $T_{n}\left\langle s_{1}, s_{2}, \ldots, s_{k} ; t_{1}, t_{2}, \ldots, t_{l}\right\rangle$ are of two types: increasing edges (u, v), for which $u<v$, and decreasing edges (u, v), where $u>v$. We define the length of an edge (u, v) to be $|u-v|$. Note that any increasing edge has length s_{p} for some p, and any decreasing edge has length t_{q} for some q. If the Toeplitz matrix is symmetric, then $s_{i}=t_{i}$ for all i, so the corresponding Toeplitz graph is undirected and can be denoted as $T_{n}\left\langle s_{1}, \ldots, s_{k}\right\rangle$. Hamiltonicity results
obtained in the undirected case for a Toeplitz graph have a direct impact on the directed case. Hamiltonicity of $T_{n}\left\langle s_{1}, s_{2}, \ldots, s_{k}\right\rangle$ means hamiltonicity of $T_{n}\left\langle s_{1}, \ldots, s_{k} ; t_{1}, \ldots, t_{l}\right\rangle$.

Remark that $T_{n}\left\langle s_{1}, \ldots, s_{i} ; t_{1}, \ldots, t_{j}\right\rangle$ and $T_{n}\left\langle t_{1}, \ldots, t_{j} ; s_{1}, \ldots, s_{i}\right\rangle$ are obtained from each other by reversing the orientation of all edges.

Figure 1: Toeplitz graph $T_{6}\langle 2,4,5 ; 1,2,5\rangle$
Properties of Toeplitz graphs, such as colourability, planarity, bipartiteness, connectivity, cycle discrepancy, edge irregularity strength, decomposition, labeling, and metric dimension have been studied in [1]-[6], [8]-[12], [14]-[15], and [24] . Hamiltonian properties of Toeplitz graphs were first investigated by R. van Dal et al. in [7] and then studied in [13, 23, 25], while the hamiltonicity in directed Toeplitz graphs was first studied by S. Malik and T. Zamfirescu in [22], by S. Malik in [16], by S. Malik and A.M. Qureshi in [21], and then by S. Malik in [17]-[20].

Suppose that H is a hamiltonian cycle in $T_{n}\left\langle s_{1}, s_{2}, \ldots, s_{k} ; t_{1}, t_{2}, \ldots, t_{l}\right\rangle$. The hamiltonian cycle H is determined by two paths $H_{1 \rightarrow n}$ (from 1 to n) and $H_{n \rightarrow 1}$ (from n to 1), i.e., $H=H_{1 \rightarrow n} \cup H_{n \rightarrow 1}$.

In [18], the hamiltonicity of the Toeplitz graphs $T_{n}\langle 1,3 ; 1, t\rangle$ was investigated. In this paper, we improve upon [18]. In [18], it was shown that: For odd $t, T_{n}\langle 1,3 ; 1, t\rangle$ is hamiltonian if and only if n is even. For even $t \leq 6, T_{n}\langle 1,3 ; 1, t\rangle$ is hamiltonian for all n. For even $t \geq 8$, $T_{n}\langle 1,3 ; 1, t\rangle$ is hamiltonian if $n \cong 0,2,4,6,5,7,9, \ldots, t-3 \bmod (t-1)$, or if $n \cong 3 \bmod (t-1)$ and $t \cong 0,2 \bmod 3$. Here we prove that, for even $t \geq 8$ and $t \cong 1 \bmod 3, T_{n}\langle 1,3 ; 1, t\rangle$ is hamiltonian if $n \cong 3 \bmod (t-1)$, which together with a result in [18], says that, for even $t \geq 8, T_{n}\langle 1,3 ; 1, t\rangle$ is hamiltonian if $n \cong 3 \bmod (t-1)$. We also prove that, for even $t \geq 8$, $T_{n}\langle 1,3 ; 1, t\rangle$ is hamiltonian if $n \cong 1 \bmod (t-1)$. For even $t \geq 8$, we also discuss the hamiltonicity of $T_{n}\langle 1,3 ; 1, t\rangle$ for $n \cong 8,10,12, \ldots, t-2 \bmod (t-1)$. We see that $T_{n}\langle 1,3 ; 1, t\rangle$ is hamiltonian for $n \cong s \bmod (t-1)$ if $t \cong s \bmod 6$, where $s \in\{8,10,12, \ldots, t-2\}$. The paper will be concluded with a conjecture that, for even $t \geq 8, T_{n}\langle 1,3 ; 1, t\rangle$ is non-hamiltonian
for $n \cong 8,10,12, \ldots, t-2 \bmod (t-1)$ if $t \nsubseteq s \bmod 6$, which completes the hamiltonicity investigation in Toeplitz graphs $T_{n}\langle 1,3 ; 1, t\rangle$.

