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Abstract

Fully invariant submodules play an important designation in studying the structure
of some known modules such as (dual) Rickart and (dual) Baer modules. In this
work, we introduce F -dual Rickart (Baer) modules via the concept of fully invariant
submodules. It is shown that M is F -dual Rickart if and only if M = F ⊕L such that
F is a dual Rickart module. We prove that a module M is F -dual Baer if and only if
M is F -dual Rickart and M has SSSP for direct summands of M contained in F . We
present a characterization of right I-dual Baer rings where I is an ideal of R. Some
counter-examples are provided to illustrate new concepts.
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1 Introduction

All rings considered in this paper will be associative with an identity element and all modules
will be unitary right modules unless otherwise stated. Let R be a ring andM an R-module.
S = EndR(M) will denote the ring of all R-endomorphisms of M . We will use the notation
N ≪M to indicate that N is small inM (i.e. ∀L ⪇M,L+N ̸=M). A moduleM is called
hollow if every proper submodule of M is small in M . The notation N ≤⊕ M denotes that
N is a direct summand of M . N �M means that N is a fully invariant submodule of M
(i.e., ∀ϕ ∈ EndR(M), ϕ(N) ⊆ N). Rad(M) and Soc(M) denote the radical and the socle
of a module M , respectively.

Let L ⊆ K ≤ M . We say that K lies above L in M if K/L ≪ M/L. A module M is
called lifting if every submodule A of M lies above a direct summand D of M ([3]).

Let M be a module. Following [6], M is called (dual) Rickart in case for every endo-
morphism φ of M , (Imφ) Kerφ is a direct summand of M . For the study of (dual) Rickart
modules, idempotents of endomorphism rings of modules are important. In particular as
an interesting result, a module M is Rickart and dual Rickart if and only if EndR(M) is
a von Neumann regular ring. Amouzegar in [1] introduced a generalization of both lifting
modules and dual Rickart modules as I-lifting modules. The author showed that a projec-
tive I-lifting module is a direct sum of cyclic modules. She also present a characterization
of I-lifting rings in terms of finitely supplemented modules. Although the class of I-lifting
modules is larger than the class of dual Rickart modules, studying and investigating them
seem to have more difficulties.
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In [2], it is introduced a various of I-lifting modules via a fixed fully invariant submodule
of a given module. By the way, they call a module M , IF -lifting (where F is a fully
invariant submodule of M) provided for every endomorphism φ of M , the submodule φ(F )
lies above a direct summand of M . It is obvious that a module M is I-lifting if and
only if M is IM -lifting. Various properties of such modules have been also investigated in
[2]. As a continuoution of the last work, also Moniri and Amouzegar in [8] tried to study
H-supplemented modules via the same approach as in [2]. A module M is called IF -H-
supplemented provided for every φ ∈ EndR(M) there exists a direct summand D of M
such that φ(F ) + X = M if and only if D + X = M , for all submodules X of M . Some
conditions to ensure that a IF -H-supplemented module is IF -lifting, were presented in [8].
The relation with the other similar classes of modules was also investigated. The authors
also studied direct sums of IF -H-supplemented modules.

Motivating by mentioned works we are interested to study on dual Rickart modules via
fully invariant submodules. In fact, in the definition of a dual Rickart module, one can
replaced M by a fully invariant submodule of M . We call M , F -dual Rickart provided
for every endomorphism φ of M the submodule φ(F ) is a direct summand of M . In what
follows by F we mean a fully invariant submodule of M .

Any undefined terminologies not defined in the manuscript can be found in [3, 7].

2 F -dual Rickart modules and F -dual Baer modules

Recently dual Rickart modules and their various generalizations have been extensively stud-
ied and investigated. In particular, in [2] it is introduced a new generalization of both dual
Rickart modules and I-lifting modules via fully invariant submodules. A module M is
called IF -lifting provided for every endomorphism φ of M , the submodule φ(F ) of M lies
above a direct summand of M . So, it will be of interest for us to change ”lying above a
direct summand” to ”be a direct summand” as well.

Definition 1. Let M be a module and F a fully invariant submodule of M . We say M is
F -dual Rickart if for every φ ∈ EndR(M), the submodule φ(F ) is a direct summand of M .

It is clear that an arbitrary module is 0-dual Rickart and M is dual Rickart if and only
if M is M -dual Rickart. It can be worth to say that a dual Rickart module M may not
be F -dual Rickart for a fully invariant submodule. For instance, the Z-module Zp∞ is dual
Rickart while it is not a Soc(Zp∞)-dual Rickart Z-module (see Example 1). It is clear by
definitions that any F -dual Rickart module is IF -lifting while the other side may not hold.

