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Abstract

A square matrix of order n is called a Toeplitz matrix if it has constant val-
ues along all diagonals parallel to the main diagonal. A directed Toeplitz graph
Tn⟨s1, . . . , sk; t1, . . . , tl⟩ with vertices 1, 2, . . . , n, where the edge (i, j) occurs if and
only if j − i = sp or i − j = tq for some 1 ≤ p ≤ k and 1 ≤ q ≤ l, is a digraph
whose adjacency matrix is a Toeplitz matrix. In this paper, we study hamiltonicity
in directed Toeplitz graphs Tn⟨1, 3; 1, t⟩. We obtain new results and improve existing
results on Tn⟨1, 3; 1, t⟩.
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1 Introduction

Let G be a finite vertex-labeled graph with vertex set V (G) = {v1, . . . , vn} and edge
set E(G). A graph G′ is called a subgraph of G if V (G′) ⊂ V (G) and E(G′) ⊂ E(G). If
E(G) = {(v1, v2), (v2, v3), . . . , (vn−1, vn), (vn, v1)}, where vi ̸= vj for all distinct i, j, then G
is called a cycle. A cycle minus one edge is called a path. A cycle that visits each vertex of a
graph H is called hamiltonian, and H is then called a hamiltonian graph. We consider here
simple graphs, as multiple edges and loops play no role in hamiltonicity. The adjacency
matrix A = (aij)n×n of G is the matrix in which aij = 1 if vi is adjacent to vj in G, and
aij = 0 otherwise. The main diagonal is zero, i.e., aii = 0 as G has no loop.

A Toeplitz matrix, named so after Otto Toeplitz (1881-1940), is a square matrix which
has constant values along all diagonals parallel to the main diagonal. The main diagonal of a
Toeplitz adjacency matrix of order n will be labeled 0. The n−1 diagonals above and below
the main diagonal will be labeled 1, 2, . . . , n− 1. Let s1, s2, . . . , sk be the upper diagonals
containing ones and t1, t2, . . . , tl be the lower diagonals containing ones, such that 0 < s1 <
s2 < · · · < sk < n and 0 < t1 < t2 < · · · < tl < n. Then, the corresponding Toeplitz graph
will be denoted by Tn⟨s1, s2, . . . , sk; t1, t2, . . . , tl⟩. That is, Tn⟨s1, s2, . . . , sk; t1, t2, . . . , tl⟩ is
the graph with vertices 1, 2, . . . , n, in which the edge (i, j) occurs, if and only if j − i = sp
or i− j = tq for some p and q (1 ≤ p ≤ k, 1 ≤ q ≤ l), see an example in Figure 1. The edges
of Tn⟨s1, s2, . . . , sk; t1, t2, . . . , tl⟩ are of two types: increasing edges (u, v), for which u < v,
and decreasing edges (u, v), where u > v. We define the length of an edge (u, v) to be |u−v|.
Note that any increasing edge has length sp for some p, and any decreasing edge has length
tq for some q. If the Toeplitz matrix is symmetric, then si = ti for all i, so the corresponding
Toeplitz graph is undirected and can be denoted as Tn⟨s1, . . . , sk⟩. Hamiltonicity results
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obtained in the undirected case for a Toeplitz graph have a direct impact on the directed
case. Hamiltonicity of Tn⟨s1, s2, . . . , sk⟩ means hamiltonicity of Tn⟨s1, . . . , sk; t1, . . . , tl⟩.

Remark that Tn⟨s1, . . . , si; t1, . . . , tj⟩ and Tn⟨t1, . . . , tj ; s1, . . . , si⟩ are obtained from each
other by reversing the orientation of all edges.