For any vertex a and $b>a$, of the Toeplitz graph $T_{n}\langle 1,3 ; 1, t\rangle$, we define a path $P_{a \rightarrow b}$ in $T_{n}\langle 1,3 ; 1, t\rangle$ from a to b as $P_{a \rightarrow b}=(a, a+3, a+4, a+7, \ldots, a+4 k, a+4 k+3, \ldots, b)$, where k is a non-negative integer, see Figure 2.

Figure 2: $P_{a \rightarrow b}$

2 Toeplitz Graphs $T_{n}\langle 1,3 ; 1, t\rangle$

Lemma 1. If $T_{n}\langle 1,3 ; 1, t\rangle$ has a hamiltonian cycle containing the edge $(n-2, n-1)$, then $T_{n+t-1}\langle 1,3 ; 1, t\rangle$ has the same property.

Proof. Let $T_{n}\langle 1,3 ; 1, t\rangle$ have a hamiltonian cycle containing the edge ($n-2, n-1$). We transform this hamiltonian cycle to a hamiltonian cycle in $T_{n+t-1}\langle 1,3 ; 1, t\rangle$, by replacing the edge $(n-2, n-1)$ with the path $(n-2, n+1, n+2, \ldots,(n+t-1)-2,(n+t-1)-$ $1, n+t-1, n-1)$, see Figure 3. This shows that $T_{n+t-1}\langle 1,3 ; 1, t\rangle$ has the same property. This finishes the proof. \square

Figure 3:

In [18], it was proved that, for even $t \geq 8, T_{n}\langle 1,3 ; 1, t\rangle$ is hamiltonian if $n \cong 5,7,9, \ldots, t-$ $3 \bmod (t-1)$, and it was also proved that, for even $t \geq 8$ and $t \cong 0,2 \bmod 3, T_{n}\langle 1,3 ; 1, t\rangle$ is hamiltonian if $n \cong 3 \bmod (t-1)$. Here we prove that, for even $t \geq 8$ and $t \cong 1 \bmod 3$, $T_{n}\langle 1,3 ; 1, t\rangle$ is hamiltonian if $n \cong 3 \bmod (t-1)$. This shows that, for even $t \geq 8, T_{n}\langle 1,3 ; 1, t\rangle$ is hamiltonian if $n \cong 3 \bmod (t-1)$. We also prove that for even $t \geq 8, T_{n}\langle 1,3 ; 1, t\rangle$ is hamiltonian if $n \cong 1 \bmod (t-1)$.

Theorem 1. For even $t \geq 8, T_{n}\langle 1,3 ; 1, t\rangle$ is hamiltonian if $n \cong 1 \bmod (t-1)$.

Proof. Let $n \cong 1 \bmod (t-1)$, then the smallest possible value for n is t which we can not consider as $n>t$. So the next value for n is $t+(t-1)$, i.e., $n=2 t-1$.

Case 1. If $t \cong 0 \bmod 4$, then a hamiltonian cycle in $T_{n=2 t-1}\langle 1,3 ; 1, t\rangle$ is $\left(P_{1 \rightarrow n-t-2}, n-t+\right.$ $1, n-t+4, n-t+5, \ldots, n-2, n-1, n, n-t, n-t+3=t+2,2, P_{3 \rightarrow n-t-4}, n-t-1, n-t+2=$ $t+1,1)$, see Figure 4.

Figure 4: A hamiltonian cycle in $T_{n=2 t-1}\langle 1,3 ; 1, t\rangle$, where $t \cong 0 \bmod 4$
Case 2. If $t \cong 2 \bmod 4$, then a hamiltonian cycle in $T_{n=2 t-1}\langle 1,3 ; 1, t\rangle$ is $\left(P_{1 \rightarrow n-t-8}, n-\right.$ $t-5, n-t-2, n-t+1, n-t+4, n-t+5, \ldots, n-2, n-1, n, n-t, n-t+3=$ $\left.t+2,2, P_{3 \rightarrow n-t-6}, n-t-3, n-t-4, n-t-1, n-t+2=t+1,1\right)$, see Figure 5 .

