On value distribution of L-functions sharing finite sets with meromorphic functions

Abstract

In [17] the authors showed the existence of subsets $S \subset \mathbb{C}$ with 7 elements such that if a non-constant meromorphic function f, having finitely many poles, and an L-function in the Selberg class share S CM, then $f=L$. In this paper, we present a class of such subsets S with 5 elements. Moreover, when avoiding the hypothesis of having finitely many poles, we show a class of such subsets S with 9 elements.

Key Words: L-function, Selberg class, meromorphic function, unique range set.
2010 Mathematics Subject Classification: Primary 30D35; Secondary 11M06.

1 Introduction

In the last few years, the value distribution and uniqueness of L-functions has been studied extensively. Let us recall some basic notations and known results on the value distribution of L-functions.
An L-function in the Selberg class is defined to be a Dirichlet series

$$
L(s)=\sum_{n=0}^{\infty} \frac{a(n)}{n^{s}}
$$

satisfying the following axioms:
(i) Ramanujan hypothesis: for all positive $\epsilon, a(n) \ll n^{\epsilon}$;
(ii) Analytic continuation: there exists a non-negative integer m such that $(s-1)^{m} L(s)$ is an entire function of finite order;
(iii) Functional equation: there are positive real numbers Q, λ_{i}, and there exists a positive integer K, and there are complex numbers μ_{i}, ω with $R e \mu_{i} \geq 0$ and $|\omega|=1$ such that $\Lambda_{L}(s)=\omega \overline{\Lambda_{L}(1-\bar{s})}$, where $\Lambda_{L}(s):=L(s) Q^{s} \prod_{i=1}^{K} \Gamma\left(\lambda_{i} s+\mu_{i}\right)$.
(iv) Euler product hypothesis: $L(s)=\prod_{p} L_{p}(s)$, where

$$
L_{p}(s)=\exp \left(\sum_{k=1}^{\infty} \frac{b\left(p^{k}\right)}{p^{k s}}\right)
$$

with coefficients $b\left(p^{k}\right)$ satisfying $b\left(p^{k}\right) \ll p^{k \theta}$ for some $\theta<\frac{1}{2}$, where the product is taken over all prime numbers p.

Note that the Riemann Zeta function is an L-function in the Selberg class.
On the other hand, an L-function can be analytically continued as a meromorphic function in the complex plane \mathbb{C}. Therefore, for the problem of value distribution of L-functions sharing finite sets with meromorphic functions, one of the main tools is the Nevanlinna theory on the value distribution of meromorphic functions.

In this paper, by a meromorphic function we mean a meromorphic function in the complex plane \mathbb{C}.

Let f be a meromorphic function in $\mathbb{C}, a \in \mathbb{C} \cup \infty$. Denote by $E_{f}(a)$ the set of a-points of f counted with its multiplicities.

For a nonempty subset $S \subset \mathbb{C} \cup \infty$, define

$$
E_{f}(S)=\cup_{a \in S} E_{f}(a)
$$

Two meromorphic functions f, g are said to share S, counting multiplicities (share S $\mathrm{CM})$, if $E_{f}(S)=E_{g}(S)$.

In 1976 F . Gross ([4]) proved that there exist three finite sets $S_{j},(j=1,2,3)$, such that any two entire functions f and g, satisfying $E_{f}\left(S_{j}\right)=E_{g}\left(S_{j}\right), j=1,2,3$, must be identical. In the same paper, F. Gross posed the following question:

Question A. Can one find two (or possible even one) finite sets $S_{j},(j=1,2)$ such that any two entire functions f, g, satisfying $E_{f}\left(S_{j}\right)=E_{g}\left(S_{j}\right),(j=1,2)$, must be identical?
H. X. Yi ([14]-[16]) first gave an affirmative answer to Question A. He showed that the set $\left\{z \in \mathbb{C}: z^{n}\left(z^{p}+a\right)+b=0\right\}$ with $a, b \neq 0, n \geq p+9, p \geq 2,(n, p)=1$ is a unique range set for meromorphic functions.

In the last few years, the value distribution and uniqueness of L-functions has been studied extensively. J. Steuding ([11]) showed that an L-function is uniquely defined by its preimage of a single point $c \in \mathbb{C}$, counted with multiplicity:

Theorem A ([11]). If two L-functions with $a(1)=1$ share a complex value $c \neq \infty$ $C M$, then they are identically equal.
P. C. Hu and B . Q. $\mathrm{Li}([5])$ pointed out that one should add the condition $c \neq 1$.

In 2004, J. Steuding ([10], Theorem 4) showed that, two L-functions, satisfying some additional conditions, coincide if they share two values IM. In 2011 B. Q. Li ([8]) was able to remove these conditions.

Theorem B. Let L_{1} and L_{2} be two L-functions, satisfying the same functional equation with $a(1)=1$, and let $a_{1}, a_{2} \in \mathbb{C}$ be two distinct values. If $L_{1}^{-1}\left(a_{j}\right)=L_{2}^{-1}\left(a_{j}\right), j=1,2$, then $L_{1} \equiv L_{2}$.

In 2015 P. C. Hu and A. D. Wu ([6] obtained uniqueness theorems for L-functions, sharing a finite subset of $\mathbb{C} \backslash\{1\}$, counted with multiplicities.

Theorem $\mathbf{C}([6])$. Fix a positive integer n and take a subset $S=\left\{c_{1}, \ldots, c_{n}\right\} \subset \mathbb{C} \backslash\{1\}$ of distinct complex numbers, satisfying

$$
n+(n-1) \sigma_{1}\left(c_{1}, \ldots, c_{n}\right)+\cdots+2 \sigma_{n-2}\left(c_{1}, \ldots, c_{n}\right)+\sigma_{n-1}\left(c_{1}, \ldots, c_{n}\right) \neq 0
$$

where σ_{j} are the elementary symmetric polynomials, defined by

$$
\sigma_{j}\left(c_{1}, \ldots, c_{n}\right)=(-1)^{j} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{j} \leq n} c_{i_{1}} c_{i_{2}} \cdots c_{i_{j}}, j=1, \ldots, n-1
$$

If two L-functions with $a(1)=1$ share $S C M$, then they are identically equal.

In 2017 Q. Q. Yuan, X. M. Li, and H. X. Yi [17] posed the following question:
Question B. What can be said about the relationship between a meromorphic function f and an L-function L, if $E_{f}(S)=E_{L}(S)$?