0         0         1        0        1       1      

1         0         0        1        0       1     

1         1         0        0        1       0

 

0         1         1        0        0        1  

0         0         1        1        0        0

1         0         0        1        1        0
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Figure 1: Toeplitz graph T6⟨2, 4, 5; 1, 2, 5⟩

Properties of Toeplitz graphs, such as colourability, planarity, bipartiteness, connec-
tivity, cycle discrepancy, edge irregularity strength, decomposition, labeling, and metric
dimension have been studied in [1]-[6], [8]-[12], [14]-[15], and [24] . Hamiltonian properties
of Toeplitz graphs were first investigated by R. van Dal et al. in [7] and then studied in
[13, 23, 25], while the hamiltonicity in directed Toeplitz graphs was first studied by S. Malik
and T. Zamfirescu in [22], by S. Malik in [16], by S. Malik and A.M. Qureshi in [21], and
then by S. Malik in [17]-[20].

Suppose that H is a hamiltonian cycle in Tn⟨s1, s2, . . . , sk; t1, t2, . . . , tl⟩. The hamilto-
nian cycle H is determined by two paths H1→n (from 1 to n) and Hn→1 (from n to 1), i.e.,
H = H1→n ∪Hn→1.

In [18], the hamiltonicity of the Toeplitz graphs Tn⟨1, 3; 1, t⟩ was investigated. In this pa-
per, we improve upon [18]. In [18], it was shown that: For odd t, Tn⟨1, 3; 1, t⟩ is hamiltonian
if and only if n is even. For even t ≤ 6, Tn⟨1, 3; 1, t⟩ is hamiltonian for all n. For even t ≥ 8,
Tn⟨1, 3; 1, t⟩ is hamiltonian if n ∼= 0, 2, 4, 6, 5, 7, 9, . . . , t−3mod(t−1), or if n ∼= 3mod(t−1)
and t ∼= 0, 2mod 3. Here we prove that, for even t ≥ 8 and t ∼= 1mod 3, Tn⟨1, 3; 1, t⟩ is
hamiltonian if n ∼= 3mod(t − 1), which together with a result in [18], says that, for even
t ≥ 8, Tn⟨1, 3; 1, t⟩ is hamiltonian if n ∼= 3mod(t − 1). We also prove that, for even t ≥ 8,
Tn⟨1, 3; 1, t⟩ is hamiltonian if n ∼= 1mod(t− 1). For even t ≥ 8, we also discuss the hamil-
tonicity of Tn⟨1, 3; 1, t⟩ for n ∼= 8, 10, 12, . . . , t − 2mod(t − 1). We see that Tn⟨1, 3; 1, t⟩ is
hamiltonian for n ∼= smod(t− 1) if t ∼= smod 6, where s ∈ {8, 10, 12, . . . , t− 2}. The paper
will be concluded with a conjecture that, for even t ≥ 8, Tn⟨1, 3; 1, t⟩ is non-hamiltonian
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for n ∼= 8, 10, 12, . . . , t − 2mod(t − 1) if t ≇ smod 6, which completes the hamiltonicity
investigation in Toeplitz graphs Tn⟨1, 3; 1, t⟩.

For any vertex a and b > a, of the Toeplitz graph Tn⟨1, 3; 1, t⟩, we define a path Pa→b

in Tn⟨1, 3; 1, t⟩ from a to b as Pa→b = (a, a + 3, a + 4, a + 7, . . . , a + 4k, a + 4k + 3, . . . , b),
where k is a non-negative integer, see Figure 2.

.   .   .

a     
  b  a+4k+3  a+4ka+4     

Figure 2: Pa→b

2 Toeplitz Graphs Tn⟨1, 3; 1, t⟩
Lemma 1. If Tn⟨1, 3; 1, t⟩ has a hamiltonian cycle containing the edge (n− 2, n− 1), then
Tn+t−1⟨1, 3; 1, t⟩ has the same property.

