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Abstract

In [17] the authors showed the existence of subsets S C C with 7 elements such
that if a non-constant meromorphic function f, having finitely many poles, and an
L-function in the Selberg class share S CM, then f = L. In this paper, we present a
class of such subsets S with 5 elements. Moreover, when avoiding the hypothesis of
having finitely many poles, we show a class of such subsets S with 9 elements.
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1 Introduction

In the last few years, the value distribution and uniqueness of L-functions has been studied
extensively. Let us recall some basic notations and known results on the value distribution
of L-functions.

An L—function in the Selberg class is defined to be a Dirichlet series

)
ns
n=0

satisfying the following axioms:

(i) Ramanujan hypothesis: for all positive €, a(n) < n¢;

(ii) Analytic continuation: there exists a non-negative integer m such that (s —1)™L(s)
is an entire function of finite order;

(iii) Functional equation: there are positive real numbers @, \;, and there exists a
positive integer K, and there are complex numbers p;,w with Rep; > 0 and |w| = 1 such
that Ap(s) = wAL(1 —3), where Ap(s) := L(s)Q* Hfil T(N\is + ;).

(iv) Euler product hypothesis: L(s) =[], Ly(s), where

o0 k
Lyfs) = exp (3 220y,

ks
k=1 p

with coefficients b(p*) satisfying b(p*) < p*? for some 6 < %, where the product is taken
over all prime numbers p.
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Note that the Riemann Zeta function is an L-function in the Selberg class.

On the other hand, an L-function can be analytically continued as a meromorphic func-
tion in the complex plane C. Therefore, for the problem of value distribution of L-functions
sharing finite sets with meromorphic functions, one of the main tools is the Nevanlinna
theory on the value distribution of meromorphic functions.

In this paper, by a meromorphic function we mean a meromorphic function in the
complex plane C.

Let f be a meromorphic function in C, a € CU oo. Denote by Ef(a) the set of a-points
of f counted with its multiplicities.

For a nonempty subset S C C U oo, define

Ef(S) = UueSEf(a)~

Two meromorphic functions f, g are said to share S, counting multiplicities (share S
CM), if E¢(S) = Ey4(S).

In 1976 F. Gross ([4]) proved that there exist three finite sets S;, (j = 1, 2, 3), such that
any two entire functions f and g, satisfying E;(S;) = E4(S;), j = 1,2, 3, must be identical.
In the same paper, F. Gross posed the following question:

Question A. Can one find two (or possible even one) finite sets S;,(j = 1,2) such that
any two entire functions f,g, satisfying E;(S;) = E4(S;), (7 = 1,2), must be identical?

H. X. Yi ([14]-][16]) first gave an affirmative answer to Question A. He showed that the
set {z€ C:2"(2P +a)+b=0} witha,b#0,n>p+9,p>2, (n,p) =1 is a unique range
set for meromorphic functions.

In the last few years, the value distribution and uniqueness of L-functions has been
studied extensively. J. Steuding ([11]) showed that an L-function is uniquely defined by its
preimage of a single point ¢ € C, counted with multiplicity:

Theorem A ([11]). If two L—functions with a(1) = 1 share a complex value ¢ # oo
CM, then they are identically equal.

P. C. Hu and B. Q. Li ([5]) pointed out that one should add the condition ¢ # 1.

In 2004, J. Steuding ([10], Theorem 4) showed that, two L-functions, satisfying some
additional conditions, coincide if they share two values IM. In 2011 B. Q. Li ([8]) was able
to remove these conditions.

Theorem B. Let Ly and Ly be two L-functions, satisfying the same functional equation
with a(1) = 1, and let aj,az € C be two distinct values. If Li'(a;) = Ly (a;),j = 1,2,
then L1 = Lo.

In 2015 P. C. Hu and A. D. Wu ([6] obtained uniqueness theorems for L-functions,
sharing a finite subset of C\ {1}, counted with multiplicities.

Theorem C ([6]). Fiz a positive integer n and take a subset S = {c1,...,cn} C C\ {1}
of distinct complex numbers, satisfying

n+ (n—1)o1(c1,.sen) + -+ 20-2(c1,..es¢n) + on_1(c1, ..., cn) #0,

where o; are the elementary symmetric polynomials, defined by

, = J .y -
oj(cr, ..y en) = (—1) E CirCiy - CijyJj = 1,..,n — 1.
1<i1 <<+ <i;<n

If two L-functions with a(1) =1 share S CM, then they are identically equal.
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In 2017 Q. Q. Yuan, X. M. Li, and H. X. Yi [17] posed the following question:

Question B. What can be said about the relationship between a meromorphic function
f and an L-function L, if E;(S) = EL(S)?

