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Abstract

Let L be the generalized mixed product ideal induced by a monomial ideal I. The
associated prime ideals of L are studied, including the stable set of associated prime
ideals of this class of ideals. It is shown that I has the strong persistence property if
and only if L has the strong persistence property.
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1 Introduction

A special class of monomial ideals, called mixed product ideals, was introduced by Restuccia
and Villarreal [14]. They gave a complete classification of normal mixed product ideals, as
well as applications in graph theory. In this paper we consider generalized mixed product
ideals which were introduced by Herzog and Yassemi and which also include the so-called
expansions of monomial ideals. The aim of this paper is to study the strong persistence
property of generalized mixed product ideals.

Let K be a field and K[x1, . . . , xn] the polynomial ring in n variables over K with each
xi of degree 1. Let I ⊂ S be a monomial ideal and let G(I) be the set of unique monomial
generators.

Let K be a field and S = K[x1, . . . , xn, y1, . . . , ym] be the polynomial ring over K in
the variables xi and yj . Mixed product ideals are a special class of squarefree monomial
ideals in S. They are of the form (IqJr + IpJs)S, where for integers a and b, the ideal Ia
(resp. Jb) is the ideal generated by all squarefree monomials of degree a in the polynomial
ring K[x1, . . . , xn] (resp. of degree b in the polynomial ring K[y1, . . . , ym]), and where
0 < p < q ≤ n, 0 < r < s ≤ m. Thus the ideal L = (IqJr + IpJs)S is obtained from the
monomial ideal I = (xqyr, xpys) by replacing xq by Iq, x

p by Ip, y
r by Jr and ys by Js.

As mentioned above, Restuccia and Villarreal classified the normal mixed product ide-
als. In other words, they characterized the mixed product ideals whose Rees ring is normal.
Rinaldo and Ionescu [9] studied the Castelnuovo-Mumford regularity, the depth and dimen-
sion of mixed product ideals and characterized when they are Cohen-Macaulay. Rinaldo
[15] studied the Betti numbers of their finite free resolutions and Hoa and Tam [8] computed
the regularity and some other algebraic invariants of mixed products of arbitrary graded
ideals.

Together with Herzog and Yassemi [7] I introduced the generalized mixed product ideals,
which are a far reaching generalization of the mixed product ideals introduced by Restuccia
and Villarreal, and also generalizes the expansion construction by Bayati and Herzog [1].
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For this new construction we choose for each i a set of new variables xi1, xi2, . . . , ximi

and replace each of the factor xai
i in each minimal generator xa1

1 xa2
2 · · ·xan

n of the monomial
ideal I by a monomial ideal in Ti = K[xi1, xi2, . . . , ximi

] generated in degree ai. Indeed in
the paper [1] a similar construction, called expansion, is made. There, however, each xai

i

is replaced by (xi1, . . . , ximi
)ai , while in our generalized mixed product ideals each xai

i is
replaced by an arbitrary monomial ideal of Ti generated in degree ai. We also computed in
[7] the minimal graded free resolution of generalized mixed product ideals and showed that
a generalized mixed product ideal L induced by I has the same regularity as I, provided
the ideals which replace the pure powers xai

i all have a linear resolution. As a consequence
we obtained the result that under the above assumptions, L has a linear resolution if and
only if I has a linear resolution. We also proved that the projective dimension of L can
be expressed in terms of the multi-graded shifts in the resolution of I and the projective
dimension of the ideals which replace the pure powers.

In [13] the author together with Tehranian computed powers of generalized mixed prod-
uct ideals. We showed that Lk is again generalized mixed product ideal for all k and Lk

induced by Ik, and we obtained the result that Lk has a linear resolution if and only if Ik has
a linear resolution for all k, provided the ideals which replace the pure powers xai

i all have a
linear resolution. Also we introduced the generalized mixed polymatroidal ideals. The class
of generalized mixed polymatroidal ideals is a special class of generalized mixed product
ideals which for each i we replace each factor xai

i in each minimal generator xa1
1 xa2

2 · · ·xan
n

of I by a polymatroidal ideal in Ti generated in degree ai. In the paper with Tehranian
we also proved that powers of a generalized mixed polymatroidal ideal is generalized mixed
polymatroidal ideal and monomial localizations of a generalized mixed polymatroidal ideal
at monomial prime ideals is again generalized mixed polymatroidal ideal.

The present paper is organized as follows. In Section 2 we study the associated prime
ideals of generalized mixed product ideals, see Theorem 2.5. We show that the stable set
of associated prime ideals of L can be compute by the stable set of associated prime ideals
of I and astab(I) = astab(L), see Corollary 2.7.

In Section 3 we study the strong persistence property of generalized mixed product
ideals. In Theorem 3.3 we show that I has the strong persistence property if and only if L
has the strong persistence property.