Proof. Let Tn⟨1, 3; 1, t⟩ have a hamiltonian cycle containing the edge (n−2, n−1). We
transform this hamiltonian cycle to a hamiltonian cycle in Tn+t−1⟨1, 3; 1, t⟩, by replacing
the edge (n− 2, n− 1) with the path (n− 2, n+ 1, n+ 2, . . . , (n+ t− 1)− 2, (n+ t− 1)−
1, n+ t− 1, n− 1), see Figure 3. This shows that Tn+t−1⟨1, 3; 1, t⟩ has the same property.
This finishes the proof.2

.  .  .

n-2     

n+1     

n+t-1     n+t-3     n-1     n     
n-2  n-1 n     

Figure 3:

In [18], it was proved that, for even t ≥ 8, Tn⟨1, 3; 1, t⟩ is hamiltonian if n ∼= 5, 7, 9, . . . , t−
3mod(t − 1), and it was also proved that, for even t ≥ 8 and t ∼= 0, 2mod 3, Tn⟨1, 3; 1, t⟩
is hamiltonian if n ∼= 3mod(t − 1). Here we prove that, for even t ≥ 8 and t ∼= 1mod 3,
Tn⟨1, 3; 1, t⟩ is hamiltonian if n ∼= 3mod(t−1). This shows that, for even t ≥ 8, Tn⟨1, 3; 1, t⟩
is hamiltonian if n ∼= 3mod(t − 1). We also prove that for even t ≥ 8, Tn⟨1, 3; 1, t⟩ is
hamiltonian if n ∼= 1mod(t− 1).

Theorem 1. For even t ≥ 8, Tn⟨1, 3; 1, t⟩ is hamiltonian if n ∼= 1mod(t− 1).
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Proof. Let n ∼= 1mod(t − 1), then the smallest possible value for n is t which we can
not consider as n > t. So the next value for n is t+ (t− 1), i.e., n = 2t− 1.

Case 1. If t ∼= 0mod 4, then a hamiltonian cycle in Tn=2t−1⟨1, 3; 1, t⟩ is (P1→n−t−2, n− t+
1, n−t+4, n−t+5, . . . , n−2, n−1, n, n−t, n−t+3 = t+2, 2, P3→n−t−4, n−t−1, n−t+2 =
t+ 1, 1), see Figure 4.

       3     

. . .

.   .   .

1     2
  n-2   n-1    n  n-t

  n-t-2

  t+1

  t+2
  n-t+4

  n-t-4

Figure 4: A hamiltonian cycle in Tn=2t−1⟨1, 3; 1, t⟩, where t ∼= 0mod 4

Case 2. If t ∼= 2mod 4, then a hamiltonian cycle in Tn=2t−1⟨1, 3; 1, t⟩ is (P1→n−t−8, n −
t − 5, n − t − 2, n − t + 1, n − t + 4, n − t + 5, . . . , n − 2, n − 1, n, n − t, n − t + 3 =
t+ 2, 2, P3→n−t−6, n− t− 3, n− t− 4, n− t− 1, n− t+ 2 = t+ 1, 1), see Figure 5.

       3     

. . .

.   .   .

1     2
  n-2   n-1  n  n-t

  n-t-5

  t+1

  n-t+4  n-t-8   n-t-2

  n-t+1

Figure 5: A hamiltonian cycle in Tn=2t−1⟨1, 3; 1, t⟩, where t ∼= 2mod 4

Note that (n − 2, n − 1) is an edge in both of the above hamiltonian cycles. Suppose
Tn⟨1, 3; 1, t⟩, with n = (2t − 1) + r(t − 1), has a hamiltonian cycle containing the edge
(n − 2, n − 1), for some non-negative integer r. By Lemma 1, Tn+t−1⟨1, 3; 1, t⟩ enjoys the
same property. This finishes the proof.2

Theorem 2. For even t ≥ 8, Tn⟨1, 3; 1, t⟩ is hamiltonian if n ∼= 3mod(t− 1).

Proof. By Theorem 6 in [18], for even t ≥ 8 and t ∼= 0, 2mod 3, Tn⟨1, 3; 1, t⟩ is hamil-
tonian if n ∼= 3mod(t − 1). Here we show that, for even t ≥ 8 and t ∼= 1mod 3, it is also
hamiltonian if n ∼= 3mod(t− 1).

Let t ≥ 8 (even) and t ∼= 1mod 3. Assume n ∼= 3mod(t− 1); then the smallest possible
value for n is t+ 2, which is an even number.
Case 1. If n ∼= 0mod 12, then a hamiltonian cycle in Tn=t+2⟨1, 3; 1, t⟩ is (P1→n−3, n, n− t =
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       3     

.   .   .