Figure 5: A hamiltonian cycle in $T_{n=2 t-1}\langle 1,3 ; 1, t\rangle$, where $t \cong 2 \bmod 4$
Note that $(n-2, n-1)$ is an edge in both of the above hamiltonian cycles. Suppose $T_{n}\langle 1,3 ; 1, t\rangle$, with $n=(2 t-1)+r(t-1)$, has a hamiltonian cycle containing the edge $(n-2, n-1)$, for some non-negative integer r. By Lemma $1, T_{n+t-1}\langle 1,3 ; 1, t\rangle$ enjoys the same property. This finishes the proof. \square

Theorem 2. For even $t \geq 8, T_{n}\langle 1,3 ; 1, t\rangle$ is hamiltonian if $n \cong 3 \bmod (t-1)$.
Proof. By Theorem 6 in [18], for even $t \geq 8$ and $t \cong 0,2 \bmod 3, T_{n}\langle 1,3 ; 1, t\rangle$ is hamiltonian if $n \cong 3 \bmod (t-1)$. Here we show that, for even $t \geq 8$ and $t \cong 1 \bmod 3$, it is also hamiltonian if $n \cong 3 \bmod (t-1)$.

Let $t \geq 8$ (even) and $t \cong 1 \bmod 3$. Assume $n \cong 3 \bmod (t-1)$; then the smallest possible value for n is $t+2$, which is an even number.
Case 1. If $n \cong 0 \bmod 12$, then a hamiltonian cycle in $T_{n=t+2}\langle 1,3 ; 1, t\rangle$ is $\left(P_{1 \rightarrow n-3}, n, n-t=\right.$

Figure 6: A hamiltonian cycle in $T_{n=t+2}\langle 1,3 ; 1, t\rangle ; n \cong 0 \bmod 12$
$2, P_{3 \rightarrow n-5}, n-2, n-1, n-1-t=1$), see Figure 6.
Case 2. If $n \not \equiv 0 \bmod 12$, then a hamiltonian cycle in $T_{n=t+2}\langle 1,3 ; 1, t\rangle$ is $\left(P_{1 \rightarrow n-9}, n-6, n-\right.$ $3, n, n-t=2, P_{3 \rightarrow n-7}, n-4, n-5, n-2, n-1, n-1-t=1$), see Figure 7 .

Figure 7: A hamiltonian cycle in $T_{n=t+2}\langle 1,3 ; 1, t\rangle ; n \not \equiv 0 \bmod 12$
Note that $(n-2, n-1)$ is an edge in both of the above hamiltonian cycles. Suppose $T_{n}\langle 1,3 ; 1, t\rangle$, with $n=(t+2)+r(t-1)$, has a hamiltonian cycle containing the edge $(n-2, n-1)$, for some non-negative integer r. By Lemma $1, T_{n+t-1}\langle 1,3 ; 1, t\rangle$ enjoys the same property. This finishes the proof. \square

In [18], it was proved that, for even $t \geq 8, T_{n}\langle 1,3 ; 1, t\rangle$ is hamiltonian if $n \cong 0,2,4,6 \bmod (t-$ 1). Now, for even $t \geq 8$, we will discuss the hamiltonicity of $T_{n}\langle 1,3 ; 1, t\rangle$, if $n \cong 8,10,12, \ldots, t-$ $2 \bmod (t-1)$. Clearly, here $t \geq 10$.

Theorem 3. For even $t \geq 10$, and $n \cong \operatorname{smod}(t-1)$ where $s \in\{8,10,12, \ldots, t-2\}$, $T_{n}\langle 1,3 ; 1, t\rangle$ is hamiltonian if $t-s \cong 0 \bmod 6$ or $(t-s \cong 4 \bmod 6$ and $s \neq 8)$ or $(t-s \cong$ $2 \bmod 6$ and $n \neq s+t-1)$.