In this direction, they obtained the following result:
Theorem D.[17] Let f be a non-constant meromorphic function having finitely many poles, and let L be an L-function. Let $P(z)=z^{n}+a z^{m}+b$, where m, n are positive integers, satisfying $n>2 m+4$, and $(m, n)=1, a, b \in \mathbb{C}$ are nonzero constants. Denote by S the zero set of P. If f and L share $S C M$, then $f=L$.

From Theorem D it follows the existence of a class of subsets S with 7 elements, which are zero sets of Yi's polynomials, such that if $E_{f}(S)=E_{L}(S)$, then $f=L$, where f is a non-constant meromorphic function having finitely many poles, L is an L-function.

In this paper we show the existence of a class of subsets S with 9 elements, such that for a non-constant meromorphic function f and an L-function L, if $E_{f}(S)=E_{L}(S)$, then $f=L$.

For the case of non-constant meromorphic functions having finitely many poles, we present a class of subsets $S \subset \mathbb{C}$ with 5 elements having the above property.

The obtained results improve the recent results due to Q.Q. Yuan, X.M. Li, and H.X. Yi [17], where the cardinalities of subsets S should be at least 7 .

Note that the subsets S considered in this paper are not zero sets of Yi's polynomials, as in [17], and our method uses the Second Fundamental Theorem of Nevanlinna theory for moving targets.

Now let us describe main results of the paper.
Let $n, m \in \mathbb{N}^{*}, a \in \mathbb{C}, a \neq 0$.
Consider polynomials $P(z)$ of the following form:

$$
P(z)=(n+m+1)\left(\sum_{i=0}^{m}\binom{m}{i} \frac{(-1)^{i}}{n+m+1-i} z^{n+m+1-i} a^{i}\right)+1=Q(z)+1,
$$

where

$$
\begin{equation*}
Q(z)=(n+m+1)\left(\sum_{i=0}^{m}\binom{m}{i} \frac{(-1)^{i}}{n+m+1-i} z^{n+m+1-i} a^{i}\right) \tag{1.1}
\end{equation*}
$$

Suppose that

$$
\begin{equation*}
(n+m+1)\left(\sum_{i=0}^{m}\binom{m}{i} \frac{(-1)^{i}}{n+m+1-i}\right) a^{n+m+1} \neq-1,-2 \tag{1.2}
\end{equation*}
$$

Then $P^{\prime}(z)=(n+m+1) z^{n}(z-a)^{m}$, and P^{\prime} has a zero at 0 of order n, a zero at a of order m. Note that, from the condition (1.2) it follows that P has only simple zeros.

We shall prove the following theorems.
Theorem 1. Let f be a non-constant meromorphic function, L be an L-function, $P(z)$ be defined as in (1.1) with conditions (1.2), $S=\{z \mid P(z)=0\}$. If $n \geq 2, m \geq 2, n+m \geq 8$, then the condition $E_{f}(S)=E_{L}(S)$ implies $f=L$.
Theorem 2. Let f be a non-constant meromorphic function, having finitely many poles, L be an L-function, $P(z)$ be defined as in (1.1) with conditions (1.2), $S=\{z \mid P(z)=0\}$. If $n-m \geq 2$, then the condition $E_{f}(S)=E_{L}(S)$ implies $f=L$.

Remark. i) From Theorem 1 it follows that there exists a class of subsets S with 9 elements such that, if $E_{f}(S)=E_{L}(S)$, then $f=L$, where f is a non-constant meromorphic function, L is an L-function.
ii) In Theorem 2 , take $m=1, n=3$, then $\operatorname{deg} P=5$, and we have a class of subsets S with 5 elements such that if $E_{f}(S)=E_{L}(S)$, then $f=L$, where f is a non-constant meromorphic function having finitely many poles.

2 Preliminaries

We recall some basic notions and known results on value distribution of meromorphic functions and L-functions. We assume that the reader is familiar with the notations in the Nevanlinna theory (see [3]).

Let $f(z)$ be a meromorphic function. The number of poles of $f(z)$ in the disc $\{|z| \leq r\}$ will be denoted by $n(r, f)$, and we assume that a pole of order m contributes m to the value of $n(r, f)$. Then the counting function is defined as

$$
N(r, f)=\int_{o}^{r} \frac{n(t, f)-n(0, f)}{t} d t+n(0, f) \log r
$$

and $\bar{N}(r, f)$ is defined in the same way with $n(t, f)$ being replaced by the number of poles of f (ignoring multiplicities) in $\{|z|<t\}$.

The approximating function is defined as

$$
m(r, f)=\frac{1}{2 \pi} \int_{o}^{2 \pi} \log ^{+}\left|f\left(r e^{i \theta}\right)\right| d \theta, \quad \log ^{+}|x|=\max (0, \log |x|)
$$

The characteristic function is defined as

$$
T(r, f)=N(r, f)+m(r, f)
$$

Then we have two Fundamental Theorems of the Nevanlinna theory:
First Fundamental Theorem. Let $f(z)$ be a non-constant meromorphic function. Then

$$
T(r, f)=T\left(r, \frac{1}{f}\right)+O(1)
$$

Second Fundamental Theorem. Let $f(z)$ be a non-constant meromorphic function, let $a_{1}, a_{2}, \cdots, a_{q}$ be distinct values in \mathbb{C}. Then we have

$$
(q-1) T(r, f) \leq \bar{N}(r, f)+\sum_{i=1}^{q} \bar{N}\left(r, \frac{1}{f-a_{i}}\right)-N_{0}\left(r, \frac{1}{f^{\prime}}\right)+S(r, f)
$$

where $N_{0}\left(r, \frac{1}{f^{\prime}}\right)$ is the counting function of those zeros of f^{\prime}, which are not zeros of function $\left(f-a_{1}\right) \ldots\left(f-a_{q}\right)$.

Recall that $S(r, f)$ denotes a quantity satisfying $S(r, f)=O\{\log (r T(r, f))\}$ for all r outside possibly a set of finite Lebesgue measure.

A meromorphic function f is said to be a small function with respect to a meromorphic function g if $T(r, f)=o(T(r, g))$ when $r \rightarrow+\infty$. For the convenience of the reader, we recall Second Fundamental Theorem of the Nevanlinna theory for moving targets (see, for example, [9]).