Example 1. Let M be a module and F a nontrivial fully invariant submodule of M (that
is, F will be different from 0 and M). If F is small in M , then M is IF -lifting (note that in
this case for every φ in EndR(M), the submodule φ(F ) is a small submodule of M)(see [2,
Example 2.2(1)]). So that φ(F ) can not be a direct summand of M . It follows that M is
not a F -dual Rickart module. In particular, every hollow module M is IF -lifting for every
nontrivial fully invariant submodule F of M while M is not F -dual Rickart. For example
the Z-module M = Zp∞ is I<1/p+Z>-lifting. Note that Soc(M) =< 1/p+ Z >.

The following provides an important characterization of F -dual Rickart modules which
will be used freely throughout the paper.
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Theorem 1. Let M be a module and F be a fully invariant submodule of M . Then the
following conditions are equivalent:

(1) M is F -dual Rickart;
(2) M = F ⊕ L where F is a dual Rickart module.

Proof. (1) ⇒ (2) Let M be F -dual Rickart. Then it is clear that F is a direct summand of
M . Set M = F ⊕ L for a submodule L of M . Suppose that g is an endomorphism of F .
Then h = j ◦ g ◦ π is an endomorphism of M such that j is the inclusion from F to M and
π is the projection of M on F . Being M a F -dual Rickart module implies h(F ) = Img is
a direct summand of M and hence a direct summand of F as h(F ) is contained in F .

(2) ⇒ (1) Let M = F ⊕ L such that F is dual Rickart. Suppose that φ is an endomor-
phism of M . Then λ = π ◦ φ ◦ j will be an endomorphism of F where j : F → M is the
inclusion and π :M → F is the projection on F . As λ(F ) = φ(F ) and F is a dual Rickart
module, then φ(F ) is a direct summand of F and consequently of M , as required.

Example 2. ([2, Example 2.8]) (1) Let F be a field and R =
∏∞

i=1 Fi where Fi = F for
each i ∈ N. Then R is a von Neumann regular V -ring. Take M = R and K be any finitely
generated ideal of R. So that K is a direct summand of M . It is well-known that M is a
dual Rickart module (see [6, Remark 2.2]) and hence K as a direct summand is also dual
Rickart (see [6, Proposition 2.8]). Now M = K ⊕L. Hence, M is a K-dual Rickart module
by Theorem 1.

(2) Let L be an V -ring and K be a field. Then S = K×L is an V -ring as well. Consider
the central idempotent e = (1, 0) of S. Then Se = eS ∼= K as both left S-module and right
S-module. Let R be the ring Mn(S) (the ring of all n×n matrices with entries from S). As
R is Morita-equivalent to S, it should be also an V -ring. Now, R has a central idempotent,
f = eI where I is the identity matrix of R. Then fR = Rf is isomorphic to Mn(Se) so
that fR = Rf ∼= Mn(K). Note that F = Rf is a two-sided ideal of R and also is a direct
summand of R. Being K a field implies that Mn(K) and hence F is semisimple and so is
dual Rickart. It follows from Theorem 1 that R is a F -dual Rickart module.

Remark 1. LetM be an indecomposable module and F a nonzero fully invariant submodule
of M . Then M is F -dual Rickart if and only if F =M is dual Rickart. In other words, if
F is a nontrivial fully invariant submodule of M . Then M can not be F -dual Rickart. For
instance, a local module M with Rad(M) ̸= 0 is not a Rad(M)-dual Rickart module.

Proposition 1. Let M be a module, F a fully invariant submodule of M and N a direct
summand of M . If M is F -dual Rickart, then N is F ∩N -dual Rickart.

Proof. Set M = N ⊕K. By [2, Lemma 2.9(1)], F ∩N is a fully invariant submodule of N .
Consider an arbitrary endomorphism λ of N . Then f = j ◦ λ ◦ π will be an endomorphism
of M , so that f(F ) = λ(F ∩N) is a direct summand of M as M is F -dual Rickart. Note
that j : N → M is the inclusion and π : M → N is the projection of M on N . It follows
that λ(F ∩N) is a direct summand of N , which completes the proof.

Definition 2. Let M be a module and F a fully invariant submodule of M . We say that M
is F -dual Baer provided for every right ideal I of EndR(M) the submodule IF =

∑
φ∈I φ(F )

is a direct summand of M .
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Theorem 2. Let M be a module and F a fully invariant submodule of M . Then the
following are equivalent:

(1) M is F -dual Baer;
(2) F is a dual Baer direct summand of M ;
(3) M is F -dual Rickart and M has SSSP for direct summands of M contained in F ;
(4) For every subset B of EndR(M), the submodule

∑
φ∈B φ(F ) is a direct summand

of M .