2 Associated primes

Let S = K[x1, . . . , xn] be the polynomial ring over a field K in the variables x1, . . . , xn

with the maximal ideal m = (x1, . . . , xn), and let I ⊂ S be a monomial ideal with I ̸= S

whose minimal set of generators is G(I) = {xa1 , . . . ,xam}. Here xa = x
a(1)
1 x

a(2)
2 · · ·xa(n)

n

for a = (a(1), . . . , a(n)) ∈ Nn. For a subset A ⊆ S, we define the exponent set of A by
E(A) := {a : xa ∈ A} ⊆ Nn.

The Veronese ideal of degree a is the ideal Ia of S which is generated by all the monomials
in the variables x1, . . . , xn of degree a: Ia = (x1, . . . , xn)

a. It is known that Ia is a normal
ideal ([17, Proposition 12.3.9]).

Next we consider the polynomial ring T over K in the variables

x11, . . . , x1m1 , x21, . . . , x2m2 , . . . , xn1, . . . , xnmn .
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In [7] we introduced the generalized mixed product ideals. For i = 1, . . . , n and j =
1, . . . ,m let Li,aj(i) be a monomial ideal in the variables xi1, xi2, . . . , ximi such that

Li,aj(i) ⊂ Li,ak(i) whenever aj(i) ≥ ak(i). (1)

Given these ideals we define for j = 1, . . . ,m the monomial ideals

Lj =

n∏
i=1

Li,aj(i) ⊂ T, (2)

and set L =
∑m

j=1 Lj . The ideal L is called a generalized mixed product ideal induced by I.

Example 2.1. As mentioned in [14] mixed product ideals also appear as generalized graph
ideals (called path ideals by Conca and De Negri [3]) of complete bipartite graphs. Let G a
finite simple graph with vertices x1, . . . , xn. A path of length t in G is sequence xi1 , . . . , xit

of pairwise distinct vertices such that {xik , xik+1
} is an edge of G. Then the path ideal It(G)

is the ideal generated by all monomials xi1 · · ·xit such that xi1 , . . . , xit is a path of length
t.

Now let G be a complete n-partite graph with vertex set V = V1 ∪ V2 ∪ · · · ∪ Vn and
Vi = {xi1, . . . , ximi} for i = 1, . . . , n. For this graph we have

It(G) =
∑

0≤ji≤min{(t+1)/2,mi},
∑n

i=1 ji=t

I1j1I2j2 . . . Injn ,

where the ideals Iiji are the monomial ideals generated by all squarefree monomials of degree
ji in the variables {xi1, . . . , ximi}. Thus It(G) is induced by the ideal I of Veronese type
generated by the monomials xj1

1 xj2
2 . . . xjn

n with
∑n

i=1 ji = t and 0 ≤ ji ≤ min{(t+1)/2,mi}.

A generalized mixed product ideal depends not only on I but also on the family Lij .
Then we write L(I; {Lij}) for the generalized mixed product ideal induced by a monomial
ideal I. We use the notation X for the set {x11, . . . , x1m1 , . . . , xn1, . . . , xnmn}.

For a,b ∈ Zn
+,a ⪯ b means that a(i) ≤ b(i) for all i. We write a ≺ b if a ⪯ b and

a ̸= b. For a = (a(1), . . . , a(n)) ∈ Zn
+, we define

GL(a) = {b ∈ Zm1+···+mn | Xb ∈ G(L(xa; {Lij}))}.

Suppose that L(I; {Lij}) be the generalized mixed product ideal induced by I. For all a ∈
E(G(I)), we write XGL(a) for the set of monomials {Xb | b ∈ GL(a)}. Then L(I; {Lij}) is a
monomial ideal of T generated by the monomials Xb, where b ∈ GL(a) for all a ∈ E(G(I)).

We want to determine the associated prime ideals of generalized mixed product ideals.
We denote the set of monomial prime ideals of S by P(S). A prime ideal P ⊆ S is an
associated prime of I if there exists an element a ∈ S such that I : (a) = P . The set of
associated primes of an ideal I in a ring S is to be denoted by Ass(S/I).

In the following, we observe how the generalized mixed product ideals commutes with
the intersection of two monomial ideals. Given two monomials u and v, we denote by
lcm(u, v) the least common multiple of u and v.

We define the K-algebra homomorphism π∗ : T → S by π∗(xij) = xi for all i, j.
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Lemma 2.2. Let L(I; {Lij}) =
∑r

k=1

∏n
i=1 Li,ak(i) and L(J ; {Lij}) =

∑s
l=1

∏n
i=1 Li,bl(i)

be generalized mixed product ideals, respectively, induced by the monomial ideals I and J
with G(I) = {xa1 , . . . ,xar} and G(J) = {xb1 , . . . ,xbs}. We assume that the ideals Li,ak(i)

and Li,bl(i) are Veronese ideals of degree ak(i) and bl(i), respectively, in the variables
xi1, xi2, . . . , ximi

. Suppose that G(I ∩ J) = {xc1 , . . . ,xct}. Then given xcj , there exist xak

and xbl such that xcj = lcm(xak ,xbl). We set

Li,cj(i) = Li,max{ak(i),bl(i)},

where the ideals Li,cj(i) are Veronese ideals of degree cj(i) in the variables xi1, xi2, . . . , ximi
.