In this direction, they obtained the following result:

Theorem D.[17] Let f be a non-constant meromorphic function having finitely many
poles, and let L be an L-function. Let P(z) = z"4+az™+b, where m,n are positive integers,
satisfying n > 2m + 4, and (m,n)=1, a,b € C are nonzero constants. Denote by S the zero
set of P. If f and L share S CM, then f = L.

From Theorem D it follows the existence of a class of subsets S with 7 elements, which
are zero sets of Yi’s polynomials, such that if E(S) = EL(S), then f = L, where f is a
non-constant meromorphic function having finitely many poles, L is an L-function.

In this paper we show the existence of a class of subsets S with 9 elements, such that
for a non-constant meromorphic function f and an L-function L, if E;(S) = E(S), then
f=L.

For the case of non-constant meromorphic functions having finitely many poles, we
present a class of subsets S C C with 5 elements having the above property.

The obtained results improve the recent results due to Q.Q. Yuan, X.M. Li, and H.X.
Yi [17], where the cardinalities of subsets S should be at least 7.

Note that the subsets S considered in this paper are not zero sets of Yi’s polynomials,
as in [17], and our method uses the Second Fundamental Theorem of Nevanlinna theory for
moving targets.

Now let us describe main results of the paper.

Let n,m e N*, a € C, a # 0.

Consider polynomials P(z) of the following form:

(=)

P(z)=mn+m+1)(>_ (") TG 1= Q(2) + 1,

= n+m+1—1
where
" m (_1)1 n+m+1—i 1
=0

Suppose that

" (1)
(ot + DO ) T

Ya" Tt £ 1 -2, (1.2)

Then P'(z) = (n4m +1)z"(z — a)™, and P’ has a zero at 0 of order n, a zero at a of
order m. Note that, from the condition (1.2) it follows that P has only simple zeros.

We shall prove the following theorems.
Theorem 1. Let f be a non-constant meromorphic function, L be an L-function, P(z) be
defined as in (1.1) with conditions (1.2), S = {z|P(z) =0}. Ifn>2,m >2,n+m > 8,
then the condition E¢(S) = Er(S) implies f = L.
Theorem 2. Let f be a non-constant meromorphic function, having finitely many poles,
L be an L-function, P(z) be defined as in (1.1) with conditions (1.2), S = {z|P(z) = 0}. If
n—m > 2, then the condition E;(S) = Er(S) implies f = L.
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Remark. i) From Theorem 1 it follows that there exists a class of subsets S with 9
elements such that, if E¢(S) = EL(S), then f = L, where f is a non-constant meromorphic
function, L is an L-function.

ii) In Theorem 2, take m = 1,n = 3, then deg P = 5, and we have a class of subsets
S with 5 elements such that if E;(S) = Er(S), then f = L, where f is a non-constant
meromorphic function having finitely many poles.

2 Preliminaries

We recall some basic notions and known results on value distribution of meromorphic
functions and L-functions. We assume that the reader is familiar with the notations in the
Nevanlinna theory (see [3]).

Let f(z) be a meromorphic function. The number of poles of f(z) in the disc {|z|] < r}
will be denoted by n(r, f), and we assume that a pole of order m contributes m to the value
of n(r, f). Then the counting function is defined as

/T n(tvf)_n(ovf)
t

o

N(r,f) = dt + n(0, f)logr,

and N (r, f) is defined in the same way with n(t, f) being replaced by the number of poles
of f (ignoring multiplicities) in {|z| < t}.
The approzimating function is defined as

1 27 i
mirf) =5 [ log® f(re™)lds,  log™ o] = maax(0,log]a]),

The characteristic function is defined as

T(r, f) =N(r,f)+m(r,f).

Then we have two Fundamental Theorems of the Nevanlinna theory:
First Fundamental Theorem. Let f(z) be a non-constant meromorphic function. Then

T(r, f) = T(r, %) + 0(1).