Proof. For even $t \geq 10$, let $n \cong \operatorname{siod}(t-1)$, where $s \in\{8,10,12, \ldots, t-2\}$. The smallest possible value for n is $s+t-1$, i.e., $n=s+t-1$, which is an odd number. Case 1. Let $t-s \cong 0 \bmod 6$.
(i) If $s \cong 0 \bmod 4$, then a hamiltonian cycle in $T_{n=s+t-1}\langle 1,3 ; 1, t\rangle$ is $\left(P_{1 \rightarrow n-t-2}, n-t+\right.$ $1, n-t+4, \ldots, t+3, t+4, \ldots, n-2, n-1, n, n-t, n-t+3, \ldots, t+2,2, P_{3 \rightarrow n-t-4}, n-t-$ $1, n-t+2, \ldots, t+1,1)$, see Figure 8 .
(ii) If $s \cong 2 \bmod 4$, then a hamiltonian cycle in $T_{n=s+t-1}\langle 1,3 ; 1, t\rangle$ is $\left(P_{1 \rightarrow n-t-8}, n-t-\right.$

Figure 8: A hamiltonian cycle in $T_{n=s+t-1}\langle 1,3 ; 1, t\rangle$, where $s \cong 0 \bmod 4$
$5, n-t-2, \ldots, t+3, t+4, \ldots, n-2, n-1, n, n-t, n-t+3, \ldots, t+2,2, P_{3 \rightarrow n-t-6}, n-t-$ $3, n-t-4, n-t-1, n-t+2, \ldots, t+1,1)$, see Figure 9 .

Figure 9: A hamiltonian cycle in $T_{n=s+t-1}\langle 1,3 ; 1, t\rangle$, where $s \cong 2 \bmod 4$
Note that $(n-2, n-1)$ is an edge in both of the hamiltonian cycles in Case 1. Suppose $T_{n}\langle 1,3 ; 1, t\rangle$, with $n=(s+t-1)+r(t-1)$, has a hamiltonian cycle containing the edge $(n-2, n-1)$, for some non-negative integer r. By Lemma $1, T_{n+t-1}\langle 1,3 ; 1, t\rangle$ enjoys the same property.

Case 2. Let $t-s \cong 4 \bmod 6$ and $s \neq 8$.
(i) If $s \cong 0 \bmod 4$ and $s \neq 8$, then a hamiltonian cycle in $T_{n=s+t-1}\langle 1,3 ; 1, t\rangle$ is $\left(P_{1 \rightarrow s-11}, s-\right.$ $8, s-5, \ldots, t+3, t+4, \ldots, s+t-4, s+t-1, s+t-2, s+t-3, s-3, s, \ldots, t+2,2, P_{3 \rightarrow s-9}, s-$ $6, s-7, s-4, \ldots, t+1,1)$, see Figure 10 .
(ii) If $s \cong 2 \bmod 4$, then a hamiltonian cycle in $T_{n=s+t-1}\langle 1,3 ; 1, t\rangle$ is $\left(P_{1 \rightarrow s-5}, s-2, s+\right.$ $1, \ldots, t+3, t+4, \ldots, s+t-4, s+t-1, s+t-2, s+t-3, s-3, s, \ldots, t+2,2, P_{3 \rightarrow s-7}, s-$ $4, s-1, \ldots, t+1,1)$, see Figure 11.

Since $(s+t-1, s+t-2)$ is an edge in both of the hamiltonian cycles in Case 2 , in $T_{s+t-1}\langle 1,3 ; 1, t\rangle$, we transform each of this hamiltonian cycle to a hamiltonian cycle in $T_{(s+t-1)+t-1=s+2 t-2}\langle 1,3 ; 1, t\rangle$, by replacing the edge $(s+t-1, s+t-2)$ with the path $(s+t-1, s+t, \ldots, s+2 t-4, s+2 t-3, s+2 t-2, s+t-2)$, which contains the edge $(s+2 t-4, s+2 t-3)$, see Figure 12. Suppose $T_{n}\langle 1,3 ; 1, t\rangle$, with $n=(s+t-1)+r(t-1)$, has a hamiltonian cycle containing the edge $(n-2, n-1)$, for some non-negative integer

Figure 10: A hamiltonian cycle in $T_{s+t-1}\langle 1,3 ; 1, t\rangle$, where $s \cong 0 \bmod 4, s \neq 8$

Figure 11: A hamiltonian cycle in $T_{s+t-1}\langle 1,3 ; 1, t\rangle$, where $s \cong 2 \bmod 4$
r. By Lemma $1, T_{n+t-1}\langle 1,3 ; 1, t\rangle$ enjoys the same property.

Figure 12: Transformation of the edge $(s+t-1, s+t-2)$ to the path $(s+t-1, s+t, \ldots, s+$ $2 t-4, s+2 t-3, s+2 t-2, s+t-2)$

Case 3. Let $t-s \cong 2 \bmod 6$ and $n \neq s+t-1$.
In this case, the smallest possible value for n different from $s+t-1$, will be $(s+t-$ $1)+(t-1)$, i.e., $n=s+2 t-2$, which is an even number.
(i) If $s \cong 0 \bmod 4$.