Lemma 1. (Second Fundamental Theorem for moving targets) Let f be a nonconstant meromorphic function and let $a_{1}, a_{2}, \cdots, a_{q}$ be distinct meromorphic functions on $\mathbb{C} \cup\{\infty\}$. Assume that a_{i} are small functions with respect to f for all $i=1, \cdots, q$. Then, the inequality

$$
(q-2) T(r, f) \leq \sum_{i=1}^{q} \bar{N}\left(r, \frac{1}{f-a_{i}}\right)+S(r, f)
$$

holds for all r, except for a set of finite Lebesgue measure.
Lemma 2. ([1]) $\sum_{i=0}^{m}\binom{m}{i} \frac{(-1)^{i}}{n+m+1-i}$ is not an integer, where $n, m \geq 1$ are integers.
In ([1], Lemma 2.2), Banerjee proved the Lemma for $n, m \geq 3$, but it is clear that the Lemma is valid for $n, m \geq 1$.

For a discrete subset $S=\left\{a_{1}, a_{2}, \ldots, a_{q}\right\} \subset \mathbb{C}$, we consider its generated polynomial of the following form

$$
\begin{equation*}
R(z)=\left(z-a_{1}\right)\left(z-a_{2}\right) \ldots\left(z-a_{q}\right) . \tag{1.3}
\end{equation*}
$$

Assume that the derivative of $R(z)$ has mutually distinct k zeros $d_{1}, d_{2}, \cdots, d_{k}$ with multiplicities $q_{1}, q_{2}, \cdots, q_{k}$, respectively. We often consider polynomials satisfying the following condition, introduced by Fujimoto ([2]):

$$
\begin{equation*}
R\left(d_{i}\right) \neq R\left(d_{j}\right), 1 \leq i<j \leq q \tag{1.4}
\end{equation*}
$$

A polynomial $P(z)$ is called a uniqueness polynomial for meromorphic (entire) functions if for arbitrary two non-constant meromorphic (entire) functions f and g, the condition $P(f)=P(g)$ implies $f=g$.

Lemma 3. ([2]) Let $R(z)$ be a polynomial of the form (1.3), satisfying the condition (1.4). Then $R(z)$ is a uniqueness polynomial if and only if

$$
\sum_{1 \leq l<j \leq k} q_{l} q_{j}>\sum_{i=1}^{k} q_{l}
$$

In particular, the above inequality is always satisfied whenever $k \geq 4$. When $k=3$ and $\max \left\{q_{1}, q_{2}, q_{3}\right\} \geq 2$, or when $k=2, \min \left\{q_{1}, q_{2}\right\} \geq 2$, and $q_{1}+q_{2} \geq 5$.

Lemma 4. ([3]). Let f be an entire function of finite order ρ. If f has no zeros, then $f(z)=e^{h(z)}$, where $h(z)$ is a polynomial of degree less than ρ.

Lemma 5. ([3]) For any non-constant meromorphic function f, we have
i) $T\left(r, f^{(k)}\right) \leq(k+1) T(r, f)+S(r, f)$;
ii) $S\left(r, f^{(k)}\right)=S(r, f)$.

Now let k be a positive integer. As usually, denote by $\bar{N}_{(k}(r, f)$ the counting function of the poles of order $\geq k$ of f, where each pole is counted only once, and by $\bar{N}\left(r, \frac{1}{f^{\prime}} ; f \neq 0\right)$ the counting function of the zeros z of f^{\prime} satisfying $f(z) \neq 0$, where each zero is counted only once. We also denote by $N_{1)}(r, f)$ the counting function of the simple poles of f. If z is a zero of f, denote by $\nu_{f}(z)$ its multiplicity.

Lemma 6. Let f, g be two non-constant meromorphic functions. Set

$$
F=\frac{1}{f}, G=\frac{1}{g}, H=\frac{F^{\prime \prime}}{F^{\prime}}-\frac{G^{\prime \prime}}{G^{\prime}} .
$$

Suppose $H \not \equiv 0$, and $E_{f}(0)=E_{g}(0)$. Then

$$
N(r, H) \leq \bar{N}_{(2}(r, f)+\bar{N}_{(2}(r, g)+\bar{N}\left(r, \frac{1}{f^{\prime}} ; f \neq 0\right)+\bar{N}\left(r, \frac{1}{g^{\prime}} ; g \neq 0\right)
$$

For the proof, see [7] (Lemma 2.3). Moreover, from the proof of Lemma 2.3 in [7] it follows that if a is a common simple zero of f and g, then $H(a)=0$.

We shall use the following lemma on L-functions.
Lemma 7. ([11]. Let L be a non-constant L-function. Then
i) $T(r, L)=\frac{d_{L}}{\pi} r \log r+O(r)$, where $d_{L}=2 \sum_{i=1}^{K} \lambda_{i}$ is the degree of L, and K, λ_{i} are respectively the positive integer and positive real number in the functional equation of the definition of L-functions;
ii) $N\left(r, \frac{1}{L}\right)=\frac{d_{L}}{\pi} r \log r+O(r), N(r, L)=S(r, L)$.

From this Lemma it follows that $N(r, L)=S(r, L)=O(\log r)$.

3 Proof of main results

3.1 More Lemmas

First we establish some lemmas.
Lemma 8. Let f be a non-constant meromorphic function. Then

$$
\bar{N}\left(r, \frac{1}{f}\right)-\frac{1}{2} N_{1)}\left(r, \frac{1}{f}\right) \leq \frac{1}{2} N\left(r, \frac{1}{f}\right)
$$

Proof. We have

$$
\begin{aligned}
\bar{N}\left(r, \frac{1}{f}\right)-\frac{1}{2} N_{1)}\left(r, \frac{1}{f}\right) & =\frac{1}{2}\left(2 \bar{N}\left(r, \frac{1}{f}\right)-N_{1)}\left(r, \frac{1}{f}\right)\right) \\
& =\frac{1}{2}\left(\bar{N}\left(r, \frac{1}{f}\right)+N_{1)}\left(r, \frac{1}{f}\right)+\bar{N}_{(2}\left(r, \frac{1}{f}\right)-N_{1)}\left(r, \frac{1}{f}\right)\right) \\
& =\frac{1}{2}\left(\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}_{(2}\left(r, \frac{1}{f}\right)\right) \leq \frac{1}{2} N\left(r, \frac{1}{f}\right)
\end{aligned}
$$

Lemma 9. Let f be a non-constant meromorphic function and L be an L-function, $P(z)$ be defined as in (1.1). If either $n \geq 3, m=1$ or $n, m \geq 2, m+n \geq 5$, and $P(f)=P(L)$, then $f=L$.