!
Second Fundamental Theorem. Let f(z) be a non-constant meromorphic function, let
ai, a2, ,aq be distinct values in C. Then we have
_ . 1 1
(q—1)T(r,f) < N(r, f) +ZN(T’W) _NO(TvT) +S(r, f),
i=1 v

where Ny(r, %) is the counting function of those zeros of f', which are not zeros of function
(f = @) (f — ay).

Recall that S(r, f) denotes a quantity satisfying S(r, f) = O{log(rT'(r, f))} for all r
outside possibly a set of finite Lebesgue measure.

A meromorphic function f is said to be a small function with respect to a meromorphic
function g if T(r, f) = o(T(r,g)) when r — +oo. For the convenience of the reader, we
recall Second Fundamental Theorem of the Nevanlinna theory for moving targets (see, for
example, [9]).
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Lemma 1. (Second Fundamental Theorem for moving targets) Let f be a non-
constant meromorphic function and let a1,asz,- - ,aq be distinct meromorphic functions on
CU{oc0}. Assume that a; are small functions with respect to f for alli=1,---,q. Then,
the inequality

q
(¢— ) < Z )+ S(r, f)
holds for all r, except for a set of finite Lebesque measure.

Lemma 2. ([1]) >, (7)% is not an integer, where n,m > 1 are integers.

In ([1], Lemma 2.2), Banerjee proved the Lemma for n,m > 3, but it is clear that the
Lemma is valid for n,m > 1.

For a discrete subset S = {a1,az2,...,aq} C C, we consider its generated polynomial of
the following form

R(z) = (z — a1)(z — a2)...(z — ag). (1.3)

Assume that the derivative of R(z) has mutually distinct k zeros dy,ds, - - - , dj, with multi-

plicities q1,qa, - - - , gk, respectively. We often consider polynomials satisfying the following
condition, introduced by Fujimoto ([2]):

R(d;) # R(d;),1 <i<j<q. (1.4)

A polynomial P(z) is called a uniqueness polynomial for meromorphic (entire) functions
if for arbitrary two non-constant meromorphic (entire) functions f and g, the condition

P(f) = P(g) implies f =g .

Lemma 3. ([2]) Let R(z) be a polynomial of the form (1.3), satisfying the condition (1.4).
Then R(z) is a uniqueness polynomial if and only if

Z Qiq; > Z(H

1<i<j<k

In particular, the above inequality is always satisfied whenever k > 4. When k = 3 and
max{q1,q2,q3} = 2, or when k =2, min{q1,q2} > 2, and q1 + ¢2 = 5.

Lemma 4. ([3]). Let f be an entire function of finite order p. If f has no zeros, then
f(2) = M2 where h(z) is a polynomial of degree less than p.

Lemma 5. ([3]) For any non-constant meromorphic function f, we have
i) T(r, f) < (k+ D)T(r, f) + S(r, f);
i) S(r, f¥) = S(r, f).

Now let k be a positive integer. As usually, denote by N(k(r, f) the counting function
of the poles of order > k of f, where each pole is counted only once, and by N (r, %; f#0)
the counting function of the zeros z of f/ satisfying f(z) # 0, where each zero is counted

only once. We also denote by Ny)(r, f) the counting function of the simple poles of f. If 2
is a zero of f, denote by v,(z) its multiplicity.
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Lemma 6. Let f,g be two non-constant meromorphic functions. Set

g
F/ G/ M
Suppose H # 0, and E;(0) = E4(0). Then

N@iﬂsﬁmnﬂ+ﬁdnm+ﬁw§af¢m+ﬁm§m¢oy

For the proof, see [7] (Lemma 2.3). Moreover, from the proof of Lemma 2.3 in [7] it
follows that if @ is a common simple zero of f and g, then H(a) = 0.
We shall use the following lemma on L-functions.

Lemma 7. ([11]. Let L be a non-constant L-function. Then

i) T(r,L) = dTLTlogr + O(r), where df, = ZEfil A; is the degree of L, and K, \; are
respectively the positive integer and positive real number in the functional equation of the
definition of L-functions;

i) N(r, 1) = %rlogr +O(r), N(r,L) = S(r, L).

From this Lemma it follows that N(r, L) = S(r, L) = O(logr).

3 Proof of main results

3.1 More Lemmas

First we establish some lemmas.