For $s=8$, a hamiltonian cycle in $T_{s+2 t-2=2 t+6}\langle 1,3 ; 1, t\rangle$ is $(2 t+6,2 t+5,2 t+4, t+4, t+$ $3,3,2,1,4,5, \ldots, t+2, t+5, t+6, \ldots, 2 t+3,2 t+6)$, see Figure 13.

For $s \neq 8$, a hamiltonian cycle in $T_{s+2 t-2}\langle 1,3 ; 1, t\rangle$ is $\left(P_{1 \rightarrow s-7}, s-3, s, \ldots, t+3, t+\right.$

Figure 13: A hamiltonian cycle in $T_{2 t+6}\langle 1,3 ; 1, t\rangle$
$4, \ldots, s+t-6, s+t-3, s+t-2, \ldots, s+2 t-5, s+2 t-2, s+2 t-3, s+2 t-4, s+t-$ $\left.4, s+t-5, s-5, s-2, \ldots, t+2,2, P_{3 \rightarrow s-9}, s-6, s-3, \ldots, t+1,1\right)$, see Figure 14.

Figure 14: A hamiltonian cycle in $T_{s+2 t-2}\langle 1,3 ; 1, t\rangle$, where $s \cong 0 \bmod 4$ and $s \neq 8$
(ii) If $s \cong 2 \bmod 4$.

For $s \neq 10$, a hamiltonian cycle in $T_{s+2 t-2}\langle 1,3 ; 1, t\rangle$ is $\left(P_{1 \rightarrow s-13}, s-10, s-7, \ldots, t+\right.$ $3, t+4, \ldots, s+t-6, s+t-3, s+t-2, \ldots, s+2 t-5, s+2 t-2, s+2 t-3, s+2 t-4, s+t-$ $\left.4, s+t-5, s-5, s-2, \ldots, t+2,2, P_{3 \rightarrow s-11}, s-8, s-9, s-6, s-3, \ldots, t+1,1\right)$, see Figure 15 .

Figure 15: A hamiltonian cycle in $T_{s+2 t-2}\langle 1,3 ; 1, t\rangle$, where $s \cong 2 \bmod 4$ and $s \neq 8$

For $s=10$. If $t \cong 0 \bmod 4$, then a hamiltonian cycle in $T_{s+2 t-2=2 t+8}\langle 1,3 ; 1, t\rangle$ is $\left(1,2,5,8, \ldots, t+2, P_{t+5 \rightarrow 2 t+1}, 2 t+4,2 t+5,2 t+8,2 t+7,2 t+6, t+6, P_{t+7 \rightarrow 2 t+3}, t+3, t+\right.$
$\left.4,4, P_{3 \rightarrow t-5}, t-2, t-3, t, t+1,1\right)$, see Figure 16. And if $t \cong 2 \bmod 4$, then a hamiltonian cycle in $T_{2 t+8}\langle 1,3 ; 1, t\rangle$ is $\left(1,2, P_{5 \rightarrow t-1}, t+2, P_{t+5 \rightarrow 2 t-5}, 2 t-2,2 t+1,2 t+4,2 t+5,2 t+\right.$ $\left.8,2 t+7,2 t+6, t+6, P_{t+7 \rightarrow 2 t-3}, 2 t, 2 t-1,2 t+2,2 t+3, t+3, t+4,4, P_{3 \rightarrow t+1}, 1\right)$, see Figure 17.

Figure 16: A hamiltonian cycle in $T_{2 t+8}\langle 1,3 ; 1, t\rangle$, where $t \cong 0 \bmod 4$

Figure 17: A hamiltonian cycle in $T_{2 t+8}\langle 1,3 ; 1, t\rangle$, where $t \cong 2 \bmod 4$
Since $(s+2 t-2, s+2 t-3)$ is an edge in all the hamiltonian cycles, in Case 3 , in $T_{s+2 t-2}\langle 1,3 ; 1, t\rangle$, we transform each of this hamiltonian cycle to a hamiltonian cycle in $T_{(s+2 t-2)+t-1=s+3 t-3}\langle 1,3 ; 1, t\rangle$, by replacing the edge $(s+2 t-2, s+2 t-3)$ with the path $(s+2 t-2, s+2 t-1, \ldots, s+3 t-5, s+3 t-4, s+3 t-3, s+2 t-3)$, which contains the edge $(s+3 t-4, s+3 t-3)$. Suppose $T_{n}\langle 1,3 ; 1, t\rangle$, with $n=(s+3 t-3)+r(t-1)$, has a hamiltonian cycle containing the edge ($n-2, n-1$), for some non-negative integer r. By Lemma 1 , $T_{n+t-1}\langle 1,3 ; 1, t\rangle$ enjoys the same property.