Proof. Recall that $P(z)$ is a polynomial in $\mathbb{C}[z]$, having no multiple zeros, and of degree $n+m+1$. Write

$$
P(z)=(n+m+1)\left(\sum_{i=0}^{m}\binom{m}{i} \frac{(-1)^{i}}{n+m+1-i} z^{n+m+1-i} a^{i}\right)+1=Q(z)+1
$$

where

$$
Q(z)=(n+m+1)\left(\sum_{i=0}^{m}\binom{m}{i} \frac{(-1)^{i}}{n+m+1-i} z^{n+m+1-i} a^{i}\right)
$$

We have $P^{\prime}(z)=(n+m+1) z^{n}(z-a)^{m}$. Consider the following possible cases:
Case 1. $n \geq 3, m=1$. Then

$$
P(z)=z^{n+2}-\frac{(n+2) a}{n+1} z^{n+1}+1, P^{\prime}(z)=(n+2) z^{n}(z-a)
$$

Set $b=\frac{(n+2) a}{n+1}, h=\frac{f}{L}$. Since $P(f)=P(L)$ we obtain

$$
\begin{equation*}
f^{n+2}-b f^{n+1}=L^{n+2}-b L^{n+1} \tag{3.1}
\end{equation*}
$$

It implies

$$
\begin{equation*}
L=b \frac{h^{n+1}-1}{h^{n+2}-1} \tag{3.2}
\end{equation*}
$$

Suppose that h is not a constant. Let $r_{1}, r_{2}, \ldots, r_{n+1},\left(r_{j} \neq 1, j=1,2, \cdots, n+1\right)$ be the roots of unity of degree $n+2$. Since $n+1 \geq 4$, by the Picard Theorem we always find two distinct numbers r_{i}, r_{j} such that $h-r_{i}, h-r_{j}$, have zeros. Because $r_{j}^{n+1} \neq 0$, ($r_{j} \neq 1, j=1,2, \cdots, n+1$) from (3.2) we see that L has at least two distinct poles, a contradiction, since L has only one possible pole at $s=1$.

So h is a constant. Then (3.2) implies $h^{n+2}=1$ and $h^{n+1}=1$, because L is not a constant. Therefore $h=1$ and $f=L$.

Case 2. $n, m \geq 2, n+m \geq 5$.
By Lemma 2.2, we see that $\sum_{i=0}^{m}\binom{m}{i} \frac{(-1)^{i}}{n+m+1-i}$ is not an integer. For polynomial $P(z)$, $P^{\prime}(z)=(n+m+1) z^{n}(z-a)^{m}$ has two distinct zeros $z=0, z=a$. Set

$$
A=\sum_{i=0}^{m}\binom{m}{i} \frac{(-1)^{i}}{n+m+1-i}
$$

then $A \neq 0$. We have $P(0)=Q(0)+1=1, P(a)=Q(a)+1=(n+m+1) A a^{n+m+1}+1$. Since $a \neq 0, P(a) \neq P(0)$. On the other hand, $\min \{n, m\} \geq 2, n+m \geq 5$, from Lemma 2.3 it follows that $P(z)$ is a uniqueness polynomial, and from $P(f)=P(L)$ we get $f=L$.

Lemma 10. Let f, g be two non-constant meromorphic functions, and $P(z)$ be defined as in (1.1). If $\min \{n, m\} \geq 2$ and

$$
\frac{1}{P(f)}=\frac{c}{P(g)}+c_{1}
$$

Then $c_{1}=0$.

Proof. From the proof of Lemma 3.2, we see that $P(a) \neq P(0)$, where $0, a$ are two distinct zeros of $P^{\prime}(z)$. Applying Proposition 7.1 in [2] we get $c_{1}=0$.

Lemma 11. Let f be a non-constant meromorphic function, L be an L-function, $P(z)$ be defined as in (1.1) with the condition (1.2). If either $n \geq 3, m=1$, or $n, m \geq 2$, then the condition $P(f)=c P(L)$ for a constant $c \neq 0$ implies $c=1$ and $f=L$.

Proof. From Case 2 of Lemma 3.2 we have $P(a) \neq P(0)$. Set $F=P(f), G=P(L)$. From $P(f)=c P(L), c \neq 0$, it implies

$$
\begin{equation*}
F=c G, T(r, f)=T(r, L)+O(1), \quad S(r, f)=S(r, L) \tag{3.3}
\end{equation*}
$$

First, assume that $c \neq 1$.
If $c=P(a)$, from (3.3) and $P(a) \neq 0$, we have

$$
\begin{equation*}
F-1=P(a)\left(G-\frac{1}{P(a)}\right) \tag{3.4}
\end{equation*}
$$

We consider $P(z)-\frac{1}{P(a)}$. By $P(0)=1$ and $P(a)=c \neq 1$ we obtain $P(0)-\frac{1}{P(a)} \neq 0$. Moreover, since $P(a) \neq-1$ and $P(a)=c \neq 1$ we obtain $P(a)-\frac{1}{P(a)} \neq 0$. Therefore $P(z)-\frac{1}{P(a)}$ has only simple zeros, let they be given by $b_{i}^{\prime}, i=1,2, \ldots, n+m+1$.

Note that $P(z)-1$ has a zero at 0 of order $n+1$, and m distinct simple zeros. Let $c_{i}^{\prime}, i=1,2, \ldots, m$, be distinct simple zeros of $P(z)-1$. Applying Second Fundamental Theorem to the function L and the values $b_{1}^{\prime}, b_{2}^{\prime}, \ldots, b_{n+m+1}^{\prime}$, by (3.3), (3.4) and noting that $N(r, L)=S(r, L)$ we get

$$
\begin{aligned}
(n+m) T(r, L) & \leq \bar{N}(r, L)+\sum_{i=1}^{n+m+1} \bar{N}\left(r, \frac{1}{L-b_{i}^{\prime}}\right)+S(r, L) \\
& \leq \bar{N}\left(r, \frac{1}{f}\right)+\sum_{i=1}^{m} \bar{N}\left(r, \frac{1}{f-c_{i}^{\prime}}\right)+S(r, L) \\
& \leq T(r, f)+m T(r, f)+S(r, L) \\
& =(m+1) T(r, L)+S(r, L)
\end{aligned}
$$

This is a contradiction to the assumption that $n \geq 2$.
Therefore, $c \neq P(a)$. Then from (3.3) we have

$$
\begin{equation*}
F-c=c(G-1) \tag{3.5}
\end{equation*}
$$

From $P(f)=c P(L), c \neq 0$, it implies $T(r, f)=T(r, L)+O(1)$ and $\bar{N}(r, f)=\bar{N}(r, L)$, and therefore $S(r, f)=S(r, L)$.