1     2

  n-4  n-7

  n-1
  n=t+2

  n-5   n-2

Figure 6: A hamiltonian cycle in Tn=t+2⟨1, 3; 1, t⟩; n ∼= 0mod 12

2, P3→n−5, n− 2, n− 1, n− 1− t = 1), see Figure 6.
Case 2. If n ≇ 0mod 12, then a hamiltonian cycle in Tn=t+2⟨1, 3; 1, t⟩ is (P1→n−9, n−6, n−
3, n, n− t = 2, P3→n−7, n− 4, n− 5, n− 2, n− 1, n− 1− t = 1), see Figure 7.

       3     

.   .   .

1     2

  n-6

  n-1

  n-9   n-3

  n=t+2  n-7   n-4   n-2

Figure 7: A hamiltonian cycle in Tn=t+2⟨1, 3; 1, t⟩; n ≇ 0mod 12

Note that (n − 2, n − 1) is an edge in both of the above hamiltonian cycles. Suppose
Tn⟨1, 3; 1, t⟩, with n = (t + 2) + r(t − 1), has a hamiltonian cycle containing the edge
(n − 2, n − 1), for some non-negative integer r. By Lemma 1, Tn+t−1⟨1, 3; 1, t⟩ enjoys the
same property. This finishes the proof.2

In [18], it was proved that, for even t ≥ 8, Tn⟨1, 3; 1, t⟩ is hamiltonian if n ∼= 0, 2, 4, 6mod(t−
1). Now, for even t ≥ 8, we will discuss the hamiltonicity of Tn⟨1, 3; 1, t⟩, if n ∼= 8, 10, 12, . . . , t−
2mod(t− 1). Clearly, here t ≥ 10.

Theorem 3. For even t ≥ 10, and n ∼= smod(t − 1) where s ∈ {8, 10, 12, . . . , t − 2},
Tn⟨1, 3; 1, t⟩ is hamiltonian if t − s ∼= 0mod 6 or (t − s ∼= 4mod 6 and s ̸= 8) or (t − s ∼=
2mod 6 and n ̸= s+ t− 1).

Proof. For even t ≥ 10, let n ∼= smod(t − 1), where s ∈ {8, 10, 12, . . . , t − 2}. The
smallest possible value for n is s+ t− 1, i.e., n = s+ t− 1, which is an odd number.
Case 1. Let t− s ∼= 0mod 6.
(i) If s ∼= 0mod 4, then a hamiltonian cycle in Tn=s+t−1⟨1, 3; 1, t⟩ is (P1→n−t−2, n − t +
1, n− t+4, . . . , t+3, t+4, . . . , n− 2, n− 1, n, n− t, n− t+3, . . . , t+2, 2, P3→n−t−4, n− t−
1, n− t+ 2, . . . , t+ 1, 1), see Figure 8.
(ii) If s ∼= 2mod 4, then a hamiltonian cycle in Tn=s+t−1⟨1, 3; 1, t⟩ is (P1→n−t−8, n − t −
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       3     

.   .   .

1     2

  t+3   

  n-t  n-t-1   t+1  n-t-4

  n-t-2

  n-t+3   t+2

.  .  .

   n-1  n

.  .  .

.  .  .

.   .   .

   n-2

Figure 8: A hamiltonian cycle in Tn=s+t−1⟨1, 3; 1, t⟩, where s ∼= 0mod 4

5, n− t− 2, . . . , t+3, t+4, . . . , n− 2, n− 1, n, n− t, n− t+3, . . . , t+2, 2, P3→n−t−6, n− t−
3, n− t− 4, n− t− 1, n− t+ 2, . . . , t+ 1, 1), see Figure 9.

       3     

.   .   .

1     2

  t+3   

  n-t  n-t-3   t+1  n-t-6

  n-t-2

  n-t+3   t+2

.  .  .

   n-1  n

.  .  .