Lemma 8. Let f be a non-constant meromorphic function. Then

N ) = 3N ) < 5N 7).
Proof. We have
N 5) - 3Nl ) = 5 @N( 5) = N )
= 5N )+ N, 1)+ Nealro ) = N 5)
11—, 1 — 1 1 1
= §(N(7"7?) +N(2(7”a})) < §N(r, })-

Lemma 9. Let f be a non-constant meromorphic function and L be an L-function, P(z)
be defined as in (1.1). If eithern >3, m=1 orn,m >2 m+n >5, and P(f) = P(L),
then f = L.
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Proof. Recall that P(z) is a polynomial in C[z], having no multiple zeros, and of degree
n+m+ 1. Write

P(z)=(n+m+ 1)(2 (7)%2"“”“4&) +1=0Q(2)+1,

where

Q(z)=(n+m+ 1)(2 (T)n—kin_i—lk)ll—izn+mﬂiiai)'

=0

We have P'(z) = (n+m + 1)z"(z — a)™. Consider the following possible cases:
Case 1. n >3, m = 1. Then

P(z) = 2" — %Z”Jﬂ +1, P(2) = (n+2)z"(z — a).
Set b= %, h = % Since P(f) = P(L) we obtain
FrA2 gl = 2 e (3.1)
It implies .
L= b%. (3.2)

Suppose that h is not a constant. Let ri,ro, ...y, (r; # 1, j = 1,2,--- ,n+ 1) be
the roots of unity of degree n + 2. Since n + 1 > 4, by the Picard Theorem we always
find two distinct numbers r;,7; such that h — r;, h — r;, have zeros. Because r;”“l # 0,
(rj #1, j =1,2,--- ,n+1) from (3.2) we see that L has at least two distinct poles, a
contradiction, since L has only one possible pole at s = 1.

So h is a constant. Then (3.2) implies h"*2? = 1 and h"*! = 1, because L is not a
constant. Therefore h =1 and f = L.
Case 2. n,m > 2, n+m > 5.

By Lemma 2.2, we see that > . (Zn) % is not an integer. For polynomial P(z),

P'(2) = (n+m +1)2"(z — a)™ has two distinct zeros z = 0, z = a. Set

(Gl

U m
A= ,zo(i )n+m+1—i’

2

then A # 0. We have P(0) = Q(0) +1=1, P(a) = Q(a) + 1 = (n +m + 1)Aa™ ™! + 1.
Since a # 0, P(a) # P(0). On the other hand, min{n,m} > 2, n+m > 5, from Lemma 2.3
it follows that P(z) is a uniqueness polynomial, and from P(f) = P(L) we get f =L. O

Lemma 10. Let f,g be two non-constant meromorphic functions, and P(z) be defined as
in (1.1). If min{n,m} > 2 and

1 c
PN Pl T

Then c1 = 0.
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Proof. From the proof of Lemma 3.2, we see that P(a) # P(0), where 0, a are two distinct
zeros of P (z). Applying Proposition 7.1 in [2] we get ¢; = 0. a

Lemma 11. Let f be a non-constant meromorphic function, L be an L-function, P(z) be
defined as in (1.1) with the condition (1.2). If either n > 3, m =1, or n,m > 2, then the
condition P(f) = cP(L) for a constant ¢ # 0 implies c=1 and f = L.

Proof. From Case 2 of Lemma 3.2 we have P(a) # P(0). Set F = P(f),G = P(L). From
P(f)=cP(L),c# 0, it implies

F=cG, T(r,f)=T(r,L)+0(1), S(r f)=S(r,L). (3.3)

First, assume that ¢ # 1.
If ¢ = P(a), from (3.3) and P(a) # 0, we have

1

F=1=P@(G - 55

). (3.4)

We consider P(z) — ;- By P(0) = 1 and P(a) = ¢ # 1 we obtain P(0) — pisy # 0.
Moreover, since P(a) # —1 and P(a) = ¢ # 1 we obtain P(a) — % # 0. Therefore
P(z) — Pla) has only simple zeros, let they be given by b;,i =1,2,...,n+m+1.

1
Note that P(z) — 1 has a zero at 0 of order n + 1, and m distinct simple zeros. Let
¢t = 1,2,...,m, be distinct simple zeros of P(z) — 1. Applying Second Fundamental
Theorem to the function L and the values by, by, ..., bln+m+1a by (3.3), (3.4) and noting that

N(r,L) = S(r, L) we get

- n+m+17 1
(n + m)T(Ta L) < N(TvL) + Z N(’I‘, m) + S(Tv L),
1=1 ¢
< N(r, %) + g;N(r, m) +S(r, L),

<T(r,f)+mI(r, f)+S(r,L)
=(m+ 1)T(r,L)+ S(r,L).

