Fully invariant submodules for constructing dual Rickart modules and dual Baer modules

by
Tayyabeh Amouzegar ${ }^{(1)}$, Ali Reza Moniri Hamzekolaee ${ }^{(2)}$, Adnan Tercan ${ }^{(3)}$

Abstract

Fully invariant submodules play an important designation in studying the structure of some known modules such as (dual) Rickart and (dual) Baer modules. In this work, we introduce F-dual Rickart (Baer) modules via the concept of fully invariant submodules. It is shown that M is F-dual Rickart if and only if $M=F \oplus L$ such that F is a dual Rickart module. We prove that a module M is F-dual Baer if and only if M is F-dual Rickart and M has $S S S P$ for direct summands of M contained in F. We present a characterization of right I-dual Baer rings where I is an ideal of R. Some counter-examples are provided to illustrate new concepts.

Key Words: Fully invariant submodule, dual Rickart module, F-dual Rickart module, F-dual Baer module.
2010 Mathematics Subject Classification: Primary 16D10; Secondary 16D80.

1 Introduction

All rings considered in this paper will be associative with an identity element and all modules will be unitary right modules unless otherwise stated. Let R be a ring and M an R-module. $S=\operatorname{End}_{R}(M)$ will denote the ring of all R-endomorphisms of M. We will use the notation $N \ll M$ to indicate that N is small in M (i.e. $\forall L \lesseqgtr M, L+N \neq M$). A module M is called hollow if every proper submodule of M is small in M. The notation $N \leq{ }^{\oplus} M$ denotes that N is a direct summand of $M . N \unlhd M$ means that N is a fully invariant submodule of M (i.e., $\left.\forall \phi \in \operatorname{End}_{R}(M), \phi(N) \subseteq N\right) . \operatorname{Rad}(M)$ and $\operatorname{Soc}(M)$ denote the radical and the socle of a module M, respectively.

Let $L \subseteq K \leq M$. We say that K lies above L in M if $K / L \ll M / L$. A module M is called lifting if every submodule A of M lies above a direct summand D of M ([3]).

Let M be a module. Following [6], M is called (dual) Rickart in case for every endomorphism φ of $M,(\operatorname{Im} \varphi) \operatorname{Ker} \varphi$ is a direct summand of M. For the study of (dual) Rickart modules, idempotents of endomorphism rings of modules are important. In particular as an interesting result, a module M is Rickart and dual Rickart if and only if $\operatorname{End}_{R}(M)$ is a von Neumann regular ring. Amouzegar in [1] introduced a generalization of both lifting modules and dual Rickart modules as \mathcal{I}-lifting modules. The author showed that a projective \mathcal{I}-lifting module is a direct sum of cyclic modules. She also present a characterization of \mathcal{I}-lifting rings in terms of finitely supplemented modules. Although the class of \mathcal{I}-lifting modules is larger than the class of dual Rickart modules, studying and investigating them seem to have more difficulties.

In [2], it is introduced a various of \mathcal{I}-lifting modules via a fixed fully invariant submodule of a given module. By the way, they call a module M, \mathcal{I}_{F}-lifting (where F is a fully invariant submodule of M) provided for every endomorphism φ of M, the submodule $\varphi(F)$ lies above a direct summand of M. It is obvious that a module M is \mathcal{I}-lifting if and only if M is \mathcal{I}_{M}-lifting. Various properties of such modules have been also investigated in [2]. As a continuoution of the last work, also Moniri and Amouzegar in [8] tried to study H-supplemented modules via the same approach as in [2]. A module M is called $\mathcal{I}_{F}-H$ supplemented provided for every $\varphi \in \operatorname{End}_{R}(M)$ there exists a direct summand D of M such that $\varphi(F)+X=M$ if and only if $D+X=M$, for all submodules X of M. Some conditions to ensure that a \mathcal{I}_{F} - H-supplemented module is \mathcal{I}_{F}-lifting, were presented in [8]. The relation with the other similar classes of modules was also investigated. The authors also studied direct sums of $\mathcal{I}_{F}-H$-supplemented modules.

Motivating by mentioned works we are interested to study on dual Rickart modules via fully invariant submodules. In fact, in the definition of a dual Rickart module, one can replaced M by a fully invariant submodule of M. We call M, F-dual Rickart provided for every endomorphism φ of M the submodule $\varphi(F)$ is a direct summand of M. In what follows by F we mean a fully invariant submodule of M.

Any undefined terminologies not defined in the manuscript can be found in $[3,7]$.

$2 \quad F$-dual Rickart modules and F-dual Baer modules

Recently dual Rickart modules and their various generalizations have been extensively studied and investigated. In particular, in [2] it is introduced a new generalization of both dual Rickart modules and \mathcal{I}-lifting modules via fully invariant submodules. A module M is called \mathcal{I}_{F}-lifting provided for every endomorphism φ of M, the submodule $\varphi(F)$ of M lies above a direct summand of M. So, it will be of interest for us to change "lying above a direct summand" to "be a direct summand" as well.

Definition 1. Let M be a module and F a fully invariant submodule of M. We say M is F-dual Rickart if for every $\varphi \in \operatorname{End}_{R}(M)$, the submodule $\varphi(F)$ is a direct summand of M.

It is clear that an arbitrary module is 0-dual Rickart and M is dual Rickart if and only if M is M-dual Rickart. It can be worth to say that a dual Rickart module M may not be F-dual Rickart for a fully invariant submodule. For instance, the \mathbb{Z}-module $\mathbb{Z}_{p^{\infty}}$ is dual Rickart while it is not a $\operatorname{Soc}\left(\mathbb{Z}_{p} \infty\right)$-dual Rickart \mathbb{Z}-module (see Example 1). It is clear by definitions that any F-dual Rickart module is \mathcal{I}_{F}-lifting while the other side may not hold.