.  .  .

.   .   .

  n-t-8

  n-t+1

Figure 9: A hamiltonian cycle in Tn=s+t−1⟨1, 3; 1, t⟩, where s ∼= 2mod 4

Note that (n− 2, n− 1) is an edge in both of the hamiltonian cycles in Case 1. Suppose
Tn⟨1, 3; 1, t⟩, with n = (s + t − 1) + r(t − 1), has a hamiltonian cycle containing the edge
(n − 2, n − 1), for some non-negative integer r. By Lemma 1, Tn+t−1⟨1, 3; 1, t⟩ enjoys the
same property.

Case 2. Let t− s ∼= 4mod 6 and s ̸= 8.
(i) If s ∼= 0mod 4 and s ̸= 8, then a hamiltonian cycle in Tn=s+t−1⟨1, 3; 1, t⟩ is (P1→s−11, s−
8, s−5, . . . , t+3, t+4, . . . , s+t−4, s+t−1, s+t−2, s+t−3, s−3, s, . . . , t+2, 2, P3→s−9, s−
6, s− 7, s− 4, . . . , t+ 1, 1), see Figure 10.
(ii) If s ∼= 2mod 4, then a hamiltonian cycle in Tn=s+t−1⟨1, 3; 1, t⟩ is (P1→s−5, s − 2, s +
1, . . . , t+3, t+4, . . . , s+ t− 4, s+ t− 1, s+ t− 2, s+ t− 3, s− 3, s, . . . , t+2, 2, P3→s−7, s−
4, s− 1, . . . , t+ 1, 1), see Figure 11.

Since (s + t − 1, s + t − 2) is an edge in both of the hamiltonian cycles in Case 2,
in Ts+t−1⟨1, 3; 1, t⟩, we transform each of this hamiltonian cycle to a hamiltonian cycle in
T(s+t−1)+t−1=s+2t−2⟨1, 3; 1, t⟩, by replacing the edge (s + t − 1, s + t − 2) with the path
(s + t − 1, s + t, . . . , s + 2t − 4, s + 2t − 3, s + 2t − 2, s + t − 2), which contains the edge
(s+ 2t− 4, s+ 2t− 3), see Figure 12. Suppose Tn⟨1, 3; 1, t⟩, with n = (s+ t− 1) + r(t− 1),
has a hamiltonian cycle containing the edge (n − 2, n − 1), for some non-negative integer
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       3     

.   .   .

1     2

  t+3   

  s-3  s-6   t+1  s-9   s   t+2 .  .  .

   s+t-4.  .  .

.  .  .

.   .   .

   s+t-1

  s-7   s-4

  s-11   s-8   s-5

Figure 10: A hamiltonian cycle in Ts+t−1⟨1, 3; 1, t⟩, where s ∼= 0mod 4, s ̸= 8

       3     

.   .   .

1     2

  t+3   

  s-3  s-4   t+1  s-7   s   t+2 .  .  .

   s+t-1.  .  .

.  .  .

.   .   .

   s+t-3  s-1

  s-5   s-2

       6     

Figure 11: A hamiltonian cycle in Ts+t−1⟨1, 3; 1, t⟩, where s ∼= 2mod 4

r. By Lemma 1, Tn+t−1⟨1, 3; 1, t⟩ enjoys the same property.

s+t-1    
s+t-2    s+t-4     

s+t-2     s+2t-2    
.  .  .

s+2t-4     

s+t-1     s+t-4    

Figure 12: Transformation of the edge (s+t−1, s+t−2) to the path (s+t−1, s+t, . . . , s+
2t− 4, s+ 2t− 3, s+ 2t− 2, s+ t− 2)

Case 3. Let t− s ∼= 2mod 6 and n ̸= s+ t− 1.
In this case, the smallest possible value for n different from s + t − 1, will be (s + t −

1) + (t− 1), i.e., n = s+ 2t− 2, which is an even number.