Proof. (1) ⇒ (2) Consider S as a right ideal of S. Then by (1), SF =
∑

φ∈S φ(F ) = F is a
direct summand of M . Now, let I be a right ideal of EndR(F ) and consider the inclusion
j : F → M and the projection πF : M → F . Consider the subset I0 = {j ◦ λ ◦ πF | λ ∈ I}
of S. Then J = I0S is a right ideal of S. As IF =

∑
φ∈I φ(F ) =

∑
φ∈J φ(F ) = JF and

M is a F -dual Baer module, we conclude that IF = JF is a direct summand of M and
consequently is a direct summand of F , as well. It follows from [5, Theorem 2.1], F is a
dual Baer module.

(2) ⇒ (1) Let I be a right ideal of S and B = {πF ◦ (φ |F ) | φ ∈ I}. Note that
J = BEndR(F ) is a right ideal of EndR(F ). Since JF = IF and F is a dual Baer module,
we conclude that JF is a direct summand of F and hence a direct summand of M .

(1) ⇒ (3) Let φ ∈ S. As M is F -dual Baer and < φ > F = φ(F ), then φ(F )
is a direct summand of M . Let {eγ | γ ∈ Γ} be a set of idempotents of S such that
Imeγ ⊆ F for each γ ∈ Γ. Suppose I =<

∑
γ∈Γ eγ > that is a right ideal of S. Now,

IF =
∑

φ∈I φ(F ) ⊆
∑

γ∈Γ eγ(M). As eγ(M) is contained in
∑

φ∈I φ(F ), it follows that∑
γ∈Γ eγ(M) =

∑
φ∈I φ(F ) = IF is a direct summand of M (note that M is F -dual Baer).

(3) ⇒ (4) It follows from the fact that F is fully invariant in M .
(4) ⇒ (1) It is obvious.

By Theorem 2, every F -dual Baer module is F -dual Rickart. Consider any von Neumann
regular ring R that is not a semisimple ring (for instance R =

∏
i∈NKi, where Ki = K is a

field). Then R is R-dual Rickart while R is not R-dual Baer (see [5, Corollary 2.9]).

Proposition 2. Let M be a regular module and F a fully invariant submodule of M . If M
satisfies SSSP on direct summands of M contained in F , then M is F -dual Baer.

Proof. Let φ be an arbitrary endomorphism of M . As φ(F ) =
∑

x∈φ(F ) xR, and M is

regular, it follows that φ(F ) is a direct summand of M .

As a consequence of Theorem 2 and Proposition 2, ifM is a regular F -dual Baer module
then F is a semisimple module.

In the light of Theorem 2, we have the following remark.

Remark 2. LetM be an indecomposable module and F a nonzero fully invariant submodule
of M . Then M is F -dual Baer if and only if F =M is dual Baer.

Example 3. (1) Consider Z as an Z-module. If there exists a fully invariant submodule F
of Z such that Z is F -dual Baer, then F = 0 since Z is not dual Baer by [5, Corollary 3.5].

(2) If there exists a fully invariant submodule F of Q as an Z-module such that Q is
F -dual Baer, then F = 0 or F = Q.
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(3) For a prime integer p, consider the Z-module Zp∞ . If there exists a fully invariant
submodule F of Zp∞ such that Zp∞ is F -dual Baer, then F = 0 or F = Zp∞ .

Theorem 3. Let M be a module and F a fully invariant submodule of M . Then M is
F -dual Baer if and only if for every direct summand N of M , we have N is F ∩ N -dual
Baer.

Proof. Let M be F -dual Baer and M = N ⊕ N ′ for a submodule N ′ of M . Then F =
(F ∩N)⊕ (F ∩N ′) as F is a fully invariant submodule of M . Suppose that A is a subset
of EndR(N). Then B = {j ◦ φ ◦ πN | φ ∈ A} in which πN :M → N is the projection of M
on N and j is the inclusion from N to M , is a subset of EndR(M). It is straightforward to
check that A(F ∩ N) =

∑
φ∈A φ(F ∩ N) =

∑
g∈B g(F ). Being M , a F -dual Baer module

implies that A(F ∩N) is a direct summand of M and hence a direct summand of N . The
result follows from Theorem 2. The converse is clear.

One can easy prove the following lemma.

Lemma 1. Let M and M ′ be modules and f : M → M ′ an isomorphism. If M is F -dual
Baer, then M ′ is f(F )-dual Baer.