Example 1. Let M be a module and F a nontrivial fully invariant submodule of M (that is, F will be different from 0 and M). If F is small in M, then M is \mathcal{I}_{F}-lifting (note that in this case for every φ in $\operatorname{End}_{R}(M)$, the submodule $\varphi(F)$ is a small submodule of M)(see [2, Example 2.2(1)]). So that $\varphi(F)$ can not be a direct summand of M. It follows that M is not a F-dual Rickart module. In particular, every hollow module M is \mathcal{I}_{F}-lifting for every nontrivial fully invariant submodule F of M while M is not F-dual Rickart. For example the \mathbb{Z}-module $M=\mathbb{Z}_{p^{\infty}}$ is $\mathcal{I}_{<1 / p+\mathbb{Z}>}$-lifting. Note that $\operatorname{Soc}(M)=<1 / p+\mathbb{Z}>$.

The following provides an important characterization of F-dual Rickart modules which will be used freely throughout the paper.

Theorem 1. Let M be a module and F be a fully invariant submodule of M. Then the following conditions are equivalent:
(1) M is F-dual Rickart;
(2) $M=F \oplus L$ where F is a dual Rickart module.

Proof. (1) $\Rightarrow(2)$ Let M be F-dual Rickart. Then it is clear that F is a direct summand of M. Set $M=F \oplus L$ for a submodule L of M. Suppose that g is an endomorphism of F. Then $h=j \circ g \circ \pi$ is an endomorphism of M such that j is the inclusion from F to M and π is the projection of M on F. Being M a F-dual Rickart module implies $h(F)=I m g$ is a direct summand of M and hence a direct summand of F as $h(F)$ is contained in F.
$(2) \Rightarrow(1)$ Let $M=F \oplus L$ such that F is dual Rickart. Suppose that φ is an endomorphism of M. Then $\lambda=\pi \circ \varphi \circ j$ will be an endomorphism of F where $j: F \rightarrow M$ is the inclusion and $\pi: M \rightarrow F$ is the projection on F. As $\lambda(F)=\varphi(F)$ and F is a dual Rickart module, then $\varphi(F)$ is a direct summand of F and consequently of M, as required.

Example 2. ([2, Example 2.8]) (1) Let F be a field and $R=\prod_{i=1}^{\infty} F_{i}$ where $F_{i}=F$ for each $i \in \mathbb{N}$. Then R is a von Neumann regular V-ring. Take $M=R$ and K be any finitely generated ideal of R. So that K is a direct summand of M. It is well-known that M is a dual Rickart module (see [6, Remark 2.2]) and hence K as a direct summand is also dual Rickart (see [6, Proposition 2.8]). Now $M=K \oplus L$. Hence, M is a K-dual Rickart module by Theorem 1.
(2) Let L be an V-ring and K be a field. Then $S=K \times L$ is an V-ring as well. Consider the central idempotent $e=(1,0)$ of S. Then $S e=e S \cong K$ as both left S-module and right S-module. Let R be the ring $M_{n}(S)$ (the ring of all $n \times n$ matrices with entries from S). As R is Morita-equivalent to S, it should be also an V-ring. Now, R has a central idempotent, $f=e I$ where I is the identity matrix of R. Then $f R=R f$ is isomorphic to $M_{n}(S e)$ so that $f R=R f \cong M_{n}(K)$. Note that $F=R f$ is a two-sided ideal of R and also is a direct summand of R. Being K a field implies that $M_{n}(K)$ and hence F is semisimple and so is dual Rickart. It follows from Theorem 1 that R is a F-dual Rickart module.

Remark 1. Let M be an indecomposable module and F a nonzero fully invariant submodule of M. Then M is F-dual Rickart if and only if $F=M$ is dual Rickart. In other words, if F is a nontrivial fully invariant submodule of M. Then M can not be F-dual Rickart. For instance, a local module M with $\operatorname{Rad}(M) \neq 0$ is not a Rad(M)-dual Rickart module.

Proposition 1. Let M be a module, F a fully invariant submodule of M and N a direct summand of M. If M is F-dual Rickart, then N is $F \cap N$-dual Rickart.

Proof. Set $M=N \oplus K$. By [2, Lemma 2.9(1)], $F \cap N$ is a fully invariant submodule of N. Consider an arbitrary endomorphism λ of N. Then $f=j \circ \lambda \circ \pi$ will be an endomorphism of M, so that $f(F)=\lambda(F \cap N)$ is a direct summand of M as M is F-dual Rickart. Note that $j: N \rightarrow M$ is the inclusion and $\pi: M \rightarrow N$ is the projection of M on N. It follows that $\lambda(F \cap N)$ is a direct summand of N, which completes the proof.

Definition 2. Let M be a module and F a fully invariant submodule of M. We say that M is F-dual Baer provided for every right ideal I of $\operatorname{End}_{R}(M)$ the submodule $I F=\sum_{\varphi \in I} \varphi(F)$ is a direct summand of M.

Theorem 2. Let M be a module and F a fully invariant submodule of M. Then the following are equivalent:
(1) M is F-dual Baer;
(2) F is a dual Baer direct summand of M;
(3) M is F-dual Rickart and M has SSSP for direct summands of M contained in F;
(4) For every subset B of $\operatorname{End}_{R}(M)$, the submodule $\sum_{\varphi \in B} \varphi(F)$ is a direct summand of M.