Furthermore, let

L(I ∩ J ; {Lij}) =
t∑

j=1

n∏
i=1

Li,cj(i).

Then L(I ∩ J ; {Lij}) is a generalized mixed product ideal, and

L(I ∩ J ; {Lij}) = L(I; {Lij}) ∩ L(J ; {Lij}).

Proof. If lcm(xak ,xbl) = lcm(xap ,xbq ), then

Li,max{ak(i),bl(i)} = Li,max{ap(i),bq(i)}.

Thus the definition of Li,cj(i) is independent of the presentation of xcj as a least common

multiple of xak and xbl , and hence well defined. It also implies that

Li,cj(i) ⊂ Li,ck(i) whenever cj(i) ≥ ck(i).

Thus shows that L(I ∩ J ; {Lij}) is indeed a generalized mixed product ideal of I ∩ J .
Next we show that L(I; {Lij}) ∩ L(J ; {Lij}) = L(I ∩ J ; {Lij}). We have

L(I; {Lij}) ∩ L(J ; {Lij}) = (

r∑
k=1

n∏
i=1

Li,ak(i)) ∩ (

s∑
l=1

n∏
i=1

Li,bl(i))

=

s∑
l=1

r∑
k=1

(

n∏
i=1

Li,ak(i)) ∩ (

n∏
i=1

Li,bl(i)).

The second equality holds because the summands are all monomial ideals. We assume that

L(I ∩ J ; {Lij}) =
t∑

j=1

n∏
i=1

Li,cj(i).

If xcj = lcm(xak ,xbl), then
∏n

i=1 Li,cj(i) =
∏n

i=1 Li,max{ak(i),bl(i)}. This shows that L(I ∩
J ; {Lij}) ⊂ L(I; {Lij}) ∩ L(J ; {Lij}).

Conversely, take a summand
∏n

i=1(Li,ak(i) ∩Li,bl(i)) of L(I; {Lij})∩L(J ; {Lij}). Since
I ∩ J is generated by the elements lcm(xak ,xbl), k = 1, . . . , r and l = 1, . . . , s, and
since xc1 , . . . ,xct is a minimal set of generators of I ∩ J , there exists cj such that xcj |
lcm(xak ,xbl). Hence

∏n
i=1(Li,ak(i)∩Li,bl(i)) ⊂

∏n
i=1 Li,cj(i). This shows that L(I; {Lij})∩

L(J ; {Lij}) ⊂ L(I ∩ J ; {Lij}).
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Lemma 2.3. Let L(I; {Lij}) =
∑r

k=1

∏n
i=1 Li,ak(i) and L(J ; {Lij}) =

∑s
l=1

∏n
i=1 Li,bl(i)

be generalized mixed product ideals, respectively, induced by the monomial ideals I and J
with G(I) = {xa1 , . . . ,xar} and G(J) = {xb1 , . . . ,xbs}. We assume that the ideals Li,ak(i)

and Li,bl(i) are Veronese ideals of degree ak(i) and bl(i), respectively, in the variables
xi1, xi2, . . . , ximi

. Then L(I : J ; {Lij}) is a generalized mixed product ideal, and

L(I : J ; {Lij}) = L(I; {Lij}) : L(J ; {Lij}).

Proof. Let I and J be monomial ideals. It then follows from [5, Proposition 1.2.2] that

I : J =
∩

xbl∈G(J)

I : xbl .

Then Lemma 2.2 implies that L(I : J ; {Lij}) is a generalized mixed product ideal induced
by I : J .

Next we show that L(I : J ; {Lij}) = L(I; {Lij}) : L(J ; {Lij}). By Lemma 2.2 it
suffices to show that L(I : v; {Lij}) = L(I; {Lij}) : L(v; {Lij}) for all monomials v ∈ S.
If v = xc ∈ S, then L(xc; {Lij}) =

∏n
i=1 Li,c(i) ⊆ T , where the ideals Li,c(i) are Veronese

ideals of degree c(i) in the variables xi1, xi2, . . . , ximi . By properties of ideal quotient, we
have I : J1J2 = (I : J1) : J2 for all the ideals J1, J2 of S. Hence, we only need to show that
for each variable xi ∈ S the equality L(I : xi; {Lij}) = L(I; {Lij}) : Li,1 holds where the
ideals Li,1 are Veronese ideals of degree one in K[xi1, xi2, . . . , ximi

]. Thus let f ∈ T . Then
by [12, Lemma 2.2], one has fxit ∈ L(I; {Lij}) for all t if and only if π∗(f)xi = π∗(fxit) ∈ I.
Hence L(I : xi; {Lij}) = L(I; {Lij}) : Li,1.