(i) If s ∼= 0mod 4.
For s = 8, a hamiltonian cycle in Ts+2t−2=2t+6⟨1, 3; 1, t⟩ is (2t+6, 2t+5, 2t+4, t+4, t+

3, 3, 2, 1, 4, 5, . . . , t+ 2, t+ 5, t+ 6, . . . , 2t+ 3, 2t+ 6), see Figure 13.
For s ̸= 8, a hamiltonian cycle in Ts+2t−2⟨1, 3; 1, t⟩ is (P1→s−7, s − 3, s, . . . , t + 3, t +
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.  .  .

2     3     

2t+3     

1     

.  .  .

2t+6     

2t+4     t+3    
4     

Figure 13: A hamiltonian cycle in T2t+6⟨1, 3; 1, t⟩

4, . . . , s + t − 6, s + t − 3, s + t − 2, . . . , s + 2t − 5, s + 2t − 2, s + 2t − 3, s + 2t − 4, s + t −
4, s+ t− 5, s− 5, s− 2, . . . , t+ 2, 2, P3→s−9, s− 6, s− 3, . . . , t+ 1, 1), see Figure 14.

       3     

.   .   .

1     2

  s+2t-2

  s-5  s-8   t+1  s-2   t+2

.  .  .

   s+t-4

.  .  .

.  .  .

  s-9   s-6
  s-7

Figure 14: A hamiltonian cycle in Ts+2t−2⟨1, 3; 1, t⟩, where s ∼= 0mod 4 and s ̸= 8

(ii) If s ∼= 2mod 4.
For s ̸= 10, a hamiltonian cycle in Ts+2t−2⟨1, 3; 1, t⟩ is (P1→s−13, s − 10, s − 7, . . . , t +

3, t+4, . . . , s+ t− 6, s+ t− 3, s+ t− 2, . . . , s+2t− 5, s+2t− 2, s+2t− 3, s+2t− 4, s+ t−
4, s+t−5, s−5, s−2, . . . , t+2, 2, P3→s−11, s−8, s−9, s−6, s−3, . . . , t+1, 1), see Figure 15.

       3     

.   .   .

1     2

  s+2t-2

  s-5  s-8   t+1  s-11   s-2   t+2

.  .  .

   s+t-4

.  .  .

.  .  .

  s-9   s-6

  s-10   s-7

Figure 15: A hamiltonian cycle in Ts+2t−2⟨1, 3; 1, t⟩, where s ∼= 2mod 4 and s ̸= 8

For s = 10. If t ∼= 0mod 4, then a hamiltonian cycle in Ts+2t−2=2t+8⟨1, 3; 1, t⟩ is
(1, 2, 5, 8, . . . , t+ 2, Pt+5→2t+1, 2t+ 4, 2t+ 5, 2t+ 8, 2t+ 7, 2t+ 6, t+ 6, Pt+7→2t+3, t+ 3, t+
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4, 4, P3→t−5, t − 2, t − 3, t, t + 1, 1), see Figure 16. And if t ∼= 2mod 4, then a hamiltonian
cycle in T2t+8⟨1, 3; 1, t⟩ is (1, 2, P5→t−1, t + 2, Pt+5→2t−5, 2t − 2, 2t + 1, 2t + 4, 2t + 5, 2t +
8, 2t+7, 2t+6, t+6, Pt+7→2t−3, 2t, 2t− 1, 2t+2, 2t+3, t+3, t+4, 4, P3→t+1, 1), see Figure
17.

. . . 

. . . 

. . . 

. . . 

1 2 3 4 t+3t+165

2t+8
2t+5

2t+32t+1t+6 t+8t+5

t-2

Figure 16: A hamiltonian cycle in T2t+8⟨1, 3; 1, t⟩, where t ∼= 0mod 4

. . . 

. . . 

. . . 

. . . 