Proof. (1) $\Rightarrow(2)$ Consider S as a right ideal of S. Then by (1), $S F=\sum_{\varphi \in S} \varphi(F)=F$ is a direct summand of M. Now, let I be a right ideal of $E n d_{R}(F)$ and consider the inclusion $j: F \rightarrow M$ and the projection $\pi_{F}: M \rightarrow F$. Consider the subset $I_{0}=\left\{j \circ \lambda \circ \pi_{F} \mid \lambda \in I\right\}$ of S. Then $J=I_{0} S$ is a right ideal of S. As $I F=\sum_{\varphi \in I} \varphi(F)=\sum_{\varphi \in J} \varphi(F)=J F$ and M is a F-dual Baer module, we conclude that $I F=J F$ is a direct summand of M and consequently is a direct summand of F, as well. It follows from [5, Theorem 2.1], F is a dual Baer module.
$(2) \Rightarrow(1)$ Let I be a right ideal of S and $B=\left\{\pi_{F} \circ\left(\left.\varphi\right|_{F}\right) \mid \varphi \in I\right\}$. Note that $J=B E n d d_{R}(F)$ is a right ideal of $E n d_{R}(F)$. Since $J F=I F$ and F is a dual Baer module, we conclude that $J F$ is a direct summand of F and hence a direct summand of M.
$(1) \Rightarrow(3)$ Let $\varphi \in S$. As M is F-dual Baer and $<\varphi>F=\varphi(F)$, then $\varphi(F)$ is a direct summand of M. Let $\left\{e_{\gamma} \mid \gamma \in \Gamma\right\}$ be a set of idempotents of S such that $I^{\prime 2} e_{\gamma} \subseteq F$ for each $\gamma \in \Gamma$. Suppose $I=<\sum_{\gamma \in \Gamma} e_{\gamma}>$ that is a right ideal of S. Now, $I F=\sum_{\varphi \in I} \varphi(F) \subseteq \sum_{\gamma \in \Gamma} e_{\gamma}(M)$. As $e_{\gamma}(M)$ is contained in $\sum_{\varphi \in I} \varphi(F)$, it follows that $\sum_{\gamma \in \Gamma} e_{\gamma}(M)=\sum_{\varphi \in I} \varphi(F)=I F$ is a direct summand of M (note that M is F-dual Baer).
$(3) \Rightarrow(4)$ It follows from the fact that F is fully invariant in M.
$(4) \Rightarrow(1)$ It is obvious.

By Theorem 2, every F-dual Baer module is F-dual Rickart. Consider any von Neumann regular ring R that is not a semisimple ring (for instance $R=\prod_{i \in \mathbb{N}} K_{i}$, where $K_{i}=K$ is a field). Then R is R-dual Rickart while R is not R-dual Baer (see [5, Corollary 2.9]).
Proposition 2. Let M be a regular module and F a fully invariant submodule of M. If M satisfies SSSP on direct summands of M contained in F, then M is F-dual Baer.

Proof. Let φ be an arbitrary endomorphism of M. As $\varphi(F)=\sum_{x \in \varphi(F)} x R$, and M is regular, it follows that $\varphi(F)$ is a direct summand of M.

As a consequence of Theorem 2 and Proposition 2, if M is a regular F-dual Baer module then F is a semisimple module.

In the light of Theorem 2, we have the following remark.
Remark 2. Let M be an indecomposable module and F a nonzero fully invariant submodule of M. Then M is F-dual Baer if and only if $F=M$ is dual Baer.

Example 3. (1) Consider \mathbb{Z} as an \mathbb{Z}-module. If there exists a fully invariant submodule F of \mathbb{Z} such that \mathbb{Z} is F-dual Baer, then $F=0$ since \mathbb{Z} is not dual Baer by [5, Corollary 3.5].
(2) If there exists a fully invariant submodule F of \mathbb{Q} as an \mathbb{Z}-module such that \mathbb{Q} is F-dual Baer, then $F=0$ or $F=\mathbb{Q}$.
(3) For a prime integer p, consider the \mathbb{Z}-module $\mathbb{Z}_{p \infty}$. If there exists a fully invariant submodule F of $\mathbb{Z}_{p^{\infty}}$ such that $\mathbb{Z}_{p^{\infty}}$ is F-dual Baer, then $F=0$ or $F=\mathbb{Z}_{p^{\infty}}$.

Theorem 3. Let M be a module and F a fully invariant submodule of M. Then M is F-dual Baer if and only if for every direct summand N of M, we have N is $F \cap N$-dual Baer.

Proof. Let M be F-dual Baer and $M=N \oplus N^{\prime}$ for a submodule N^{\prime} of M. Then $F=$ $(F \cap N) \oplus\left(F \cap N^{\prime}\right)$ as F is a fully invariant submodule of M. Suppose that A is a subset of $E n d_{R}(N)$. Then $B=\left\{j \circ \varphi \circ \pi_{N} \mid \varphi \in A\right\}$ in which $\pi_{N}: M \rightarrow N$ is the projection of M on N and j is the inclusion from N to M, is a subset of $\operatorname{End}_{R}(M)$. It is straightforward to check that $A(F \cap N)=\sum_{\varphi \in A} \varphi(F \cap N)=\sum_{g \in B} g(F)$. Being M, a F-dual Baer module implies that $A(F \cap N)$ is a direct summand of M and hence a direct summand of N. The result follows from Theorem 2. The converse is clear.

One can easy prove the following lemma.
Lemma 1. Let M and M^{\prime} be modules and $f: M \rightarrow M^{\prime}$ an isomorphism. If M is F-dual Baer, then M^{\prime} is $f(F)$-dual Baer.

Corollary 1. Let M be a module, P a projective module and $f: M \rightarrow P$ be an epimorphism such that Ker f is contained in a fully invariant submodule F of M. Then, if M is F-dual Baer, then P is E-dual Baer where $E \cong \frac{F}{\text { Ker } f}$.

Proof. It is clear by Theorem 3 and Lemma 1.

Proposition 3. Let M be a module. Then
(1) If M is a finitely generated Rad (M)-dual Baer module, then $\operatorname{Rad}(M)=0$.
(2) If M is a finitely cogenerated Soc(M)-dual Baer module, then M is semisimple.

Proof. (1) Since M is finitely generated, $\operatorname{Rad}(M)$ is small in M. By Theorem $2, \operatorname{Rad}(M)$ is a direct summand of M. Hence $\operatorname{Rad}(M)=0$.
(2) Since M is finitely cogenerated, $\operatorname{Soc}(M)$ is essential in M and, by Theorem $2, \operatorname{Soc}(M)$ is a direct summand of M. Hence $\operatorname{Soc}(M)=M$ and so M is semisimple.