This finishes the proof.
In Theorem 3, it was proved that, for even $t \geq 10$, and $n \cong \operatorname{smod}(t-1)$ where $s \in$ $\{8,10,12, \ldots, t-2\}, T_{n}\langle 1,3 ; 1, t\rangle$ is hamiltonian if $t-s \cong 4 \bmod 6$ and $s \neq 8$. Here we will discuss the case with $s=8$.

Theorem 4. For even $t \geq 10, n \cong 8 \bmod (t-1)$, and $t-8 \cong 4 \bmod 6$. $T_{n}\langle 1,3 ; 1, t\rangle$ is hamiltonian for all n different from $t+7$.

Proof. For even $t \geq 10$, let $n \cong 8 \bmod (t-1)$ and $t-8 \cong 4 \bmod 6 \Rightarrow t \cong 0 \bmod 6$.
Assume $n \neq t+7$. Then the smallest possible value for n is $t+7+(t-1)$, i.e., $n=2 t+6$. A hamiltonian cycle in $T_{2 t+6}\langle 1,3 ; 1, t\rangle$ is $(2 t+6,2 t+5,2 t+4, t+4, t+$ $3,3,2,1,4,5, \ldots, t+2, t+5, t+6, \ldots, 2 t+3,2 t+6)$. Since $(2 t+6,2 t+5)$ is an edge in this hamiltonian cycle in $T_{2 t+6}\langle 1,3 ; 1, t\rangle$, we transform this hamiltonian cycle to a hamiltonian cycle in $T_{n=(2 t+6)+t-1=3 t+5}\langle 1,3 ; 1, t\rangle$, by replacing the edge $(2 t+6, t+5)$ with the path $(2 t+6,2 t+7, \ldots, 3 t+3,3 t+4, n=3 t+5,2 t+5)$, which contains the edge $(n-2, n-1)=$
$(3 t+3,3 t+4)$, see Figure 18. Suppose $T_{n}\langle 1,3 ; 1, t\rangle$, with $n=(3 t+5)+r(t-1)$, has a hamiltonian cycle containing the edge $(n-2, n-1)$, for some non-negative integer r. By Lemma 1 , $T_{n+t-1}\langle 1,3 ; 1, t\rangle$ enjoys the same property. This finishes the proof.

Figure 18: A hamiltonian cycle in $T_{2 t+6}\langle 1,3 ; 1, t\rangle$ and then its transformation to a hamiltonian cycle in $T_{3 t+5}\langle 1,3 ; 1, t\rangle$

Conjectures:

1. Let $t \geq 10$ and $t \cong 0 \bmod 6$. Then $T_{t+7}\langle 1,3 ; 1, t\rangle$ is non-hamiltonian.
2. Let $t \geq 10$ and $t-s \cong 2 \bmod 6$, where $s \in\{8,10,12, \ldots, t-2\}$. Then $T_{n}\langle 1,3 ; 1, t\rangle$ is non-hamiltonian if $n=s+t-1$.

Concluding Remark: An affirmative resolution of the conjecture above for $T_{n}\langle 1,3 ; 1, t\rangle$ would complete the study of hamiltonicity of $T_{n}\langle 1,3 ; 1, t\rangle$.

Acknowledgement Thanks are due to the referee, who helped us to better organize the paper.