1 2 3 4 t+3t+1t-165

2t+8
2t+52t+2

2t-2t+6

Figure 17: A hamiltonian cycle in T2t+8⟨1, 3; 1, t⟩, where t ∼= 2mod 4

Since (s + 2t − 2, s + 2t − 3) is an edge in all the hamiltonian cycles, in Case 3, in
Ts+2t−2⟨1, 3; 1, t⟩, we transform each of this hamiltonian cycle to a hamiltonian cycle in
T(s+2t−2)+t−1=s+3t−3⟨1, 3; 1, t⟩, by replacing the edge (s+ 2t− 2, s+ 2t− 3) with the path
(s + 2t − 2, s + 2t − 1, . . . , s + 3t − 5, s + 3t − 4, s + 3t − 3, s + 2t − 3), which contains the
edge (s + 3t − 4, s + 3t − 3). Suppose Tn⟨1, 3; 1, t⟩, with n = (s + 3t − 3) + r(t − 1), has a
hamiltonian cycle containing the edge (n − 2, n − 1), for some non-negative integer r. By
Lemma 1, Tn+t−1⟨1, 3; 1, t⟩ enjoys the same property.

This finishes the proof.2

In Theorem 3, it was proved that, for even t ≥ 10, and n ∼= smod(t − 1) where s ∈
{8, 10, 12, . . . , t− 2}, Tn⟨1, 3; 1, t⟩ is hamiltonian if t− s ∼= 4mod 6 and s ̸= 8. Here we will
discuss the case with s = 8.

Theorem 4. For even t ≥ 10, n ∼= 8mod(t − 1), and t − 8 ∼= 4mod 6. Tn⟨1, 3; 1, t⟩ is
hamiltonian for all n different from t+ 7.

Proof. For even t ≥ 10, let n ∼= 8mod(t− 1) and t− 8 ∼= 4mod 6 ⇒ t ∼= 0mod 6.
Assume n ̸= t + 7. Then the smallest possible value for n is t + 7 + (t − 1), i.e.,

n = 2t + 6. A hamiltonian cycle in T2t+6⟨1, 3; 1, t⟩ is (2t + 6, 2t + 5, 2t + 4, t + 4, t +
3, 3, 2, 1, 4, 5, . . . , t+2, t+5, t+6, . . . , 2t+3, 2t+6). Since (2t+6, 2t+5) is an edge in this
hamiltonian cycle in T2t+6⟨1, 3; 1, t⟩, we transform this hamiltonian cycle to a hamiltonian
cycle in Tn=(2t+6)+t−1=3t+5⟨1, 3; 1, t⟩, by replacing the edge (2t + 6, t + 5) with the path
(2t+6, 2t+7, . . . , 3t+3, 3t+4, n = 3t+5, 2t+5), which contains the edge (n− 2, n− 1) =
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(3t + 3, 3t + 4), see Figure 18. Suppose Tn⟨1, 3; 1, t⟩, with n = (3t + 5) + r(t − 1), has a
hamiltonian cycle containing the edge (n − 2, n − 1), for some non-negative integer r. By
Lemma 1, Tn+t−1⟨1, 3; 1, t⟩ enjoys the same property. This finishes the proof.2

.  .  .

2     3     

2t+3     

1     

.  .  .

2t+6     

2t+4     t+3    

.  .  .

2     3     

2t+3     

1     

.  .  .

2t+4     t+3    3t+5     

.  .  .

3t+3     

2t+6     

4     

4     

Figure 18: A hamiltonian cycle in T2t+6⟨1, 3; 1, t⟩ and then its transformation to a hamil-
tonian cycle in T3t+5⟨1, 3; 1, t⟩

Conjectures:

1. Let t ≥ 10 and t ∼= 0mod 6. Then Tt+7⟨1, 3; 1, t⟩ is non-hamiltonian.

2. Let t ≥ 10 and t− s ∼= 2mod 6, where s ∈ {8, 10, 12, . . . , t− 2}. Then Tn⟨1, 3; 1, t⟩ is
non-hamiltonian if n = s+ t− 1.

Concluding Remark: An affirmative resolution of the conjecture above for Tn⟨1, 3; 1, t⟩
would complete the study of hamiltonicity of Tn⟨1, 3; 1, t⟩.

Acknowledgement Thanks are due to the referee, who helped us to better organize the
paper.
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