Now consider $P(z)-c$. By $P(0)=1$ and $c \neq 1$ we have $P(0)-c=1-c \neq 0$. Moreover $c \neq P(a)$. So $P(z)-c$ has only simple zeros, let they be given by $e_{i}, i=1,2, \ldots, n+m+1$. Now we consider $P(z)-1$. We see that $P(0)=1, P(z)-P(0)=P(z)-1$ has a zero at 0 of order $n+1$, and m distinct simple zeros. Let $t_{i}, i=1,2, \ldots, m$, be distinct simple
zeros of $P(z)-1$. Applying Second Fundamental Theorem to the function f and the values $e_{1}, e_{2}, \cdots, e_{n+m+1}$, by (3.5) we get

$$
\begin{aligned}
(n+m) T(r, f) & \leq \bar{N}(r, f)+\sum_{i=1}^{n+m+1} \bar{N}\left(r, \frac{1}{f-e_{i}}\right)+S(r, f) \\
& \leq \bar{N}\left(r, \frac{1}{L}\right)+\sum_{i=1}^{m} \bar{N}\left(r, \frac{1}{L-t_{i}}\right)+S(r, f) \\
& \leq T(r, L)+m T(r, L)+S(r, f) \\
& =(m+1) T(r, f)+S(r, f)
\end{aligned}
$$

This is a contradiction to the assumption that $n \geq 2$.
Therefore, we have $c=1$. Then

$$
\begin{equation*}
P(f)=P(L) \tag{3.6}
\end{equation*}
$$

From Lemma 3.2 we obtain $f=L$.

3.2 Proof of Theorem 1

Proof. 1. Let $n, m \geq 2, n+m \geq 9, P(z)=\left(z-a_{1}\right) \ldots\left(z-a_{n+m+1}\right)$. Set

$$
F=\frac{1}{P(f)}, G=\frac{1}{P(L)}, H=\frac{F^{\prime \prime}}{F^{\prime}}-\frac{G^{\prime \prime}}{G^{\prime}}
$$

We first prove that $H \equiv 0$.
Suppose that $H \not \equiv 0$.
Claim 1. We have
$1 /(n+m) T(r, L) \leq \bar{N}\left(r, \frac{1}{P(L)}\right)-N_{o}\left(r, \frac{1}{L^{\prime}}\right)+S(r, L)$,
where $N_{o}\left(r, \frac{1}{L^{\prime}}\right)$ is the counting function of those zeros of L^{\prime}, which are not zeros of function $L(L-a)\left(L-a_{i}\right), \quad i=1, \ldots, n+m+1$,
and
$(n+m-1) T(r, f) \leq \bar{N}\left(r, \frac{1}{P(f)}\right)-N_{o}\left(r, \frac{1}{f^{\prime}}\right)+S(r, f)$,
where $N_{o}\left(r, \frac{1}{f^{\prime}}\right)$ is the counting function of those zeros of f^{\prime}, which are not zeros of function $f(f-a)\left(f-a_{i}\right), \quad i=1, \ldots, n+m+1$.
2/ $\bar{N}\left(r, \frac{1}{P(L)}\right) \leq \frac{n+m+1}{2} T(r, L)+\frac{1}{2} N_{1)}\left(r, \frac{1}{P(L)}\right)+S(r, L)$,
and
$\bar{N}\left(r, \frac{1}{P(f)}\right) \leq \frac{n+m+1}{2} T(r, f)+\frac{1}{2} N_{1)}\left(r, \frac{1}{P(f)}\right)+S(r, f)$.
Proof. 1/ Applying Second Fundamental Theorem to L and the values $a_{1}, a_{2}, \cdots, a_{n+m+1}$,
and $0, a$, we obtain

$$
\begin{aligned}
(n+m+2) T(r, L) & \leq \bar{N}(r, L)+\bar{N}\left(r, \frac{1}{L}\right)+\bar{N}\left(r, \frac{1}{L-a}\right)+ \\
& +\sum_{i=1}^{n+m+1} \bar{N}\left(r, \frac{1}{L-a_{i}}\right)-N_{o}\left(r, \frac{1}{L^{\prime}}\right)+S(r, L)
\end{aligned}
$$

On the other hand

$$
\bar{N}(r, L)=S(r, L), \bar{N}\left(r, \frac{1}{L}\right) \leq T(r, L)+S(r, L)
$$

and

$$
\bar{N}\left(r, \frac{1}{L-a}\right) \leq T(r, L)+S(r, L), \sum_{i=1}^{n+m+1} \bar{N}\left(r, \frac{1}{L-a_{i}}\right)=\bar{N}\left(r, \frac{1}{P(L)}\right)
$$

Then we have

$$
(n+m) T(r, L) \leq \bar{N}\left(r, \frac{1}{P(L)}\right)-N_{o}\left(r, \frac{1}{L^{\prime}}\right)+S(r, L)
$$

The inequality for f is proved by a similar argument.
2/ Applying Lemma 3.1 we get

$$
\bar{N}\left(r, \frac{1}{P(L)}\right) \leq \frac{1}{2}\left[N\left(r, \frac{1}{P(L)}\right)+N_{1)}\left(r, \frac{1}{P(L)}\right)\right]
$$

On the other hand

$$
N\left(r, \frac{1}{P(L)}\right) \leq T(r, P(L))+S(r, L)=(n+m+1) T(r, L)+S(r, L)
$$

Therefore,

$$
\bar{N}\left(r, \frac{1}{P(L)}\right) \leq \frac{n+m+1}{2} T(r, L)+\frac{1}{2} N_{1)}\left(r, \frac{1}{P(L)}\right)+S(r, L)
$$

Similarly, we have the inequality for f.
Claim 1 is proved.
Claim 2. We have
1/ $(n+m) T(r, L)+S(r, L) \leq(n+m+1) T(r, f)+S(r, f)$,
$(n+m-1) T(r, f)+S(r, f) \leq(n+m+1) T(r, L)+S(r, L)$.
In particular, $S(r, f)=S(r, L)$.
2/ $N(r, H) \leq 3 T(r, f)+2 T(r, L)+N_{o}\left(r, \frac{1}{f^{\prime}}\right)+N_{o}\left(r, \frac{1}{L^{\prime}}\right)+S(r)$, where we denote $S(r)=$ $S(r, f)=S(r, L)$.