This is a contradiction to the assumption that n > 2.
Therefore, ¢ # P(a). Then from (3.3) we have

F—c=c¢G-1). (3.5)

From P(f) = c¢P(L),c # 0, it implies T(r, f) = T(r, L) + O(1) and N(r, f) = N(r, L), and
therefore S(r, f) = S(r, L).

Now consider P(z) —c. By P(0) =1 and ¢ # 1 we have P(0) —c¢ = 1 — ¢ # 0. Moreover
¢ # P(a). So P(z) — ¢ has only simple zeros, let they be given by e;,i =1,2,...,n+m + 1.
Now we consider P(z) — 1. We see that P(0) = 1,P(z) — P(0) = P(z) — 1 has a zero
at 0 of order n + 1, and m distinct simple zeros. Let ¢;,7 = 1,2, ..., m, be distinct simple
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zeros of P(z)—1. Applying Second Fundamental Theorem to the function f and the values
€1,€2, ", Entm+t1, by (35) we get

n+m+1
(n+m)T(r, f) < N(r, )+ Z N(r (r, f)

<N Z ) +S(r,f)

<T(r,L) —|—mT(r L)+ S(r, f)

=(m+1)T(r,f)+S(r, f).
This is a contradiction to the assumption that n > 2.

Therefore, we have ¢ = 1. Then
P(f)=P(L) (3.6)

From Lemma 3.2 we obtain f = L. 0

3.2 Proof of Theorem 1

Proof. 1. Let n,m > 2, n4+m > 9, P(z) = (2 — a1)...(2 — @ngm+1). Set

1 1 F G
F=— =—— H= — .
P(f)’ ¢ P(L)’ F G’
We first prove that H = 0.
Suppose that H # 0.
Claim 1. We have ) )
1 T(r,L) < N(r, =) — No(r, — L
/(n+m) (T7 ) — (T? P(L)) 0(’/‘, L/) +S(T7 )’

where N, ( ,) is the counting function of those zeros of L', which are not zeros of
function L(L )( —a;), t=1..n+m+1,
and

(n+m—1)T(r, f) < N(r Y S0 ),

1
P(f) f
where Ny(r, %) is the counting function of those zeros of f , which are not zeros of

function f(f —a)(f —ai), i=1,...,n+m+ 1.

2/ N(r, P(lL)) <t ’; e )+ %Nl)(r, ﬁ

) = No(

)+ S(r, L),

and
— 1 n+m+1 1 1
N(r, P(f)) < 5 T(Taf)+§N1)(T7W)+S(Taf)'

Proof. 1/ Applying Second Fundamental Theorem to L and the values a1, as, -+, Gpntm1,
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and 0, a, we obtain

1 — 1

(n+m+2)T(r,L) < N(r,L) + N(r, Z) + N(r, m)+
n+m-+1 1
£ W) =Nl ) 450 ),

On the other hand

N(r,L) = S(r, 1), N(r, 1) < T(r, L) + §(r, L),
and
— 1 SR | — 1
N(r,——)<T(r,L L N =N .
Then we have ) )
< N(r ——)— _
(n+m)T(r,L) < N(r, P(L)) Noy(r, L,)—i—S(r,L)
The inequality for f is proved by a similar argument.
2/ Applying Lemma 3.1 we get
— 1 1 1 1
N < =[N N

On the other hand

N(r, P(lL)) <T(r, P(L)) + S(r, L) = (n+m + )T(r, L) + S(r, L.
Therefore,
N(T, P(]-L)) < n + 72)1 + 1T<T7 L) + %Nl)(T, ﬁ) + S(T,L)

Similarly, we have the inequality for f.
Claim 1 is proved.
Claim 2. We have
1/ (n+m)T(r,L)+ S(r,L) < (n+m+1)T(r, f)+ S(r, f),
(n4+m—=1)T(r, f)+S(r, f) < (n+m+1)T(r,L) + S(r,L).
In particular, S(r, f) = S(r,L).

2/ N(r,H) <3T(r, f)+2T(r, L)+ No(r
S(r, f)=S(r,L).
Proof of Claim 2.