In [11] we observed how the generalized mixed product ideal is related to the irredundant
decomposition of a monomial ideal as an intersection of irreducible monomial ideals. To
be precise, let I ⊂ S be a monomial ideal with irredundant irreducible decomposition
I =

∩r
h=1 Qh. For each h = 1, . . . , r let Sh ⊆ [n] be such that Qh = (xaih

i )i∈Sh
. We set

L∗ =
∩r

h=1(Li,aih
)i∈Sh

. Therefore, [11, Theorem 1.2] yields L = L∗.
Let P ∈ P(S) be a monomial prime ideal. Since P is irreducible. We assume that

F ⊆ [n] be a non-empty subset of [n] such that P = (xi)i∈F . Let L(P ; {Lij}) be the
generalized mixed product ideal induced by P . Then [11, Theorem 1.2] implies that

L(P ; {Lij}) = (Li,1)i∈F .

We set P ′ = (Li,1)i∈F , where the ideals Li,1 = (xi1, . . . , ximi
) for all i ∈ F . We denote the

set of monomial prime ideals of T by P(T ).

Lemma 2.4. Let L(I; {Lij}) =
∑m

j=1

∏n
i=1 Li,aj(i) be the generalized mixed product ideal,

induced by a monomial ideal I with G(I) = {xa1 , . . . ,xam}, where the ideals Li,aj(i) in
K[xi1, xi2, . . . , ximi

] are Veronese ideals of degree aj(i). Then the monomial ideal L(I; {Lij})
is P ′-primary if I is P -primary.

Proof. For a monomial ideal I with G(I) = {xa1 , . . . ,xam} let

L(I; {Lij}) =
m∑
j=1

n∏
i=1

Li,aj(i)
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be the generalized mixed product ideal induced by I. Let for two monomials u, v ∈ T , uv ∈
L(I; {Lij}) but u /∈ L(I; {Lij}). Thus by [12, Lemma 2.2] we have π∗(uv) = π∗(u)π∗(v) ∈ I
and π∗(u) /∈ I. On the other hand since I is P -primary ideal, we conclude that π∗(v) ∈√
I = P . Let P ′ be the generalized mixed product ideal induced by P , where the ideals Li,1

in K[xi1, xi2, . . . , ximi
] are Veronese ideals of degree 1. Hence [12, Lemma 2.2] and Lemma

2.3 imply that v ∈ P ′ and
√
L(I; {Lij}) = L(

√
I; {Lij}) = P ′. Therefore L(I; {Lij}) is

P ′-primary ideal.

Theorem 2.5. Let L be the generalized mixed product ideal induced by a monomial ideal
I with G(I) = {xa1 , . . . ,xam}, where the ideals Li,aj(i) are Veronese ideals of degree aj(i).
Then

Ass(T/L) = {P ′ : P ∈ Ass(S/I)}.

Proof. Let L(I; {Lij}) =
∑m

j=1

∏n
i=1 Li,aj(i) be the generalized mixed product ideal induced

by a monomial ideal I with G(I) = {xa1 , . . . ,xam}, and let I =
∩r

h=1 Qh be the irredundant
primary decomposition of I. Hence, by applying Lemma 2.2 and 2.4 we obtain that

L(I; {Lij}) =
r∩

h=1

L(Qh; {Lij})

is an irredundant primary decomposition of T/L(I; {Lij}). Then the desired conclusion
follows.

Example 2.6. Let L =
∑2

j=1 L1,aj
L2,bj where the ideals L1,aj

in K[x11, x12, . . . , x1m1
] and

L2,bj in K[x21, x22, . . . , x2m2
] are Veronese ideals of degree aj and bj , respectively. Assume

further that 0 ≤ a1 < a2 ≤ m1 and m2 ≥ b1 > b2 ≥ 0. The ideal L is a generalized mixed
product ideal induced by the ideal

I = (xa1
1 xb1

2 , xa2
1 xb2

2 ).

One easily checks that I = (xa1
1 )∩ (xa2

1 , xb1
2 )∩ (xb2

2 ). This is the irredundant decomposition
of I as an intersection of irreducible ideals. Then by [11, Theorem 1.2] we have

L = (L1,a1
) ∩ (L1,a2

, L2,b1) ∩ (L2,b2).

Therefore by Theorem 2.5, Ass(T/L) consists of all prime ideals of the form

(x11, x12, . . . , x1m1), (x11, x12, . . . , x1m1 , x21, x22, . . . , x2m2), (x21, x22, . . . , x2m2).