Corollary 2. Let M be a module. Then
(1) If M is a Noetherian $\operatorname{Rad}(M)$-dual Baer module, then $\operatorname{Rad}(M)=0$.
(2) If M is an Artinian $\operatorname{Soc}(M)$-dual Baer module, then M is semisimple.

3 Relatively F-dual Rickart modules

In this section we shall define relative F-dual Rickart modules and we will apply this concept to study finite direct sums of F-dual Rickart modules.

Definition 3. Let M and N be R-modules and F be a fully invariant submodule of M. We say M is N - F-dual Rickart if for every homomorphism $\phi: M \rightarrow N$, the submodule $\phi(F)$ is a direct summand of N.

It is clear that a right module M is F-dual Rickart if and only if M is M - F-dual Rickart. We provide an equivalent condition for relatively F-dual Rickart modules.

Theorem 4. Let M and N be right R-modules and F be a fully invariant submodule of M. Then M is $N-F$-dual Rickart if and only if for every direct summand L of M and every submodule K of N, L is $K-F \cap L$-dual Rickart.

Proof. Let M be N - F-dual Rickart. Suppose that $L=e M$ for some $e^{2}=e \in \operatorname{End}_{R}(M)$ and let K be a submodule of N. Assume that $\psi \in \operatorname{Hom}(L, K)$. Since $\psi e M=\psi L \subseteq K \subseteq N$ and M is N - F-dual Rickart, $\psi e(F)$ is a direct summand of N. As $\psi e(F)$ is contained in K, we conclude that $\psi e(F)$ is a direct summand of K. We shall prove that $\psi(F \cap L)$ is a direct summand of K. Suppose that $M=L \oplus L^{\prime}$. Being F a fully invariant submodule of M implies that $F=(F \cap L) \oplus\left(F \cap L^{\prime}\right)$. Then $e(F)=e(F \cap L)=F \cap L$. Now $\psi e(F)=\psi(F \cap L)$ combining with M is F-dual Rickart relative to N, we come to a conclusion that $\psi(F \cap L)$ is a direct summand of K.

The converse is clear.

Corollary 3. The following conditions are equivalent for a module M and a fully invariant submodule F of M :
(1) M is F-dual Rickart;
(2) For any submodule N of M, every direct summand L of M is N - $F \cap L$-dual Rickart;
(3) If L and N are direct summands of M, then for any $\psi \in \operatorname{Hom}_{R}(L, N)$, the submodule $\left.\psi\right|_{L}(F \cap L)$ is a direct summand of N.

Proposition 4. Let M be a F-dual Rickart module and F a fully invariant submodule of M. Then
(1) If L and K are direct summands of M with $L \subseteq F$, then $L+K$ is a direct summand of M.
(2) M has $S S P$ for direct summands of M that are contained in F.

Proof. (1) Let $K=e M$ and $L=f M$ for some $e^{2}=e \in \operatorname{End}_{R}(M)$ and $f^{2}=f \in \operatorname{End}_{R}(M)$. Since $M=f M \oplus(1-f) M, L=f M \subseteq F$ and F is a fully invariant submodule of M, we have $F=f M \oplus(F \cap(1-f) M)$. Then $((1-e) f)(F)=(1-e) f M$. As M is a F-dual Rickart module, $((1-e) f)(F)=(1-e) f M$ is a direct summand of M. Since $(1-e) f M=(f M+e M) \cap(1-e) M, M=((f M+e M) \cap(1-e) M) \oplus T$ for some $T \leq M$. Hence $(1-e) M=((f M+e M) \cap(1-e) M) \oplus(T \cap(1-e) M)$. So $M=e M \oplus(1-e) M=$ $e M+((f M+e M) \cap(1-e) M) \oplus(T \cap(1-e) M)=(f M+e M)+(T \cap(1-e) M)$. Since $(f M+e M) \cap(T \cap(1-e) M)=0, M=(e M+f M) \oplus(T \cap(1-e) M)$. Hence $K+L$ is a direct summnd of M.
(2) It is clear by (1).

Theorem 5. Let M be a module and F a fully invariant submodule of M. Then M is F dual Rickart if and only if $\sum_{\phi \in I} \phi(F)$ is a direct summand of M for every finitely generated right ideal I of $\operatorname{End}_{R}(M)$.

Proof. Assume that I is a finitely generated right ideal of $\operatorname{End}_{R}(M)$ generated by $\phi_{1}, \ldots, \phi_{n}$. As M is F-dual Rickart, $\phi_{i}(F)$ is a direct summand of M for each $1 \leq i \leq n$. By Proposition $4, M$ has $S S P$ for direct summands which are contained in F. Since $\phi_{i}(F) \subseteq F$, $\sum_{\phi \in I} \phi(F)=\phi_{1}(F)+\cdots+\phi_{n}(F)$ is a direct summand of M. The converse is obvious. \square

4 Applications of F-dual Baer modules to rings

In this section, we provide the applications of F-dual Baer modules to rings. It is clear that I is a fully invariant submodule of the right R-module R if and only if it is an ideal of R.

Definition 4. Let I be an ideal of a ring R. Then R is called a right I-dual Baer ring if it is I-dual Baer as a right R-module.

A left I-dual Baer ring R is defined similarly for an ideal I of R. The property of being a I-dual Baer ring is not left-right symmetric as the following example shows.

Example 4. Let $R=\left[\begin{array}{cc}K & K \\ 0 & K\end{array}\right]$ where K is a field. Consider the ideal $I=\left[\begin{array}{cc}K & K \\ 0 & 0\end{array}\right]$ of R. Note that $R=I \oplus J$ where $J=\left[\begin{array}{cc}0 & 0 \\ 0 & K\end{array}\right]$ is a right ideal of R. It is easy to see that I is dual Baer as an R-module. Hence R is right I-dual Baer by Theorem 2. Moreover, since I is essential in R as a left ideal, it can not be a direct summand of the left R-module ${ }_{R} R$. Therefore, R is not left I-dual Baer.