1/ Applying Second Fundamental Theorem to the functions L and the values aj, as, - , Gpnymy1,
we have

1 1
) ?)-&-No(n f)—i—S(r), where we denote S(r) =

n+m-+1

(n4+m)T(r,L) < Z N(r

+S(r L).
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Noting that N(r,L) = S(r,L), Er(S) = E¢(S), we obtain

n+m+1
(n+m)T(r,L)+ S(r,L) < Z N(r,

<(n+m+D)T(r, )+ S, f).

)+S(r f)

—a;

Similarly,
o n+m+17 1
(n+m)T(r, f) <N(r, f)+ Y, N(r ) TS,
i=1 v
it implies
n+m+17

(4 mT D) ST+ 3 Bl p=) + 500,

Therefore

(m+m—)Tr f)+ S f)<n+m+1)T(r,L)+ S(r,L).

Part 1 is proved.
2/ Noting that H has only simple poles, from Lemma 2.6 we obtain

N(r,H) < N(r, P(f) + Na(r, P(L))

On the other hand,

Then

+ N, P%L) . P(L) #0) + S(r).
Moreover, we have
N(r, s P(f) £ 0) = N(r, =)
POT T
N i (= @) = i) £0)
<N )+ N + Nl )
<T@, f) + Nor, =) + S(r).

f/

);P(L)#O)Jrs(r)-

275

(3.9)
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Similarly,

N, ﬁ; P(L) £ 0) < 2T(r, L) + N, (r, %) +S(r). (3.10)

Claim 2 follows from inequalities (3.8), (3.9), (3.10).
Claim 3. We have

1/ (n4m —3)T(r,L) < 3T(r, f) — No(r, %) + N, (r, i,) + S(r).

I
Q/ (n +m — G)T(T‘, f) < 2T(""a L) - NO(T, %) + No(’l", %) + S(T)

Proof. Note that from Lemma 2.6, if a is a common simple zero of P(f) and P(L), then
H(a) = 0. Therefore, from this and by First Fundamental Theorem we get:

1 1 1
W) = Ny(r, W) < N(r,57) <T(r, H) +0(1)

= N(r, H) +m(r, H) + O(1). (3.11)

Nl) ('I’,

By the logarithmic derivative lemma, we have

1" 1"

FG
F’ G

" "

< m(r, %) + m(r, ek )+ O(1)

=S(r,F)+S(r,G)+0(). (3.12)

m(r, H) = m(r,

On the other hand, from Lemma 2.5 we get
S(r,F')=S(r,F), 8(r,G") = 8(r,G).

Moreover,
T(r,F)=T(rP(f)+01)=(m+n+1)T(r,f)+ O(1),
T(r,G)=T(r,P(L))+O0(1) = (m+n+1)T(r,L) + O(1).

Therefore,

S(r,f)=8(r.F)=8(r.F), S(r,L) = S(r,G) = S(r.G).
Combining (3.11) and (3.12) we get

Nyy(r, ) = Niy(r, 5—) < N(r,H) + S(r). (3.13)

P(L)

1/ From Claim 1 we have

(n+ )T L) <N (r, ) = Nl ) + 50).
n+m+1 1 1 1

(n+m)T(r,L) < T(r,L) + iNl)(r’ ) — No(r, =)+ S(r),

2 P(L)
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and then
1

(n+m —1)T(r, L) < Nyy(r, ) — 2N, (r, f) + S(r). (3.14)

1
P(L)

From this and (3.13) and noting that
1 1
N(?“, H) < 3T(Ta f) + ZT(Tv L) + No(rv ?) + No(rv ?) + S(T)a

we obtain

(n+m—3)T(r,L) <3T(r, f) — No(r, %) + No(r, %) + S(r).
Part 1 is proved.
2/ From Claim 1 and Part 2 of Claim 2, by using similar arguments as in Part 1, we
obtain Part 2.
Now we use Claims 1, 2, 3 to obtain a contradiction, and complete the proof of H = 0.
Claim 2 and Claim 3 give us

n+m+1 1 1

_ <g it - — N.(r. — —
(n+m—-3)T(r,L) <3 T 1T("r, L) (T, L,) + N,(r, f,) + S(r),

n+m 1 1
) < - = - ,
(n+m 6)n+m+ 1T(r,L) < 2T(r,L) — Noy(r, f,)JrNo(r, L,)+S(r)

Adding two inequalities and using straight calculations, we obtain:

7 6
n+m+1 n+m-—-1

(2(n+m) + —15)T(r,L) < S(r).
This contradicts n +m > 8.
We have proved H = 0. Therefore,