Proof of Claim 2.
1/ Applying Second Fundamental Theorem to the functions L and the values $a_{1}, a_{2}, \cdots, a_{n+m+1}$, we have

$$
(n+m) T(r, L) \leq \bar{N}(r, L)+\sum_{i=1}^{n+m+1} \bar{N}\left(r, \frac{1}{L-a_{i}}\right)+S(r, L)
$$

Noting that $\bar{N}(r, L)=S(r, L), E_{L}(S)=E_{f}(S)$, we obtain

$$
\begin{aligned}
(n+m) T(r, L)+S(r, L) & \leq \sum_{i=1}^{n+m+1} \bar{N}\left(r, \frac{1}{f-a_{i}}\right)+S(r, f) \\
& \leq(n+m+1) T(r, f)+S(r, f)
\end{aligned}
$$

Similarly,

$$
(n+m) T(r, f) \leq \bar{N}(r, f)+\sum_{i=1}^{n+m+1} \bar{N}\left(r, \frac{1}{f-a_{i}}\right)+S(r, f)
$$

it implies

$$
(n+m) T(r, f) \leq T(r, f)+\sum_{i=1}^{n+m+1} \bar{N}\left(r, \frac{1}{L-a_{i}}\right)+S(r, f)
$$

Therefore

$$
(n+m-1) T(r, f)+S(r, f) \leq(n+m+1) T(r, L)+S(r, L)
$$

Part 1 is proved.
2/ Noting that H has only simple poles, from Lemma 2.6 we obtain

$$
\begin{align*}
N(r, H) & \leq \bar{N}_{(2}(r, P(f))+\bar{N}_{(2}(r, P(L)) \\
& +\bar{N}\left(r, \frac{1}{P^{\prime}(f)} ; P(f) \neq 0\right)+\bar{N}\left(r, \frac{1}{P^{\prime}(L)} ; P(L) \neq 0\right)+S(r) \tag{3.7}
\end{align*}
$$

On the other hand,

$$
\begin{aligned}
\bar{N}(r, P(L)) & =\bar{N}(r, L)=S(r) \\
\bar{N}_{(2}(r, P(f)) & =\bar{N}(r, f) \leq T(r, f)+S(r)
\end{aligned}
$$

Then

$$
\begin{align*}
N(r, H) & \leq T(r, f)+\bar{N}\left(r, \frac{1}{P^{\prime}(f)} ; P(f) \neq 0\right) \\
& +\bar{N}\left(r, \frac{1}{P^{\prime}(L)} ; P(L) \neq 0\right)+S(r) \tag{3.8}
\end{align*}
$$

Moreover, we have

$$
\begin{align*}
\bar{N}\left(r, \frac{1}{[P(f)]^{\prime}} ; P(f) \neq 0\right) & =\bar{N}\left(r, \frac{1}{f^{n}}\right) \\
& +\bar{N}\left(r, \frac{1}{(f-a)^{m}} ;\left(f-a_{1}\right) \cdots\left(f-a_{n+m+1}\right) \neq 0\right) \\
& \leq \bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{f-a}\right)+N_{o}\left(r, \frac{1}{f^{\prime}}\right) \\
& \leq 2 T(r, f)+N_{o}\left(r, \frac{1}{f^{\prime}}\right)+S(r) \tag{3.9}
\end{align*}
$$

Similarly,

$$
\begin{equation*}
\bar{N}\left(r, \frac{1}{[P(L)]^{]}} ; P(L) \neq 0\right) \leq 2 T(r, L)+N_{o}\left(r, \frac{1}{L^{\prime}}\right)+S(r) \tag{3.10}
\end{equation*}
$$

Claim 2 follows from inequalities (3.8), (3.9), (3.10).
Claim 3. We have

$$
\begin{aligned}
& 1 /(n+m-3) T(r, L) \leq 3 T(r, f)-N_{o}\left(r, \frac{1}{L^{\prime}}\right)+N_{o}\left(r, \frac{1}{f^{\prime}}\right)+S(r) \\
& 2 /(n+m-6) T(r, f) \leq 2 T(r, L)-N_{o}\left(r, \frac{1}{f^{\prime}}\right)+N_{o}\left(r, \frac{1}{L^{\prime}}\right)+S(r)
\end{aligned}
$$

Proof. Note that from Lemma 2.6, if a is a common simple zero of $P(f)$ and $P(L)$, then $H(a)=0$. Therefore, from this and by First Fundamental Theorem we get:

$$
\begin{align*}
N_{1)}\left(r, \frac{1}{P(L)}\right) & =N_{1)}\left(r, \frac{1}{P(f)}\right) \leq N\left(r, \frac{1}{H}\right) \leq T(r, H)+0(1) \\
& =N(r, H)+m(r, H)+O(1) \tag{3.11}
\end{align*}
$$

By the logarithmic derivative lemma, we have

$$
\begin{align*}
m(r, H) & =m\left(r, \frac{F^{\prime \prime}}{F^{\prime}}-\frac{G^{\prime \prime}}{G^{\prime}}\right) \\
& \leq m\left(r, \frac{F^{\prime \prime}}{F^{\prime}}\right)+m\left(r, \frac{G^{\prime \prime}}{G^{\prime}}\right)+O(1) \\
& =S\left(r, F^{\prime}\right)+S\left(r, G^{\prime}\right)+O(1) \tag{3.12}
\end{align*}
$$