Now we want to compute the stable set of the generalized mixed product ideals. Brod-
mann showed [2] that there exists an integer k1 such that Ass(S/Ik) = Ass(S/Ik1) for all
k ≥ k1. The smallest such number is called index of stability of I. We denote this number
by astab(I). The stable set Ass(S/Ik) is denoted by Ass∞(I).

Corollary 2.7. Let L be the generalized mixed product ideal induced by a monomial ideal
I with G(I) = {xa1 , . . . ,xam}, where the ideals Li,aj(i) are Veronese ideals of degree aj(i).
Then

Ass∞(L) = {P ′ : P ∈ Ass∞(I)}.

In particular astab(I) = astab(L).
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Proof. For a monomial ideal I with G(I) = {xa1 , . . . ,xam} let

L(I; {Lij}) =
m∑
j=1

n∏
i=1

Li,aj(i)

be the generalized mixed product ideal induced by I. It follows from [13, Theorem 2.3]
that L(I; {Lij})k is a generalized mixed product ideal induced by Ik and L(I; {Lij})k =
L(Ik; {Lij}) for all k ≥ 1. Hence

Ass(T/L(I; {Lij})k) = {P ′ : P ∈ Ass(S/Ik)}

by Theorem 2.5.

3 On the strong persistence property of generalized
mixed product ideals

The main goal of this section is to study the strong persistence property of generalized
mixed product ideals. Let I ⊂ S = K[x1, . . . , xn] be a monomial ideal as in Section 2 with
G(I) = {xa1 , . . . ,xam}, and L be defined as in (2).

We denote I(P ) the monomial localization of I, and by S(P ) the polynomial ring over
K in the variables which belong to P . Recall that I(P ) ⊂ S(P ) is the monomial ideal
which is obtained from I as the image of the K-algebra homomorphism φ : S → S(P )
which φ(xi) = xi if xi ∈ P , and φ(xi) = 1, otherwise. The monomial localization I(P ) can
also be described as the saturation I : (

∏
xi /∈P xi)

∞.
Monomial localizations are compatible with products and intersections. In other words,

if I1 and I2 are monomial ideals, then (I1I2)(P ) = I1(P )I2(P ) and (I1 ∩ I2)(P ) = I1(P ) ∩
I2(P ).

Now we want to study the persistence property of generalized mixed product ideals.
We denote by V (I) the set of prime ideals containing I and by mP the maximal ideal of
the local ring S(P ). We say that P ∈ V (I) is a persistence prime ideal of I, if whenever
P ∈ Ass(S/Ik) for some exponent k, then P ∈ Ass(S/Ik+1).

The ideal I is said to have the persistence property if all prime ideals P ∈
∪

k Ass(S/Ik)
are persistence prime ideals.

Theorem 3.1. Let L be the generalized mixed product ideal induced by a monomial ideal
I, where all Li,aih

= (xi1, xi2, . . . , ximi
)aih for h = 1, . . . , r. Then I has the persistence

property if and only if L has the persistence property.

Proof. For a monomial ideal I with G(I) = {xa1 , . . . ,xam} let

L(I; {Lij}) =
m∑
j=1

n∏
i=1

Li,aj(i)

be the generalized mixed product ideal induced by I. Let I =
∩r

h=1 Qh be an irredundant
irreducible decomposition of I. For each h = 1, . . . , r let Sh ⊆ [n] be such that Qh =
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(xaih
i )i∈Sh

. Hence, by applying [11, Theorem 1.2] we obtain that

L(I; {Lij}) =
r∩

h=1

(Li,aih
)i∈Sh

.

For sufficiency let P ∈ Ass(S/Ik) for some k > 0. Due to Theorem 2.5, it follows that
P ′ ∈ Ass(T/L(Ik; {Lij})). According to [13, Theorem 2.3], this implies that L(I; {Lij})k
is a generalized mixed product ideal induced by Ik and L(I; {Lij})k = L(Ik; {Lij}), and
since L(I; {Lij})k(P ′) is again a generalized mixed polymatroidal ideal induced by Ik(P ),
see [13, Corollary 3.4]. Thus P ′ ∈ Ass(T/L(I; {Lij})k). By hypothesis, we conclude that
P ′ ∈ Ass(T/L(I; {Lij})k+1). We know that P ′ ∈ Ass(T/L(I; {Lij})k+1) if and only if

(L(I; {Lij})k+1(P ′) : mP ′) ̸= L(I; {Lij})k+1(P ′),

where mP ′ is the graded maximal ideal of T (P ′). Now we apply Lemma 2.3 and we obtain
that L(Ik+1(P ) : mP ; {Lij}) ̸= L(Ik+1(P ); {Lij}). Therefore (Ik+1(P ) : mP ) ̸= Ik+1(P ).
This implies that P ∈ Ass(Ik+1).

Necessity follows from in a similar way and the proof is complete.