It is clear that every semisimple ring R is right I-dual Baer for any ideal I of R. In the following, we present a characterization of right I-dual Baer rings using semisimple direct summands.

Theorem 6. Let R be a ring and I an ideal of R. Then the following are equivalent:
(1) R is right I-dual Baer;
(2) $R=I \oplus K$ for some right ideal K of R and I is dual Baer as an R-module;
(3) $R=I \oplus K$ for some right ideal K of R and I is semisimple as an R-module.

Proof. (1) \Leftrightarrow (2) By Theorem 2.
$(1) \Rightarrow(3)$ The ring R has a decomposition $R=I \oplus K$ where K is a right ideal of R. Assume that B is a submodule of I. We claim that B is a direct summand of I. Since B has the form $\sum_{b \in B} b R$ and R is I-dual Baer, $\sum_{b \in B} b I$ is a direct summand of R. Therefore, $B I$ is a direct summand of R. Hence $B=B I$ is a direct summand of I since $B \subseteq I$. Therefore I is semisimple.
$(3) \Rightarrow(1)$ Suppose that $R=I \oplus K$ with a right ideal K of R and I is semisimple. Since I is semisimple, I is dual Baer. Therefore, R is I-dual Baer by Theorem 2 .

Theorem 7. The following are equivalent for a ring R :
(1) There exists an ideal I of R such that R is right I-dual Baer;
(2) For every cyclic projective R-module M, there exists a fully invariant submodule F of M such that M is F-dual Baer.

Proof. (1) \Rightarrow (2) Suppose that M is a cyclic projective R-module. Then, $M=m R \cong$ $R / r_{R}(m)$ for some $m \in M$. Therefore, $r_{R}(m)$ is a direct summand of R. Hence, $R=$ $r_{R}(m) \oplus J$ where J is a right ideal of R. Assume that g is an isomorphism from J to M. In view of Proposition $1, J$ is $(J \cap I)$-dual Baer. Hence M is $g(J \cap I)$-dual Baer by Lemma 1 .
$(2) \Rightarrow(1)$ It is obvious.

Remark 3. Let R be a ring with $J(R) \neq 0$. Then R is not $J(R)$-dual Baer. For if, suppose that R is $J(R)$-dual Rickart. Then $\sum_{\phi \in I} \phi(J(R))$ is a direct summand of R for any finitely generated right ideal I of R by Theorem 5. Since $J(R)$ is small in $R, \sum_{\phi \in I} \phi(J(R))$ is small in R. Therefore, $I J(R)=\sum_{a \in I} a J(R)=0$. Set $I=R$, so $J(R)=0$. Therefore, R can not be a $J(R)$-dual Baer module since R is not $J(R)$-dual Rickart.

5 Direct sum of F-dual Rickart modules and direct sum of F-dual Baer modules

In this section, we study direct sums of F-dual Rickart modules and direct sums of F-dual Baer modules. The following example shows that a direct sum of F-dual Rickart modules is not F-dual Rickart, in general.

Let R be a ring, M be an R-module and let \mathcal{S} denotes the class of all small right R modules (a right R-module U is small in case U is a small submodule of a right R-module $V)$. Recall from [9] that M is said to be (non)cosingular in case $(\bar{Z}(M)=M) \bar{Z}(M)=0$ where $\bar{Z}(M)=\cap\{\operatorname{Ker} f \mid f: M \rightarrow U, U \in \mathcal{S}\}$. Note that $\bar{Z}^{2}(M)$ is defined to be $\bar{Z}(\bar{Z}(M))$.

Example 5. ([4, Example 4.2]) Let K be a field and $R=\prod_{i=1}^{\infty} K_{i}$ where $K_{i}=K$ for each $i \in \mathbb{N}$. Then R is a von Neumann regular V-ring. Take $M_{1}=R$ and $M_{2}=\oplus_{i=1}^{\infty} K_{i}$. By [6, Example 5.1], M_{1} and M_{2} are dual Rickart and $M_{1} \oplus M_{2}$ is not dual Rickart. Since R is a V-ring, by [9, Proposition 2.5], every R-module is noncosingular. So by [4, Proposition 3.4], M_{i} is $\bar{Z}^{2}\left(M_{i}\right)$-dual Rickart while $M_{1} \oplus M_{2}$ is not $\bar{Z}^{2}\left(M_{1} \oplus M_{2}\right)$-dual Rickart.

In the following, we show that when a direct sum of F-dual Rickart modules is also F-dual Rickart.

Proposition 5. Let $M=\oplus_{i=1}^{n} M_{i}$ and N be modules and $F \unlhd M$. If N has $S S P$ for direct summands which are contained in $N \cap F$, then M is $N-F$-dual Rickart if and only if M_{i} is $N-F \cap M_{i}$-dual Rickart for all $1 \leq i \leq n$.

Proof. The sufficiency is obvious from Theorem 4. For the necessity, let ϕ be a homomorphism from M to N. Then $\phi=\left(\phi_{i}\right)_{i=1}^{n}$ where ϕ_{i} is a homomorphism from M_{i} to N for each $1 \leq i \leq n$. By hypothesis, $\phi_{i}\left(F \cap M_{i}\right)$ is a direct summand of N for each $1 \leq i \leq n$. Since F is a fully invariant submodule of M and N has $S S P$ for direct summands which are contained in $N \cap F$, we have
$\phi(F)=\phi\left(\oplus_{i=1}^{n} F \cap M_{i}\right)=\phi_{1}\left(F \cap M_{1}\right)+\phi_{2}\left(F \cap M_{2}\right)+\cdots+\phi_{n}\left(F \cap M_{n}\right) \leq{ }^{\oplus} N$. Therefore M is N - F-dual Rickart.

Corollary 4. Let $M=\oplus_{i=1}^{n} M_{i}$ be a module and F a fully invariant submodule of M. Then M is F-dual Rickart relative to $M_{j}(1 \leq j \leq n)$ if and only if M_{i} is $F \cap M_{i}$-dual Rickart relative to M_{j} for each $1 \leq i \leq n$.