On the other hand, from Lemma 2.5 we get

$$
S\left(r, F^{\prime}\right)=S(r, F), S\left(r, G^{\prime}\right)=S(r, G)
$$

Moreover,

$$
\begin{aligned}
& T(r, F)=T(r, P(f))+O(1)=(m+n+1) T(r, f)+O(1) \\
& T(r, G)=T(r, P(L))+O(1)=(m+n+1) T(r, L)+O(1)
\end{aligned}
$$

Therefore,

$$
S(r, f)=S(r, F)=S\left(r, F^{\prime}\right), S(r, L)=S(r, G)=S\left(r, G^{\prime}\right)
$$

Combining (3.11) and (3.12) we get

$$
\begin{equation*}
N_{1)}\left(r, \frac{1}{P(L)}\right)=N_{1)}\left(r, \frac{1}{P(f)}\right) \leq N(r, H)+S(r) \tag{3.13}
\end{equation*}
$$

1/ From Claim 1 we have

$$
\begin{aligned}
& (n+m) T(r, L) \leq \bar{N}\left(r, \frac{1}{P(L)}\right)-N_{o}\left(r, \frac{1}{L^{\prime}}\right)+S(r) \\
& (n+m) T(r, L) \leq \frac{n+m+1}{2} T(r, L)+\frac{1}{2} N_{1)}\left(r, \frac{1}{P(L)}\right)-N_{o}\left(r, \frac{1}{L^{\prime}}\right)+S(r)
\end{aligned}
$$

and then

$$
\begin{equation*}
(n+m-1) T(r, L) \leq N_{1)}\left(r, \frac{1}{P(L)}\right)-2 N_{o}\left(r, \frac{1}{L^{\prime}}\right)+S(r) \tag{3.14}
\end{equation*}
$$

From this and (3.13) and noting that

$$
N(r, H) \leq 3 T(r, f)+2 T(r, L)+N_{o}\left(r, \frac{1}{f^{\prime}}\right)+N_{o}\left(r, \frac{1}{L^{\prime}}\right)+S(r)
$$

we obtain

$$
(n+m-3) T(r, L) \leq 3 T(r, f)-N_{o}\left(r, \frac{1}{L^{\prime}}\right)+N_{o}\left(r, \frac{1}{f^{\prime}}\right)+S(r)
$$

Part 1 is proved.
2/ From Claim 1 and Part 2 of Claim 2, by using similar arguments as in Part 1, we obtain Part 2.

Now we use Claims 1, 2, 3 to obtain a contradiction, and complete the proof of $H \equiv 0$. Claim 2 and Claim 3 give us

$$
\begin{aligned}
& (n+m-3) T(r, L) \leq 3 \cdot \frac{n+m+1}{n+m-1} T(r, L)-N_{o}\left(r, \frac{1}{L^{\prime}}\right)+N_{o}\left(r, \frac{1}{f^{\prime}}\right)+S(r) \\
& (n+m-6) \frac{n+m}{n+m+1} T(r, L) \leq 2 T(r, L)-N_{o}\left(r, \frac{1}{f^{\prime}}\right)+N_{o}\left(r, \frac{1}{L^{\prime}}\right)+S(r)
\end{aligned}
$$

Adding two inequalities and using straight calculations, we obtain:

$$
\left(2(n+m)+\frac{7}{n+m+1}-\frac{6}{n+m-1}-15\right) T(r, L) \leq S(r)
$$

This contradicts $n+m \geq 8$.
We have proved $H \equiv 0$. Therefore,

$$
\frac{1}{P(f)}=\frac{c}{P(L)}+c_{1}
$$

for some constants $c(\neq 0)$ and c_{1}. By Lemma 3.3 we obtain $c_{1}=0$.
Thus, there is a constant $C \neq 0$ such that $P(f)=C P(L)$. From Lemma 3.4, we obtain $f \equiv L$. Theorem 1 is proved.

3.3 Proof of Theorem 2

We denote the order of a meromorphic function f by $\rho(f)$. Write

$$
P(z)=(n+m+1)\left(\sum_{i=0}^{m}\binom{m}{i} \frac{(-1)^{i}}{n+m+1-i} z^{n+m+1-i} a^{i}\right)+1=z^{n+1} R(z)+1
$$

where $R(z)$ is a polynomial of degree m. Recall that $n-m \geq 2, m \geq 1$, and then either $n \geq 3, m=1$, or $n \geq 4, m \geq 2, n+m \geq 6$.

From Part 1 of Claim 2 of Theorem 1 we get:

$$
\begin{align*}
(n+m) T(r, L)+S(r, L) & \leq(n+m+1) T(r, f)+S(r, f) \\
(n+m-1) T(r, f)+S(r, f) & \leq(n+m+1) T(r, L)+S(r, L) \tag{3.15}
\end{align*}
$$

In particular, $S(r, f)=S(r, L)$.
From this and because f has finitely many poles, by Lemma 2.7 we obtain

$$
\begin{equation*}
N(r, L)=S(r, L), N(r, L)=S(r)=N(r, f), \rho(f)=\rho(L)=1 \tag{3.16}
\end{equation*}
$$

Since f and L share S CM, we have

$$
\begin{equation*}
\frac{P(f)}{P(L)}=\frac{f^{n+1} R(f)+1}{L^{n+1} R(L)+1}=R_{1} e^{\varphi(z)} \tag{3.17}
\end{equation*}
$$

where $R_{1} \not \equiv 0$ is a rational function and $\varphi(z)$ is an entire function. Then $\rho\left(R_{1}\right)=0$, by ([3], Theorem 1.4) and (3.16) we get

$$
\begin{equation*}
\rho(P(f))=\rho(f)=1, \rho(P(L))=\rho(L)=1 \tag{3.18}
\end{equation*}
$$

From (3.17), (3.18), and Lemma 2.4 we have

$$
\begin{gathered}
\rho\left(e^{\varphi(z)}\right)=\rho\left(\frac{P(f)}{R_{1} P(L)}\right) \leq \max \left\{\rho\left(R_{1}\right), \rho(P(f)), \rho(P(L))\right\}=\rho(L)=1 \\
\varphi(z)=A z+B
\end{gathered}
$$

where A, B are constants. Set

$$
h(z)=R_{1} e^{\varphi(z)} .
$$

Then we have

$$
T(r, h) \leq T\left(r, R_{1}\right)+T\left(r, e^{\varphi}\right)=\frac{|A|}{\pi} r+O(\log r) .
$$