References

[1] A. Ahmad, M. Baca, M. F. Nadeem, On edge irregularity strength of Toeplitz graphs, UPB. Sci. Bull. Ser. A., 78 (4), 155-162 (2016).
[2] A. Ahmad, F. Nadeem, A. Gupta, On super edge-magic deficiency of certain Toeplitz graphs, Hacet. J. Math. Stat., 47 (3), 513-519 (2018).
[3] S. Akbari, S. Hossein Ghorban, S. Malik, S. Qajar, Conditions for regularity and for 2-connectivity of Toeplitz graphs, Util. Math., 110, 305-314 (2019).
[4] L. Aslam, S. Sarwar, M. J. Yousaf, S. Waqar, Cycle discrepancy of cubic Toeplitz graphs, Pakistan J. Eng. Appl. Sci., 22, 14-19 (2018).
[5] S. Bau, A generalization of the concept of Toeplitz graphs, Mong. Math. J., 15, 54-61 (2011).
[6] M. Baca, Y. Bashir, F. Nadeem, A. Shabbir, On super edge-antimagic total labeling of Toeplitz graphs, Springer Proceedings in Mathematics and Statistics, 98, 1-10 (2015).
[7] R. van Dal, G. Tijssen, Z. Tuza, J. A. A. van der Veen, Ch. Zamfirescu, T. Zamfirescu, Hamiltonian properties of Toeplitz graphs, Discrete Math., 159, 69-81 (1996).
[8] R. Euler, Coloring infinite, planar Toeplitz graphs, Tech. Report, LIBr, November (1998).
[9] R. Euler, Characterizing bipartite Toeplitz graphs, Theor. Comput. Sci., 263, 47-58 (2001).
[10] R. Euler, Coloring planar Toeplitz graphs and the stable setpolytope, Discrete Math., 276, 183-200 (2004).
[11] R. Euler, T. Zamfirescu, On planar Toeplitz graphs, Graphs and Combinatorics, 29, 1311-1327 (2013).
[12] R. Euler, H. LeVerge, T. Zamfirescu, A characterization of infinite, bipartite Toeplitz graphs, in Ku Tung-Hsin (Ed.), Combinatorics and Graph Theory, 1, Academia Sinica, World Scientific, Singapore, 119-130 (1995).
[13] C. Heuberger, On hamiltonian Toeplitz graphs, Discrete Math., 245, 107-125 (2002).
[14] S. Hossein Ghorban, Toeplitz graph decomposition, Transactions on Combinatorics, 1 (4), 35-41 (2012).
[15] J. B. Liu, M. F. Nadeem, H. M. A Siddiqui, W. Nazir, Computing metric dimension of certain families of Toeplitz graphs, IEEE Access, 7, 126734-126741 (2019).
[16] S. Malik, Hamiltonicity in directed Toeplitz graphs of maximum (out or in) degree 4, Util. Math., 89, 33-68 (2012).
[17] S. Malik, Hamiltonian cycles in directed Toeplitz graphs - Part 2, Ars Comb., 116, 303-319 (2014).
[18] S. Malik, Hamiltonian cycles in directed Toeplitz graphs $T_{n}\left\langle 1,2 ; t_{1}, t_{2}\right\rangle$, Util. Math., 99, 3-17 (2016).
[19] S. MaLIK, Hamiltonicity in directed Toeplitz graphs $T_{n}\left\langle 1,2, t_{1}, t_{2}\right\rangle$, Australas. J. Combin., 78 (3), 434-449 (2020).
[20] S. Malik, Hamiltonicity in directed Toeplitz graphs $T_{n}\langle 1,3,4 ; t\rangle$, Bull. Math. Soc. Sci. Math. Roumanie, 64 (112), 317-327 (2021).
[21] S. Malik, A. M. Qureshi, Hamiltonian cycles in directed Toeplitz graphs, Ars Comb., CIX, 511-526 (2013).
[22] S. Malik, T. Zamfirescu, Hamiltonian connectedness in directed Toeplitz graphs, Bull. Math. Soc. Sci. Math. Roumanie, 53 (101), 145-156 (2010).
[23] M. F. Nadeem, A. Shabbir, T. Zamfirescu, Hamiltonian connectedness of Toeplitz graphs, Mathematics in the 21st Century, Springer Proceedings in Mathematics and Statistics, 98, 135-149 (2015).
[24] S. Nicoloso, U. Pietropaoli, On the chromatic number of Toeplitz graphs, Discrete Applied Mathematics, 164 (1), 286-296 (2014).
[25] H. Zafar, N. Akhter, M. K. Jamil, F. Nadeem, Hamiltonian connectedness and Toeplitz graphs, American Scientific Research Journal for Engineering, Technology, and Sciences, 33 (1), 255-268 (2017).

Received: 24.10.2021
Revised: 20.11.2021
Accepted: 25.11.2021
Faculty of Mathematics, Forman Christian College (A Chartered University), Lahore, Pakistan
E-mail: shabnam.malik@gmail.com