Corollary 1. LetM be a module, P a projective module and f :M → P be an epimorphism
such that Ker f is contained in a fully invariant submodule F of M . Then, if M is F -dual
Baer, then P is E-dual Baer where E ∼= F

Ker f .

Proof. It is clear by Theorem 3 and Lemma 1.

Proposition 3. Let M be a module.Then
(1) If M is a finitely generated Rad(M)-dual Baer module, then Rad(M) = 0.
(2) If M is a finitely cogenerated Soc(M)-dual Baer module, then M is semisimple.

Proof. (1) Since M is finitely generated, Rad(M) is small in M . By Theorem 2, Rad(M)
is a direct summand of M . Hence Rad(M) = 0.

(2) SinceM is finitely cogenerated, Soc(M) is essential inM and, by Theorem 2, Soc(M)
is a direct summand of M . Hence Soc(M) =M and so M is semisimple.

Corollary 2. Let M be a module.Then
(1) If M is a Noetherian Rad(M)-dual Baer module, then Rad(M) = 0.
(2) If M is an Artinian Soc(M)-dual Baer module, then M is semisimple.

3 Relatively F -dual Rickart modules

In this section we shall define relative F -dual Rickart modules and we will apply this concept
to study finite direct sums of F -dual Rickart modules.
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Definition 3. Let M and N be R-modules and F be a fully invariant submodule of M .
We say M is N -F -dual Rickart if for every homomorphism ϕ : M → N , the submodule
ϕ(F ) is a direct summand of N .

It is clear that a right moduleM is F -dual Rickart if and only ifM isM -F -dual Rickart.
We provide an equivalent condition for relatively F -dual Rickart modules.

Theorem 4. Let M and N be right R-modules and F be a fully invariant submodule of M .
Then M is N -F -dual Rickart if and only if for every direct summand L of M and every
submodule K of N , L is K-F ∩ L-dual Rickart.

Proof. Let M be N -F -dual Rickart. Suppose that L = eM for some e2 = e ∈ EndR(M)
and letK be a submodule of N . Assume that ψ ∈ Hom(L,K). Since ψeM = ψL ⊆ K ⊆ N
and M is N -F -dual Rickart, ψe(F ) is a direct summand of N . As ψe(F ) is contained in K,
we conclude that ψe(F ) is a direct summand of K. We shall prove that ψ(F ∩L) is a direct
summand of K. Suppose that M = L ⊕ L′. Being F a fully invariant submodule of M
implies that F = (F ∩L)⊕(F ∩L′). Then e(F ) = e(F ∩L) = F ∩L. Now ψe(F ) = ψ(F ∩L)
combining with M is F -dual Rickart relative to N , we come to a conclusion that ψ(F ∩L)
is a direct summand of K.

The converse is clear.

Corollary 3. The following conditions are equivalent for a module M and a fully invariant
submodule F of M :

(1) M is F -dual Rickart;
(2) For any submodule N of M , every direct summand L of M is N -F ∩L-dual Rickart;
(3) If L and N are direct summands ofM , then for any ψ ∈ HomR(L,N), the submodule

ψ |L (F ∩ L) is a direct summand of N .

Proposition 4. Let M be a F -dual Rickart module and F a fully invariant submodule of
M . Then

(1) If L and K are direct summands of M with L ⊆ F , then L+K is a direct summand
of M .

(2) M has SSP for direct summands of M that are contained in F .

Proof. (1) Let K = eM and L = fM for some e2 = e ∈ EndR(M) and f2 = f ∈ EndR(M).
Since M = fM ⊕ (1 − f)M , L = fM ⊆ F and F is a fully invariant submodule of M ,
we have F = fM ⊕ (F ∩ (1 − f)M). Then ((1 − e)f)(F ) = (1 − e)fM . As M is a
F -dual Rickart module, ((1 − e)f)(F ) = (1 − e)fM is a direct summand of M . Since
(1− e)fM = (fM + eM)∩ (1− e)M , M = ((fM + eM)∩ (1− e)M)⊕ T for some T ≤M .
Hence (1− e)M = ((fM + eM) ∩ (1− e)M)⊕ (T ∩ (1− e)M). So M = eM ⊕ (1− e)M =
eM + ((fM + eM) ∩ (1− e)M) ⊕ (T ∩ (1− e)M) = (fM + eM) + (T ∩ (1− e)M). Since
(fM + eM) ∩ (T ∩ (1− e)M) = 0, M = (eM + fM)⊕ (T ∩ (1− e)M). Hence K + L is a
direct summnd of M .

(2) It is clear by (1).