Example 3.2. Let I be the Stanley-Reisner ideal that corresponds to the natural triangu-
lation of the projective plane. Then

I = (x1x2x3, x1x2x4, x1x3x5, x1x4x6, x1x5x6, x2x3x6, x2x4x5, x2x5x6, x3x4x5, x3x4x6).

Let

L = (L1,1L2,1L3,1, L1,1L2,1L4,1, L1,1L3,1L5,1, L1,1L4,1L6,1, L1,1L5,1L6,1, L2,1L3,1L6,1,

L2,1L4,1L5,1, L2,1L5,1L6,1, L3,1L4,1L5,1, L3,1L4,1L6,1),

be the generalized mixed product ideal, induced by I in the polynomial ring

T = K[x11, x12, x21, x22, x31, x32, x41, x42, x51, x52, x61, x62],

where the ideals Li,1 are Veronese ideals of degree one in Ti = K[xi1, xi2] for i = 1, . . . , 6.
According to [6, Proposition 1.1], it follows that I satisfies the persistence property. There-
fore Theorem 3.1 implies that L satisfies the persistence property.

Let I ⊂ S = K[x1, . . . , xn] a graded ideal and P be a prime ideal with I ⊆ P . Recall
that I satisfies the strong persistence property with respect to P if for all k and all f ∈
(Ik(P ) : mP ) \ Ik(P ) there exists g ∈ I(P ) such that fg /∈ Ik+1(P ). The ideal I is said
to satisfy the strong persistence property if it satisfies the strong persistence property with
respect to P for any prime ideal containing I.

The main result of this section is the following

Theorem 3.3. Let L be the generalized mixed product ideal induced by a monomial ideal
I, where all Li,aih

= (xi1, xi2, . . . , ximi
)aih for h = 1, . . . , r. Then I satisfies the strong

persistence property if and only if L satisfies the strong persistence property.
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Proof. Let L(I; {Lij}) =
∑m

j=1

∏n
i=1 Li,aj(i) be the generalized mixed product ideal induced

by a monomial ideal I with G(I) = {xa1 , . . . ,xam}. According to [13, Theorem 2.3] we
have L(I; {Lij})k is a generalized mixed product ideal induced by Ik and L(I; {Lij})k =
L(Ik; {Lij}) for all k ≥ 1. Let I =

∩r
h=1 Qh be the irredundant irreducible decomposition

of I. For each h = 1, . . . , r let Sh ⊆ [n] be such that Qh = (xaih
i )i∈Sh

. Therefore, [11,
Theorem 1.2] yields L(I; {Lij}) =

∩r
h=1(Li,aih

)i∈Sh
.

Let I satisfies the strong persistence property. Thus by [4, Theorem 1.3], [13, Theorem
2.3] and Lemma 2.3 we have

(L(I; {Lij})k+1 : L(I; {Lij})) = (L(Ik+1; {Lij}) : L(I; {Lij}))
= L(Ik+1 : I; {Lij})
= L(Ik; {Lij})
= L(I; {Lij})k

for all k ≥ 1. Therefore [4, Theorem 1.3] implies that L(I; {Lij}) satisfies the strong
persistence property.

Conversely, assume that L(I; {Lij}) satisfies the strong persistence property, but (Ik+1 :
I) ̸= Ik for some k ≥ 1. Then by Lemma 2.3 and [13, Theorem 2.3] we have

(L(I; {Lij})k+1 : L(I; {Lij})) ̸= L(I; {Lij})k

for some k ≥ 1, contradicting the fact that L(I; {Lij}) satisfies the strong persistence
property.

Example 3.4. Let

I = (x1x3, x1x4, x1x5, x1x6, x2x3, x2x4, x2x5, x2x6, x3x5, x3x6, x4x5, x4x6)

be a matroidal ideal in the polynomial ring S = K[x1, x2, x3, x4, x5, x6]. Let

L = (L1,1L3,1, L1,1L4,1, L1,1L5,1, L1,1L6,1, L2,1L3,1, L2,1L4,1, L2,1L5,1,

L2,1L6,1, L3,1L5,1, L3,1L6,1, L4,1L5,1, L4,1L6,1)

be the generalized mixed product ideal, induced by I in the polynomial ring

T = K[x11, x12, x21, x22, x31, x32, x41, x42, x51, x52, x61, x62],

where the ideals Li,1 are Veronese ideals of degree one in Ti = K[xi1, xi2] for i = 1, . . . , 6.
Therefore Theorem 3.3 and [4, Proposition 2.4] imply that L satisfies the strong persistence
property.

As a first application of Theorem 3.3, we study the strong persistence property of gen-
eralized mixed product ideals induced by a monomial ideal in K[x1, x2].