Theorem 8. Let $\left\{M_{i}\right\}_{i=1}^{n}$ and N be modules and F be a fully invariant submodule of N. Assume that for each $i \geq j$ with $1 \leq i, j \leq n, M_{i}$ is M_{j}-projective. Then N is $\oplus_{i=1}^{n} M_{i}-F$ dual Rickart if and only if N is $M_{j}-F$-dual Rickart for all $1 \leq j \leq n$.

Proof. The sufficiency is obvious from Theorem 4. For the necessity, suppose that N is M_{j} - F-dual Rickart for all $1 \leq j \leq n$. We prove by induction on n. Assume that $n=2$ and N is F-dual Rickart relative to M_{1} and M_{2}. Let ϕ be a homomorphism from N to $M_{1} \oplus M_{2}$. Then $\phi=\pi_{1} \phi+\pi_{2} \phi$, where π_{i} is the natural projection from $M_{1} \oplus M_{2}$ to $M_{i}(i=1,2)$. As N is $M_{2}-F$-dual Rickart, $\pi_{2} \phi(F)$ is a direct summand of M_{2}. Let $M_{2}=\pi_{2} \phi(F) \oplus M_{2}^{\prime}$ for some $M_{2}^{\prime} \leq M_{2}$. Hence $M_{1} \oplus M_{2}=M_{1} \oplus \pi_{2} \phi(F) \oplus M_{2}^{\prime}$. As M_{2} is M_{1}-projective, $\pi_{2} \phi(F)$ is M_{1}-projective. Since $M_{1}+\phi(F)=M_{1} \oplus \pi_{2} \phi(F)$ is a direct summand of $M_{1} \oplus M_{2}$, there exists $T \subseteq \phi(F)$ such that $M_{1}+\phi(F)=M_{1} \oplus T$, by [7, Lemma 4.47]. Thus $\phi(F)=\left(\phi(F) \cap M_{1}\right) \oplus T$. Since N is $M_{1}-F$-dual Rickart, $\pi_{1} \phi(F)=M_{1} \cap\left(M_{2}+\phi(F)\right)=M_{1} \cap \phi(F)$ is a direct summand of M_{1}. Therefore $\phi(F)$ is a direct summand of $M_{1} \oplus T$. Since $M_{1} \oplus T=M_{1} \oplus \phi(F) \leq \oplus M_{1} \oplus M_{2}, \phi(F)$ is a direct summand of $M_{1} \oplus M_{2}$. Thus N is F-dual Rickart relative to $M_{1} \oplus M_{2}$. Now, assume that N is F-dual Rickart relative to $\oplus_{i=1}^{n} M_{i}$. We show that N is F-dual Rickart relative to $M_{n+1} \oplus\left(\oplus_{i=1}^{n} M_{i}\right)$. Since M_{n+1} is M_{j}-projective for each $1 \leq j \leq n, M_{n+1}$ is $\oplus_{i=1}^{n} M_{i}$-projective. As N is $M_{n+1}-F$-dual Rickart, N is $\oplus_{i=1}^{n+1} M_{i}-F$-dual Rickart by a similar argument for the case $\mathrm{n}=2$.

We mention that in the above theorem we use ideas of the proof of [6, Theorem 5.5].
Corollary 5. Let $\left\{M_{i}\right\}_{i=1}^{n}$ be modules and F be a fully invariant submodule of $\oplus_{i=1}^{n} M_{i}$. Assume that for each $i \geq j$ with $1 \leq i, j \leq n, M_{i}$ is M_{j}-projective. Then $\oplus_{i=1}^{n} M_{i}$ is F-dual Rickart if and only if M_{i} is $M_{j}-F \cap M_{i}$-dual Rickart for all $1 \leq i, j \leq n$.
Proof. The sufficiency is obvious from Theorem 4. For the necessity, assume that M_{i} is $M_{j}-F \cap M_{i}$-dual Rickart for all $1 \leq j \leq n$. Now $\oplus_{i=1}^{n} M_{i}$ is M_{j}-F-dual Rickart for all $1 \leq j \leq n$ by Corollary 4. Therefore, by Theorem $8, \oplus_{i=1}^{n} M_{i}$ is F-dual Rickart.

Theorem 9. Let $M=\oplus_{i=1}^{n} M_{i}$ be a module, $F \unlhd M$ and $M_{i} \unlhd M$ for all $i \in\{1, \ldots, n\}$. Then M is a F-dual Rickart module if and only if M_{i} is $F \cap M_{i}$-dual Rickart for all $i \in\{1, \ldots, n\}$.
Proof. The necessity follows from Proposition 1. Conversely, let M_{i} be a $F \cap M_{i}$-dual Rickart module for all $i \in\{1, \ldots, n\}$. Since $F \unlhd M, F=\oplus_{i=1}^{n}\left(F \cap M_{i}\right)$. Let $\phi=$ $\left(\phi_{i j}\right)_{i, j \in\{1, \ldots, n\}} \in \operatorname{End}_{R}(M)$ be arbitrary, where $\phi_{i j} \in \operatorname{Hom}\left(M_{j}, M_{i}\right)$. Since $M_{i} \unlhd M$ for all $i \in\{1, \ldots, n\}$ and $F=\oplus_{i=1}^{n}\left(F \cap M_{i}\right), \phi(F)=\oplus_{i=1}^{n} \phi_{i i}\left(F \cap M_{i}\right)$. As M_{i} is $F \cap M_{i}$-dual Rickart, $\phi_{i i}\left(F \cap M_{i}\right)$ is a direct summand of M_{i} and so $\phi(F)$ is a direct summand of M. Therefore M is a F-dual Rickart module.

In the following we present an example which shows that direct sums of F-dual Baer modules need not be F-dual Baer.