Theorem 5. Let M be a module and F a fully invariant submodule of M . Then M is F -
dual Rickart if and only if

∑
ϕ∈I ϕ(F ) is a direct summand of M for every finitely generated

right ideal I of EndR(M).
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Proof. Assume that I is a finitely generated right ideal of EndR(M) generated by ϕ1, . . . , ϕn.
As M is F -dual Rickart, ϕi(F ) is a direct summand of M for each 1 ≤ i ≤ n. By Propo-
sition 4, M has SSP for direct summands which are contained in F . Since ϕi(F ) ⊆ F ,∑

ϕ∈I ϕ(F ) = ϕ1(F )+ · · ·+ϕn(F ) is a direct summand of M . The converse is obvious.

4 Applications of F -dual Baer modules to rings

In this section, we provide the applications of F -dual Baer modules to rings. It is clear that
I is a fully invariant submodule of the right R-module R if and only if it is an ideal of R.

Definition 4. Let I be an ideal of a ring R. Then R is called a right I-dual Baer ring if
it is I-dual Baer as a right R-module.

A left I-dual Baer ring R is defined similarly for an ideal I of R. The property of being
a I-dual Baer ring is not left-right symmetric as the following example shows.

Example 4. Let R =

[
K K
0 K

]
where K is a field. Consider the ideal I =

[
K K
0 0

]
of

R. Note that R = I ⊕ J where J =

[
0 0
0 K

]
is a right ideal of R. It is easy to see that I

is dual Baer as an R-module. Hence R is right I-dual Baer by Theorem 2. Moreover, since
I is essential in R as a left ideal, it can not be a direct summand of the left R-module RR.
Therefore, R is not left I-dual Baer.

It is clear that every semisimple ring R is right I-dual Baer for any ideal I of R. In the
following, we present a characterization of right I-dual Baer rings using semisimple direct
summands.

Theorem 6. Let R be a ring and I an ideal of R. Then the following are equivalent:
(1) R is right I-dual Baer;
(2) R = I ⊕K for some right ideal K of R and I is dual Baer as an R-module;
(3) R = I ⊕K for some right ideal K of R and I is semisimple as an R-module.

Proof. (1) ⇔ (2) By Theorem 2.
(1) ⇒ (3) The ring R has a decomposition R = I ⊕ K where K is a right ideal of R.

Assume that B is a submodule of I. We claim that B is a direct summand of I. Since B has
the form

∑
b∈B bR and R is I-dual Baer,

∑
b∈B bI is a direct summand of R. Therefore, BI

is a direct summand of R. Hence B = BI is a direct summand of I since B ⊆ I. Therefore
I is semisimple.

(3) ⇒ (1) Suppose that R = I ⊕K with a right ideal K of R and I is semisimple. Since
I is semisimple, I is dual Baer. Therefore, R is I-dual Baer by Theorem 2.

Theorem 7. The following are equivalent for a ring R:
(1) There exists an ideal I of R such that R is right I-dual Baer;
(2) For every cyclic projective R-module M , there exists a fully invariant submodule F

of M such that M is F -dual Baer.
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Proof. (1) ⇒ (2) Suppose that M is a cyclic projective R-module. Then, M = mR ∼=
R/rR(m) for some m ∈ M . Therefore, rR(m) is a direct summand of R. Hence, R =
rR(m)⊕J where J is a right ideal of R. Assume that g is an isomorphism from J to M . In
view of Proposition 1, J is (J ∩ I)-dual Baer. Hence M is g(J ∩ I)-dual Baer by Lemma 1.

(2) ⇒ (1) It is obvious.

.

Remark 3. Let R be a ring with J(R) ̸= 0. Then R is not J(R)-dual Baer. For if, suppose
that R is J(R)-dual Rickart. Then

∑
ϕ∈I ϕ(J(R)) is a direct summand of R for any finitely

generated right ideal I of R by Theorem 5. Since J(R) is small in R,
∑

ϕ∈I ϕ(J(R)) is
small in R. Therefore, IJ(R) =

∑
a∈I aJ(R) = 0. Set I = R, so J(R) = 0. Therefore, R

can not be a J(R)-dual Baer module since R is not J(R)-dual Rickart.

5 Direct sum of F -dual Rickart modules and direct sum
of F -dual Baer modules

In this section, we study direct sums of F -dual Rickart modules and direct sums of F -dual
Baer modules. The following example shows that a direct sum of F -dual Rickart modules
is not F -dual Rickart, in general.

Let R be a ring, M be an R-module and let S denotes the class of all small right R-
modules (a right R-module U is small in case U is a small submodule of a right R-module
V ). Recall from [9] that M is said to be (non)cosingular in case (Z(M) = M) Z(M) = 0

where Z(M) = ∩{Kerf | f :M → U,U ∈ S}. Note that Z2
(M) is defined to be Z(Z(M)).