Theorem 3.5. Let L =
∑m

j=1 L1,aj
L2,bj be the generalized mixed product ideal induced by

a monomial ideal I = (xa1
1 xb1

2 , . . . , xam
1 xbm

2 ), where the ideals L1,aj
in K[x11, x12, . . . , x1m1

]
and the ideals L2,bj in K[x21, x22, . . . , x2m2

] are Veronese ideals of degree aj and bj, respec-
tively. Assume that 0 ≤ a1 < · · · < am ≤ m1 and m2 ≥ b1 > · · · > bm ≥ 0. Furthermore,
let I has a linear resolution. Then L satisfies the strong persistence property.
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Proof. The ideal L is a generalized mixed product ideal induced by the ideal

I = (xa1
1 xb1

2 , . . . , xam
1 xbm

2 ).

Suppose that I has a linear resolution. We denote by gcd(I) the greatest common divisor
of the generator of I. Hence I is principal ideal or I = uJ , where u = gcd(I). If I = uJ ,
then J has a linear resolution and m-primary monomial ideal. Thus if I is principal or
I = uJ , then I is polymatroidal. Therefore Theorem 3.3 and [4, Proposition 2.4] imply
that L satisfies the strong persistence property.

Next we study the strong persistence property of the generalized mixed product ideals
induced by a Veronese ideal.

Theorem 3.6. Let L be the generalized mixed product ideal induced by a Veronese I with
G(I) = {xa1 , . . . ,xam}, where the ideals Li,aj(i) are Veronese ideals of degree aj(i). Then
L satisfies the strong persistence property.

Proof. For a monomial ideal I with G(I) = {xa1 , . . . ,xam} let

L(I; {Lij}) =
m∑
j=1

n∏
i=1

Li,aj(i)

be the generalized mixed product ideal induced by I. Hence, by applying [13, Theorem
2.3] we obtain that L(I; {Lij})k is a generalized mixed product ideal induced by Ik and
L(I; {Lij})k = L(Ik; {Lij}) for all k ≥ 1. Let I be the Veronese ideal of degree k. Then
I = (x1, . . . , xn)

k, which is generated by all the monomials in the variables x1, . . . , xn of
degree k. Hence by [13, Theorem 2.3] we have

L(I; {Lij}) = L((x1, . . . , xn)
k; {Lij}) = L((x1, . . . , xn); {Lij})k

= (x11, . . . , x1m1 , . . . , xn1, . . . , xnmn)
k.

This implies that L(I; {Lij}) is a Veronese ideal of T of degree k. Therefore L(I; {Lij})
satisfies the strong persistence property, by [4, Proposition 2.4].

As an application, we consider ideals arising from graph theory. Let G be a finite simple
graph with vertex set V (G) = [n] and edge set E(G), and let I(G) be its edge ideal in
S = K[x1, . . . , xn]. We fix a vertex j of G. Then a new graph G′ is defined by duplicating
j, that is, V (G′) = V (G) ∪ {j′} and

E(G′) = E(G) ∪ {{i, j′} : {i, j} ∈ E(G)}

where j′ is new vertex. It follows that I(G′) = I(G) + (xixj′ : {i, j} ∈ E(G)). This
duplication can be iterated. We denote by G(m1,...,mn) the graph which is obtained from G
by mj duplications of j. Then edge ideal of G(m1,...,mn) can be described as follows: Let
S(m1,...,mn) be the polynomial ring over K in the variables

x11, . . . , x1m1 , x21, . . . , x2m2 , . . . , xn1, . . . , xnmn ,
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and consider the monomial prime ideal Pj = (xj1, . . . , xjmj ) in S(m1,...,mn). Then

I(G(m1,...,mn)) =
∑

{vi,vj}∈E(G)

PiPj .

We say the ideal I(G(m1,...,mn)) is obtained from I(G) by expansion with respect to the
n-tuple (m1, . . . ,mn) with positive integer entries.

In the paper [1], Bayati et al introduced the expansion functor in the category of finitely
generated multigraded S-modules and studied some homological behaviors of this functor.

Fix an order n-tuple (m1, . . . ,mn) of positive integers. Whenever I ⊂ S is a monomial
ideal minimally generated by xa1 , . . . ,xam , the expansion of I with respect to the n-tuple

(m1, . . . ,mn), is defined by I(m1,...,mn) =
∑m

j=1

∏n
i=1 P

aj(i)
i ⊂ S(m1,...,mn) where Pi is the

monomial prime ideal (xi1, . . . , ximi) ⊆ S(m1,...,mn) and aj(i) is the i-th component of the
vector aj .

Lemma 3.7. Let G be a graph on [n]. Then I(G(m1,...,mn)) = I(G)(m1,...,mn).

Proof. Let G be a simple graph on the vertex set [n]. Fix an order n-tuple (m1, . . . ,mn) of
positive integers. Then

I(G(m1,...,mn)) =
∑

{vi,vj}∈E(G)

PiPj ,

where Pj = (xj1, . . . , xjmj ). According to [1, Lemma 1.1] we have

I(G(m1,...,mn)) =
∑

{vi,vj}∈E(G)

x
(m1,...,mn)
i x

(m1,...,mn)
j

= (
∑

{vi,vj}∈E(G)

xixj)
(m1,...,mn) = I(G)(m1,...,mn),

as desired.