Example 6. Let p be a prime integer. Then, \mathbb{Z}_{p} and $\mathbb{Z}_{p \infty}$ are dual Baer \mathbb{Z}-modules. Hence \mathbb{Z}_{p} is \mathbb{Z}_{p}-dual Baer and $\mathbb{Z}_{p^{\infty}}$ is $\mathbb{Z}_{p^{\infty}}$-dual Baer. However, $\mathbb{Z}_{p} \oplus \mathbb{Z}_{p \infty}$ is not a dual Baer module by [5, Corollary 3.5]. Therefore, $\mathbb{Z}_{p} \oplus \mathbb{Z}_{p^{\infty}}$ is not a $\mathbb{Z}_{p} \oplus \mathbb{Z}_{p^{\infty}}$-dual Baer \mathbb{Z}-module.

In the following we study some conditions that ensure us direct sums of F-dual Baer modules inherit the property.

Theorem 10. Let $M=\oplus_{i=1}^{n} M_{i}$ be a module, $F \unlhd M$ and $M_{i} \unlhd M$ for all $i \in\{1, \ldots, n\}$. Then M is a F-dual Baer module if and only if M_{i} is $F \cap M_{i}$-dual Baer for all $i \in$ $\{1, \ldots, n\}$.

Proof. The necessity follows from Theorem 3. Conversely, let M_{i} be a $F \cap M_{i}$-dual Baer module for all $i \in\{1, \ldots, n\}$ and I be a subset of $\operatorname{End}_{R}(M)$. Since $F \unlhd M, F=\oplus_{i=1}^{n}(F \cap$ $\left.M_{i}\right)$. Let $\phi=\left(\phi_{i j}\right)_{i, j \in\{1, \ldots, n\}} \in \operatorname{End}_{R}(M)$ be arbitrary, where $\phi_{i j} \in \operatorname{Hom}\left(M_{j}, M_{i}\right)$. Since $M_{i} \unlhd M$ for all $i \in\{1, \ldots, n\}$ and $F=\oplus_{i=1}^{n}\left(F \cap M_{i}\right)$, we have $\phi(F)=\oplus_{i=1}^{n} \phi_{i i}\left(F \cap M_{i}\right)$. Hence $\sum_{\phi \in I} \phi(F)=\sum_{\phi \in I_{i}} \oplus_{i=1}^{n} \phi_{i i}\left(F \cap M_{i}\right)=\oplus_{i=1}^{n} \sum_{\phi \in I_{i}} \phi_{i i}\left(F \cap M_{i}\right)$ where $I_{i}=\left\{\left.\phi\right|_{M_{i}}\right.$: $\phi \in I\} \subseteq \operatorname{End}_{R}\left(M_{i}\right)$. As M_{i} is $F \cap M_{i}$-dual Baer for all $i \in\{1, \ldots, n\}, \sum_{\phi \in I_{i}} \phi_{i i}\left(F \cap M_{i}\right)$ is a direct summand of M_{i} and so $\sum_{\phi \in I} \phi(F)$ is a direct summand of M. Therefore M is a F-dual Baer module.

We can prove the following proposition similar to the proof of Theorem 10.
Proposition 6. Let $\left\{M_{i}\right\}_{i \in \mathcal{I}}$ be a class of R-modules for an index set \mathcal{I}. If for every $i \in \mathcal{I}$, F_{i} and M_{i} are fully invariant submodules of $\bigoplus_{i \in \mathcal{I}} M_{i}$, then $\bigoplus_{i \in \mathcal{I}} M_{i}$ is $\bigoplus_{i \in \mathcal{I}} F_{i}$-dual Baer if and only if M_{i} is F_{i}-dual Baer for every $i \in \mathcal{I}$.

We now define relatively F-dual Baer modules and then we study direct sums of F-dual Baer modules applying this definition.

Definition 5. Let M and N be R-modules and F a fully invariant submodule of M. Then, M is called N - F-dual Baer if for every subset I of $\operatorname{Hom}_{R}(M, N), \sum_{\phi \in I} \phi(F)$ is a direct summand of N.

It is clear that a module M is F-dual Baer if and only if it is M - F-dual Baer.
Theorem 11. Let $M=M_{1} \oplus M_{2}$ and N be R-modules and F fully invariant in M. If M is N-F-dual Baer, then for any direct summand K of N, M_{i} is $K-\left(F \cap M_{i}\right)$-dual Baer for $i=1,2$.

Proof. Since F is a fully invariant submodule of $M, F=\left(F \cap M_{1}\right) \oplus\left(F \cap M_{2}\right)$. Suppose that A is a subset of $\operatorname{Hom}_{R}\left(M_{1}, K\right)$. Then $B=\left\{j \circ \varphi \circ \pi_{M_{1}} \mid \varphi \in A\right\}$ in which $\pi_{M_{1}}: M \rightarrow M_{1}$ is the projection of M on M_{1} and j is the inclusion from K to N, is a subset of $\operatorname{Hom}_{R}(M, N)$. It is easy to check that $A\left(F \cap M_{1}\right)=\sum_{\varphi \in A} \varphi\left(F \cap M_{1}\right)=\sum_{g \in B} g(F)$. As M is a N - F-dual Baer module, $A\left(F \cap M_{1}\right)$ is a direct summand of N and hence a direct summand of K.

Proposition 7. Let $\left\{M_{i}\right\}_{i \in \mathcal{J}}$ be a class of R-modules for an index set \mathcal{J}, N an R-module and F be a fully invariant submodule of $\bigoplus_{i \in \mathcal{J}} M_{i}$. Then, the following hold.
(1) Let N have the $S S P$ for direct summands which are contained in $N \cap F$, and \mathcal{J} be finite. Then, $\bigoplus_{i \in \mathcal{J}} M_{i}$ is N-F-dual Baer if and only if M_{i} is $N-F \cap M_{i}$-dual Baer for all $i \in \mathcal{J}$.
(2) Let N have the SSSP for direct summands which are contained in $N \cap F$, and \mathcal{J} be arbitrary. Then, $\bigoplus_{i \in \mathcal{J}} M_{i}$ is $N-F$-dual Baer if and only if M_{i} is $N-F \cap M_{i}$-dual Baer for all $i \in \mathcal{J}$.