Example 5. ([4, Example 4.2]) Let K be a field and R =
∏∞

i=1Ki where Ki = K for each
i ∈ N. Then R is a von Neumann regular V -ring. Take M1 = R and M2 = ⊕∞

i=1Ki. By [6,
Example 5.1], M1 and M2 are dual Rickart and M1 ⊕M2 is not dual Rickart. Since R is
a V -ring, by [9, Proposition 2.5], every R-module is noncosingular. So by [4, Proposition

3.4], Mi is Z
2
(Mi)-dual Rickart while M1 ⊕M2 is not Z

2
(M1 ⊕M2)-dual Rickart.

In the following, we show that when a direct sum of F -dual Rickart modules is also
F -dual Rickart.

Proposition 5. Let M = ⊕n
i=1Mi and N be modules and F �M . If N has SSP for direct

summands which are contained in N ∩F , then M is N -F -dual Rickart if and only if Mi is
N -F ∩Mi-dual Rickart for all 1 ≤ i ≤ n.

Proof. The sufficiency is obvious from Theorem 4. For the necessity, let ϕ be a homomor-
phism from M to N . Then ϕ = (ϕi)

n
i=1 where ϕi is a homomorphism from Mi to N for

each 1 ≤ i ≤ n. By hypothesis, ϕi(F ∩Mi) is a direct summand of N for each 1 ≤ i ≤ n.
Since F is a fully invariant submodule of M and N has SSP for direct summands which
are contained in N ∩ F , we have

ϕ(F ) = ϕ(⊕n
i=1F ∩Mi) = ϕ1(F ∩M1)+ϕ2(F ∩M2)+ · · ·+ϕn(F ∩Mn) ≤⊕ N . Therefore

M is N -F -dual Rickart.
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Corollary 4. Let M = ⊕n
i=1Mi be a module and F a fully invariant submodule of M .

Then M is F -dual Rickart relative to Mj (1 ≤ j ≤ n) if and only if Mi is F ∩Mi-dual
Rickart relative to Mj for each 1 ≤ i ≤ n.

Theorem 8. Let {Mi}ni=1 and N be modules and F be a fully invariant submodule of N .
Assume that for each i ≥ j with 1 ≤ i, j ≤ n, Mi is Mj-projective. Then N is ⊕n

i=1Mi-F -
dual Rickart if and only if N is Mj-F -dual Rickart for all 1 ≤ j ≤ n.

Proof. The sufficiency is obvious from Theorem 4. For the necessity, suppose that N is
Mj-F -dual Rickart for all 1 ≤ j ≤ n. We prove by induction on n. Assume that n = 2
and N is F -dual Rickart relative to M1 and M2. Let ϕ be a homomorphism from N
to M1 ⊕ M2. Then ϕ = π1ϕ + π2ϕ, where πi is the natural projection from M1 ⊕ M2

to Mi (i = 1, 2). As N is M2-F -dual Rickart, π2ϕ(F ) is a direct summand of M2. Let
M2 = π2ϕ(F ) ⊕ M ′

2 for some M ′
2 ≤ M2. Hence M1 ⊕ M2 = M1 ⊕ π2ϕ(F ) ⊕ M ′

2. As
M2 is M1-projective, π2ϕ(F ) is M1-projective. Since M1 + ϕ(F ) = M1 ⊕ π2ϕ(F ) is a
direct summand of M1 ⊕ M2, there exists T ⊆ ϕ(F ) such that M1 + ϕ(F ) = M1 ⊕ T ,
by [7, Lemma 4.47]. Thus ϕ(F ) = (ϕ(F ) ∩ M1) ⊕ T . Since N is M1-F -dual Rickart,
π1ϕ(F ) = M1 ∩ (M2 + ϕ(F )) = M1 ∩ ϕ(F ) is a direct summand of M1. Therefore ϕ(F )
is a direct summand of M1 ⊕ T . Since M1 ⊕ T = M1 ⊕ ϕ(F ) ≤⊕ M1 ⊕ M2, ϕ(F ) is
a direct summand of M1 ⊕ M2. Thus N is F -dual Rickart relative to M1 ⊕ M2. Now,
assume that N is F -dual Rickart relative to ⊕n

i=1Mi. We show that N is F -dual Rickart
relative to Mn+1 ⊕ (⊕n

i=1Mi). Since Mn+1 is Mj-projective for each 1 ≤ j ≤ n, Mn+1

is ⊕n
i=1Mi-projective. As N is Mn+1-F -dual Rickart, N is ⊕n+1

i=1 Mi-F -dual Rickart by a
similar argument for the case n = 2.