In the following, we study the strong persistence property of I(G(m1,...,mn)).

Corollary 3.8. Let G be a simple graph on the vertex set [n]. Fix an order n-tuple
(m1, . . . ,mn) of positive integers. Then I(G(m1,...,mn)) satisfies the strong persistence prop-
erty.

Proof. Suppose that G is a graph with vertex set V (G) = [n]. Then by [4, Theorem 1.3]
together with [10, Lemma 2.12] now yields I(G) satisfies the strong persistence property.
Then by Lemma 3.7, [13, Theorem 2.3] and Lemma 2.3 we have

(I(G(m1,...,mn))k+1 : I(G(m1,...,mn))) = ((I(G)k+1)(m1,...,mn) : I(G)(m1,...,mn))

= (I(G)k+1 : I(G))(m1,...,mn)

= (I(G)k)(m1,...,mn)

= I(G(m1,...,mn))k

for all k ≥ 1. It then follows from [4, Theorem 1.3] that I(G(m1,...,mn)) satisfies the strong
persistence property.
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The set of associated primes of all powers of I(G(m1,...,mn)) can be described as follows:

Theorem 3.9. Let G be a simple graph on the vertex set [n]. Fix an order n-tuple
(m1, . . . ,mn) of positive integers. Then

Ass(S(m1,...,mn)/I(G(m1,...,mn)) = {P ′ : P ∈ Ass(S/I(G))}.

Proof. LetG be a graph on [n]. Then [5, Corollary 1.3.6] implies that I(G) =
∩

P∈Ass(I(G)) P

is an irredundant primary decomposition of I(G). Thus Lemma 2.2, Lemma 2.4 together
with Lemma 3.7 yield

I(G(m1,...,mn)) =
∩

P∈Ass(I(G))

P ′

is an irredundant primary decomposition of S(m1,...,mn)/I(G(m1,...,mn)), as desired.

Corollary 3.10. Let G be a simple graph on the vertex set [n]. Fix an order n-tuple
(m1, . . . ,mn) of positive integers. Then

Ass∞(I(G(m1,...,mn))) = {P ′ : P ∈ Ass∞(I(G))}.

In particular astab(I(G)) = astab(I(G(m1,...,mn))).

Proof. Lemma 3.7 with [13, Theorem 2.3] guarantees that I(G(m1,...,mn))k is a generalized
mixed product ideal induced by I(G)k for all k ≥ 1. Therefore, Theorem 3.9 yields

Ass(S(m1,...,mn)/I(G(m1,...,mn))k) = {P ′ : P ∈ Ass(S/I(G)k)}.

Thus the desired conclusion follows.

An ideal I ⊂ S is called normally torsion-free if Ass(S/Ik) ⊆ Ass(S/I) for all k ∈ N. In
the following, we study normally torsion-freeness of I(G(m1,...,mn)).

Corollary 3.11. Let G be a graph on [n]. Fix an order n-tuple (m1, . . . ,mn) of positive
integers. Then I(G(m1,...,mn)) is normally torsion-free if and only if I(G) is.

Proof. Let G be a simple graph on the vertex set [n]. Fix an order n-tuple (m1, . . . ,mn) of
positive integers. Lemma 3.7 together with [13, Theorem 2.3] now yields I(G(m1,...,mn))k is
a generalized mixed product ideal induced by I(G)k for all k ≥ 1. Let P ∈ Ass(S/I(G)k)
for an arbitrary k ∈ N. Let P ′ be the generalized mixed product ideal induced by P , where
the ideals Li,1 in K[xi1, xi2, . . . , ximi

] are Veronese ideals of degree 1. Then Theorem 3.9,
implies that P ′ ∈ Ass(S(m1,...,mn)/I(G(m1,...,mn))k). By hypothesis, we conclude that P ′ ∈
Ass(S(m1,...,mn)/I(G(m1,...,mn))) and by Theorem 3.9 we have P ∈ Ass(S/I(G)). Therefore
I(G) is a normally torsion-free of S.

Necessity follows in a similar way and the proof is complete.

Example 3.12. Let G be a bipartite graph on the vertex set V (G) = [n]. Corollary 3.10
together with [16, Theorem 5.9] now yields

Ass(S(m1,...,mn)/I(G(m1,...,mn))k) = Ass(S(m1,...,mn)/I(G(m1,...,mn)))

for all k ≥ 1. Then astab(I(G(m1,...,mn))) = 1, hence

Ass∞(S(m1,...,mn)/I(G(m1,...,mn))) = Ass(S/I(G(m1,...,mn))).
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