Therefore, $T(r, h)=O(r)$. By Lemma 2.7 we have

$$
T(r, L)=\frac{d_{L}}{\pi} r \log r+O(r)
$$

where d_{L} is the degree of L and $d_{L}>0$ if $L \not \equiv 1$ ([11]). So we have $T(r, h)=o(T(r, L))$. Because $S(r, L)=O(\log r)($ Lemma 2.7), and $S(r, f)=O(\log r)$ as f is of finite oder ([12]), from (3.15) we obtain:

$$
\begin{aligned}
(n+m) T(r, L)+S(r, L) & \leq(n+m+1) T(r, f)+S(r, f) \\
(n+m-1) T(r, f)+S(r, f) & \leq(n+m+1) T(r, L)+S(r, L)
\end{aligned}
$$

where the inequalities hold except for a set of finite Lebesgue measure.
Therefore

$$
\frac{n+m}{n+m+2} T(r, L) \leq T(r, f) \leq \frac{n+m+2}{n+m-1} T(r, L)
$$

except for a set of finite Lebesgue measure.

It follows $T(r, h)=o(T(r, f)$. This means that h is a small function for the functions f and L.

From (3.17) it implies

$$
f^{n+1} R(f)-(h-1)=h L^{n+1} R(L)
$$

We shall prove that $h \equiv 1$.
Suppose $h \not \equiv 1$. Applying Second Fundamental Theorem for $f^{n+1} R(f)$ and the small functions $\infty, 0, h-1$, and noting that $T(r, L)=T(r, f)+S(r), \quad N(r, L)=S(r)=N(r, f)$, and the degree of R is m, we get

$$
\begin{aligned}
& (n+m+1) T(r, f)+O(1)=T\left(r, f^{n+1} R(f)\right) \\
& \leq \bar{N}\left(r, f^{n+1} R(f)\right)+\bar{N}\left(r, \frac{1}{f^{n+1} R(f)}\right)+\bar{N}\left(r, \frac{1}{f^{n+1} R(f)-(h-1)}\right)+S(r) \\
& \leq \bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{R(f)}\right)+\bar{N}\left(r, \frac{1}{L^{n+1} R(L)}\right)+S(r) \\
& \leq(1+m) T(r, f)+\bar{N}(r, L)+\bar{N}\left(r, \frac{1}{L}\right)+N\left(r, \frac{1}{R(L)}\right)+S(r) \\
& \leq(1+m)(T(r, f)+T(r, L))+S(r) \\
& \leq(2 m+2) T(r, f)+S(r)
\end{aligned}
$$

Therefore

$$
(n-m-1) T(r, f) \leq S(r)
$$

This contradicts to $n-m \geq 2$. Thus $h \equiv 1$, and

$$
f^{n+1} R(f)+1=L^{n+1} R(L)+1
$$

i.e. $P(f)=P(L)$. From Lemma 3.2, we obtain $f \equiv L$. Theorem 2 is proved.

Acknowledgement The authors are very grateful to the referees for carefully reading the manuscript and for the valuable suggestions.

References

[1] A. Banerjee, A new class of strong uniqueness polynomial satisfying Fujimoto's conditions, Ann. Acad. Sci. Fenn. Math., 40, 465-474 (2014).
[2] H. Fujimoto, On uniqueness of meromorphic functions sharing finite sets, Amer. J. Math., 122, 1175-1203 (2000).
[3] A. A. Goldberg, I. V. Ostrovskin, Value Distribution of Meromorphic Functions, Translations of Mathematical Monographs, 236, (2008).
[4] F. Gross, Factorization of meromorphic functions and some open problems, Complex Analysis (Proc. Conf . Univ. Kentucky, Lexington, Ky. 1976), Lecture Notes in Math., Springer, Berlin, 599, 51-69 (1977).
[5] P. C. Hu, B. Q. Li, A simple proof and strengthening of a uniqueness theorem for L-functions, Canad. Math. Bull., 59, 119-122 (2016).
[6] P. C. Hu, A. D. Wu, Uniqueness theorems for Dirichlet series, Bull. Aust. Math. Soc., 91, 389-399 (2015).
[7] H. K. Ha, H. A. Vu, X. L. Nguyen, Strong uniqueness polynomials of degree 6 and unique range sets for powers of meromorphic functions, Inter. J. Math., (2018), doi:10.1142/S0129167X18500374.
[8] B. Q. Li, A uniqueness theorem for Dirichlet series satisfying a Riemann type functional equation, Adv. Math., 226, 4198-4211 (2011).
[9] N. Steinmetz, Nevanlinna Theory, Normal Families, and Algebraic Differential Equations, Springer (2017).
[10] J. Steuding, How many values can L-functions share?, Fizikos ir mathematicos faculteto, 7, 70-81 (2014).
[11] J. Steuding, Value-Distribution of L-functions, Lecture Notes in Mathematics, Springer, 1877 (2007).
[12] C. C. Yang, H. X. Yi, Uniqueness Theory of Meromorphic Functions, Math. Appl., Kluwer Academic P., Dordrecht, 557 (2003).
[13] C. C. Yang, On deficiencies of differential polynomials, Math. Z., 116, 197-204 (1970).
[14] H. X. Yi, Uniqueness of meromorphic functions and question of Gross, Sci. China (Ser. A), 37, 802-813 (1994).
[15] H. X. Yi, A question of Gross and the uniqueness of entire functions, Nagoya Math. J., 138, 169-177 (1995).
[16] H. X. Yi, On a question of Gross concerning uniqueness of entire functions, Bull. Austral. Math. Soc., 57, 343-349 (1998).
[17] Q. Q. Yuan, X. M. Li, H. X. Yi, Value distribution of L-functions and uniqueness questions of F. Gross, Lith. Math. J., 58 (2), 249-262 (2018).

Received: 15.07.2021
Revised: 16.03.2023
Accepted: 27.03.2023
${ }^{(1)}$ Thang Long Institute of Mathematics and Applied Sciences, Hanoi, Vietnam E-mail: hhkhoai@math.ac.vn
${ }^{(2)}$ Hai Duong Pedagogical College, Hai Duong, Vietnam and Thang Long Institute of Mathematics and Applied Sciences, Hanoi, Vietnam

E-mail: vuhoaianmai@yahoo.com
${ }^{(3)}$ Thai Nguyen University, Thai Nguyen, Vietnam E-mail: phuongnd@tnu.edu.vn