We mention that in the above theorem we use ideas of the proof of [6, Theorem 5.5].

Corollary 5. Let {Mi}ni=1 be modules and F be a fully invariant submodule of ⊕n
i=1Mi.

Assume that for each i ≥ j with 1 ≤ i, j ≤ n, Mi is Mj-projective. Then ⊕n
i=1Mi is F -dual

Rickart if and only if Mi is Mj-F ∩Mi-dual Rickart for all 1 ≤ i, j ≤ n.

Proof. The sufficiency is obvious from Theorem 4. For the necessity, assume that Mi is
Mj-F ∩ Mi-dual Rickart for all 1 ≤ j ≤ n. Now ⊕n

i=1Mi is Mj-F -dual Rickart for all
1 ≤ j ≤ n by Corollary 4. Therefore, by Theorem 8, ⊕n

i=1Mi is F -dual Rickart.

Theorem 9. LetM = ⊕n
i=1Mi be a module, F�M andMi�M for all i ∈ {1, . . . , n}. Then

M is a F -dual Rickart module if and only ifMi is F ∩Mi-dual Rickart for all i ∈ {1, . . . , n}.

Proof. The necessity follows from Proposition 1. Conversely, let Mi be a F ∩Mi-dual
Rickart module for all i ∈ {1, . . . , n}. Since F � M , F = ⊕n

i=1(F ∩ Mi). Let ϕ =
(ϕij)i,j∈{1,...,n} ∈ EndR(M) be arbitrary, where ϕij ∈ Hom(Mj ,Mi). Since Mi �M for all
i ∈ {1, . . . , n} and F = ⊕n

i=1(F ∩Mi), ϕ(F ) = ⊕n
i=1ϕii(F ∩Mi). As Mi is F ∩Mi-dual

Rickart, ϕii(F ∩Mi) is a direct summand of Mi and so ϕ(F ) is a direct summand of M .
Therefore M is a F -dual Rickart module.

In the following we present an example which shows that direct sums of F -dual Baer
modules need not be F -dual Baer.
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Example 6. Let p be a prime integer. Then, Zp and Zp∞ are dual Baer Z-modules. Hence
Zp is Zp-dual Baer and Zp∞ is Zp∞ -dual Baer. However, Zp ⊕ Zp∞ is not a dual Baer
module by [5, Corollary 3.5]. Therefore, Zp ⊕ Zp∞ is not a Zp ⊕ Zp∞ -dual Baer Z-module.

In the following we study some conditions that ensure us direct sums of F -dual Baer
modules inherit the property.

Theorem 10. Let M = ⊕n
i=1Mi be a module, F �M and Mi �M for all i ∈ {1, . . . , n}.

Then M is a F -dual Baer module if and only if Mi is F ∩Mi-dual Baer for all i ∈
{1, . . . , n}.

Proof. The necessity follows from Theorem 3. Conversely, let Mi be a F ∩Mi-dual Baer
module for all i ∈ {1, . . . , n} and I be a subset of EndR(M). Since F �M , F = ⊕n

i=1(F ∩
Mi). Let ϕ = (ϕij)i,j∈{1,...,n} ∈ EndR(M) be arbitrary, where ϕij ∈ Hom(Mj ,Mi). Since
Mi �M for all i ∈ {1, . . . , n} and F = ⊕n

i=1(F ∩Mi), we have ϕ(F ) = ⊕n
i=1ϕii(F ∩Mi).

Hence
∑

ϕ∈I ϕ(F ) =
∑

ϕ∈Ii
⊕n

i=1ϕii(F ∩Mi) = ⊕n
i=1

∑
ϕ∈Ii

ϕii(F ∩Mi) where Ii = {ϕ|Mi
:

ϕ ∈ I} ⊆ EndR(Mi). As Mi is F ∩Mi-dual Baer for all i ∈ {1, . . . , n},
∑

ϕ∈Ii
ϕii(F ∩Mi)

is a direct summand of Mi and so
∑

ϕ∈I ϕ(F ) is a direct summand of M . Therefore M is
a F -dual Baer module.

We can prove the following proposition similar to the proof of Theorem 10.

Proposition 6. Let {Mi}i∈I be a class of R-modules for an index set I. If for every i ∈ I,
Fi and Mi are fully invariant submodules of

⊕
i∈I Mi, then

⊕
i∈I Mi is

⊕
i∈I Fi-dual Baer

if and only if Mi is Fi-dual Baer for every i ∈ I.