1 c n
- -~ L.
P(f) — P(L) "
for some constants ¢ (# 0) and ¢;. By Lemma 3.3 we obtain ¢; = 0.
Thus, there is a constant C' # 0 such that P(f) = CP(L). From Lemma 3.4, we obtain
f = L. Theorem 1 is proved. U

3.3 Proof of Theorem 2
We denote the order of a meromorphic function f by p(f). Write
m - _1)i o
P(Z) — (’I’L +m 4+ 1)(2 ( )#Zn—‘rm—‘rl—zai) +1= Zn+1R(Z) +1,

‘ t’n4+m4+1—1
=0

where R(z) is a polynomial of degree m. Recall that n —m > 2, m > 1, and then either
n>3, m=1lorn>4 m>2 n+m>6.
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From Part 1 of Claim 2 of Theorem 1 we get:

(n+m)T(r,L)+ S(r,L)
(n+m—1)T(r, f)+S(r, f)

(n+m+1)T(r, f)+ S(r, f),
(n+m+1)T(r,L)+ S(r,L). (3.15)

IN A

In particular, S(r, f) = S(r, L).
From this and because f has finitely many poles, by Lemma 2.7 we obtain

N(Tv L) - S(T,L),N(T,L) - S(T) - N(Ta f)a p(f) - p(L) =1 (316>
Since f and L share S CM, we have

P(f) _ f"R(f)+1

= — cp(z) 1
P(L) ~ LR(L)£1 - ¢ (3.17)

where Ry # 0 is a rational function and ¢(z) is an entire function. Then p(R;) = 0, by
([3], Theorem 1.4) and (3.16) we get

p(P(f)) = p(f) =1, p(P(L)) = p(L) = 1. (3.18)
From (3.17), (3.18), and Lemma 2.4 we have
P(f)

p(e?®)) = p( ) < max{p(R1), p(P(f)), p(P(L))} = p(L) = 1,

¢(z) = Az + B,

R P(L)

where A, B are constants. Set
h(z) = Rye?®.

Then we have
|A|

T(r,h) <T(r,Ry) +T(r,e?) = —r+ O(logr).
7r

Therefore, T(r,h) = O(r). By Lemma 2.7 we have
dr,
T(r,L) = —rlogr+ O(r),
7T

where dy, is the degree of L and dy, > 0 if L # 1 ([11]). So we have T'(r,h) = o(T(r,L)).
Because S(r, L) = O(logr) (Lemma 2.7), and S(r, f) = O(logr) as f is of finite oder ([12]),
from (3.15) we obtain:

(n+m)T(r,L)+ S(r,L)
(n+m—1)T(r, )+ S(r, f)

(n+m+1)T(r, f)+ S(r, f),

<
<(n+m+1)T(r,L)+ S(r,L),

where the inequalities hold except for a set of finite Lebesgue measure.

Therefore N 42
n+m n-+m
—T(r,L) <T < - =
a2 (r,L) <T(r, f)

T(r, L
“—n+m-—1 ( ’ )7
except for a set of finite Lebesgue measure.
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It follows T'(r, h) = o(T'(r, f). This means that h is a small function for the functions f
and L.
From (3.17) it implies

"M R(f) — (h—1) = hRL" M R(L).

We shall prove that h = 1.

Suppose h # 1. Applying Second Fundamental Theorem for f"T'R(f) and the small
functions oo, 0, h — 1, and noting that T'(r, L) = T(r, f) + S(r), N(r,L) = S(r) = N(r, f),
and the degree of R is m, we get

(n+m+1DT(r, ) +0Q1) = T(r, frT R(f))

)+ ( !

"R — (h— 1)
)+ 5(r)

< N(r, f"TIR(f)) + N(r

1
PR )+ S(r)

1 1 _
?)—i-N(r,W)—i—N(r

(1+m)T(r,f) + N(r,L) + N(r, %) + N(r,

IN

N(r, f)+ N(r, : L”%R(L)

IA

T+m)(T(r,f)+T(r, L))+ S(r)

<
<@2m+2)T(r, f)+ S(r).

Therefore
(n—m—V)T(r, f) < S(r).
This contradicts to n —m > 2. Thus h = 1, and
"M R(f)+1=L""R(L) + 1,

i.e. P(f)= P(L). From Lemma 3.2, we obtain f = L. Theorem 2 is proved.
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