Proof. (1) The sufficiency is obvious from Theorem 11. For the necessity, suppose that A is a subset of $\operatorname{Hom}_{R}\left(\bigoplus_{i \in \mathcal{J}} M_{i}, N\right)$. Then $B_{i}=\left\{\phi j_{i} \mid \phi \in A\right\}$ in which j_{i} is the inclusion from M_{i} to $\bigoplus_{i \in \mathcal{J}} M_{i}$, is a subset of $\operatorname{Hom}_{R}\left(M_{i}, N\right)$.

Assume that ϕ is a homomorphism from $\bigoplus_{i \in \mathcal{J}} M_{i}$ to N. Then $\phi=\left(\phi_{i}\right)_{i \in \mathcal{J}}$ where $\phi_{i}=$ ϕj_{i} is a homomorphism from M_{i} to N for each $i \in \mathcal{J}$. By hypothesis, $\sum_{\phi_{i} \in B_{i}} \phi_{i}\left(F \cap M_{i}\right)$ is a direct summand of N for each $i \in \mathcal{J}$. Since F is a fully invariant submodule of M and N has $S S P$ for direct summands which are contained in $N \cap F$, we have

$$
\sum_{\phi \in A} \phi(F)=\sum_{\phi \in A} \phi\left(\oplus_{i=1}^{n}\left(F \cap M_{i}\right)\right)=\sum_{i \in \mathcal{J}} \sum_{\phi_{i} \in B_{i}} \phi_{i}\left(F \cap M_{i}\right) \leq{ }^{\oplus} N
$$

Therefore $\bigoplus_{i \in \mathcal{J}} M_{i}$ is N - F-dual Baer.
(2) Similar to (1).

Corollary 6. Let $\left\{M_{i}\right\}_{i \in \mathcal{J}}$ be a class of R-modules for an index set \mathcal{J} and F be a fully invariant submodule of $\bigoplus_{i \in \mathcal{J}} M_{i}$. Then, for each $j \in \mathcal{J}, \bigoplus_{i \in \mathcal{J}} M_{i}$ is $M_{j}-F$-dual Baer if and only if M_{i} is $M_{j}-F \cap M_{i}$-dual Baer for all $i \in \mathcal{J}$.

Proof. It follows from Proposition 7 and Theorem 2.

Similar to the proof of Theorem 8, one can prove the following theorem.
Theorem 12. Let $\left\{M_{i}\right\}_{i=1}^{n}$ and N be modules and F be a fully invariant submodule of N. Assume that for each $i \geq j$ with $1 \leq i, j \leq n, M_{i}$ is M_{j}-projective. Then N is $\oplus_{i=1}^{n} M_{i}-F$ dual Baer if and only if N is $M_{j}-F$-dual Baer for all $1 \leq j \leq n$.

Corollary 7. Let $\left\{M_{i}\right\}_{i=1}^{n}$ be modules and F be a fully invariant submodule of $\oplus_{i=1}^{n} M_{i}$. Assume that for each $i \geq j$ with $1 \leq i, j \leq n, M_{i}$ is M_{j}-projective. Then $\oplus_{i=1}^{n} M_{i}$ is F-dual Baer if and only if M_{i} is $M_{j}-F \cap M_{i}$-dual Baer for all $1 \leq i, j \leq n$.

Proof. The sufficiency is obvious from Theorem 11. For the necessity, assume that M_{i} is $M_{j}-F \cap M_{i}$-dual Rickart for all $1 \leq j \leq n$. Now $\oplus_{i=1}^{n} M_{i}$ is M_{j} - F-dual Rickart for all $1 \leq j \leq n$ by Corollary 6. Therefore, by Theorem $12, \oplus_{i=1}^{n} M_{i}$ is F-dual Rickart.

Acknowledgement The authors wish to sincerely thank the referees for several useful and helpful comments.

References

[1] T. Amouzegar, A generalization of lifting modules, Ukrainian Math. J., 66, 16541664 (2014).
[2] T. Amouzegar, A. R. Moniri Hamzekolaee, Lifting modules with respect to images of a fully invariant submodule, Novi Sad J. Math., 50, 41-50 (2020).
[3] J. Clark, C. Lomp, N. Vanaja, R. Wisbauer, Lifting Module - supplements and projectivity in module theory, Frontiers in Mathematics, Birkhäuser (2006).
[4] Sh. Ebrahimi Atani, M. Khoramdel, S. D. P. Hesari, T-dual Rickart modules, Bull. Iranian Math. Soc., 42, 627-642 (2016).
[5] D. Keskin, R. Tribak, On dual Baer modules, Glasgow Math. J., 52, 261-269 (2010).
[6] G. Lee, S. T. Rizvi, C. S. Roman, Dual Rickart modules, Comm. Algebra, 39, 4036-4058 (2011).
[7] S. H. Mohamed, B. J. Müller, Continuous and Discrete Modules, London Math. Soc. Lecture Notes Series, 147, Cambridge Univ. Press, Cambridge (1990).
[8] A. R. Moniri Hamzekolaee, T. Amouzegar, H-supplemented modules with respect to images of a fully invariant submodule, Proyecciones J. Math., 40, 33-46 (2021).
[9] Y. Talebi, N. Vanaja, The torsion theory cogenerated by M-small modules, Comm. Algebra, 30, 1449-1460 (2002).

Received: 04.10.2021
Revised: 06.02.2022
Accepted: 08.03.2022
${ }^{(1)}$ Department of Mathematics, Faculty of Mathematical Sciences, Quchan University of Technology, Quchan, Iran E-mail: t.amouzgar@qiet.ac.ir
${ }^{(2)}$ Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran E-mail: a.monirih@umz.ac.ir
${ }^{(3)}$ Department of Mathematics, Hacettepe University Beytepe Campus, Beytepe, Ankara, Turkey
E-mail: tercan@hacettepe.edu.tr