We now define relatively F -dual Baer modules and then we study direct sums of F -dual
Baer modules applying this definition.

Definition 5. LetM and N be R-modules and F a fully invariant submodule of M . Then,
M is called N -F -dual Baer if for every subset I of HomR(M,N),

∑
ϕ∈I ϕ(F ) is a direct

summand of N .

It is clear that a module M is F -dual Baer if and only if it is M -F -dual Baer.

Theorem 11. Let M =M1 ⊕M2 and N be R-modules and F fully invariant in M . If M
is N -F -dual Baer, then for any direct summand K of N , Mi is K-(F ∩Mi)-dual Baer for
i = 1, 2.

Proof. Since F is a fully invariant submodule ofM , F = (F ∩M1)⊕(F ∩M2). Suppose that
A is a subset of HomR(M1,K). Then B = {j ◦φ◦πM1

| φ ∈ A} in which πM1
:M →M1 is

the projection ofM onM1 and j is the inclusion from K to N , is a subset of HomR(M,N).
It is easy to check that A(F ∩M1) =

∑
φ∈A φ(F ∩M1) =

∑
g∈B g(F ). As M is a N -F -dual

Baer module, A(F ∩M1) is a direct summand of N and hence a direct summand of K.

Proposition 7. Let {Mi}i∈J be a class of R-modules for an index set J , N an R-module
and F be a fully invariant submodule of

⊕
i∈J Mi. Then, the following hold.
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(1) Let N have the SSP for direct summands which are contained in N ∩ F , and J be
finite. Then,

⊕
i∈J Mi is N -F -dual Baer if and only if Mi is N -F ∩Mi-dual Baer for all

i ∈ J .

(2) Let N have the SSSP for direct summands which are contained in N ∩ F , and J
be arbitrary. Then,

⊕
i∈J Mi is N -F -dual Baer if and only if Mi is N -F ∩Mi-dual Baer

for all i ∈ J .

Proof. (1) The sufficiency is obvious from Theorem 11. For the necessity, suppose that A
is a subset of HomR(

⊕
i∈J Mi, N). Then Bi = {ϕji | ϕ ∈ A} in which ji is the inclusion

from Mi to
⊕

i∈J Mi, is a subset of HomR(Mi, N).

Assume that ϕ is a homomorphism from
⊕

i∈J Mi to N . Then ϕ = (ϕi)i∈J where ϕi =
ϕji is a homomorphism from Mi to N for each i ∈ J . By hypothesis,

∑
ϕi∈Bi

ϕi(F ∩Mi)
is a direct summand of N for each i ∈ J . Since F is a fully invariant submodule of M and
N has SSP for direct summands which are contained in N ∩ F , we have

∑
ϕ∈A ϕ(F ) =

∑
ϕ∈A ϕ(⊕n

i=1(F ∩Mi)) =
∑

i∈J
∑

ϕi∈Bi
ϕi(F ∩Mi) ≤⊕ N .

Therefore
⊕

i∈J Mi is N -F -dual Baer.

(2) Similar to (1).

Corollary 6. Let {Mi}i∈J be a class of R-modules for an index set J and F be a fully
invariant submodule of

⊕
i∈J Mi. Then, for each j ∈ J ,

⊕
i∈J Mi is Mj-F -dual Baer if

and only if Mi is Mj-F ∩Mi-dual Baer for all i ∈ J .

Proof. It follows from Proposition 7 and Theorem 2.

Similar to the proof of Theorem 8, one can prove the following theorem.

Theorem 12. Let {Mi}ni=1 and N be modules and F be a fully invariant submodule of N .
Assume that for each i ≥ j with 1 ≤ i, j ≤ n, Mi is Mj-projective. Then N is ⊕n

i=1Mi-F -
dual Baer if and only if N is Mj-F -dual Baer for all 1 ≤ j ≤ n.

Corollary 7. Let {Mi}ni=1 be modules and F be a fully invariant submodule of ⊕n
i=1Mi.

Assume that for each i ≥ j with 1 ≤ i, j ≤ n, Mi is Mj-projective. Then ⊕n
i=1Mi is F -dual

Baer if and only if Mi is Mj-F ∩Mi-dual Baer for all 1 ≤ i, j ≤ n.

Proof. The sufficiency is obvious from Theorem 11. For the necessity, assume that Mi is
Mj-F ∩ Mi-dual Rickart for all 1 ≤ j ≤ n. Now ⊕n

i=1Mi is Mj-F -dual Rickart for all
1 ≤ j ≤ n by Corollary 6. Therefore, by Theorem 12, ⊕n

i=1Mi is F -dual Rickart.
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