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Abstract

In [17] the authors showed the existence of subsets S ⊂ C with 7 elements such
that if a non-constant meromorphic function f, having finitely many poles, and an
L-function in the Selberg class share S CM, then f = L. In this paper, we present a
class of such subsets S with 5 elements. Moreover, when avoiding the hypothesis of
having finitely many poles, we show a class of such subsets S with 9 elements.
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1 Introduction

In the last few years, the value distribution and uniqueness of L-functions has been studied
extensively. Let us recall some basic notations and known results on the value distribution
of L-functions.
An L−function in the Selberg class is defined to be a Dirichlet series

L(s) =

∞∑
n=0

a(n)

ns
,

satisfying the following axioms:
(i) Ramanujan hypothesis: for all positive ϵ, a(n) ≪ nϵ;
(ii) Analytic continuation: there exists a non-negative integer m such that (s− 1)mL(s)

is an entire function of finite order;
(iii) Functional equation: there are positive real numbers Q, λi, and there exists a

positive integer K, and there are complex numbers µi,ω with Reµi ≥ 0 and |ω| = 1 such

that ΛL(s) = ωΛL(1− s), where ΛL(s) := L(s)Qs
∏K

i=1 Γ(λis+ µi).
(iv) Euler product hypothesis: L(s) =

∏
p Lp(s), where

Lp(s) = exp
( ∞∑
k=1

b(pk)

pks
)
,

with coefficients b(pk) satisfying b(pk) ≪ pkθ for some θ < 1
2 , where the product is taken

over all prime numbers p.
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Note that the Riemann Zeta function is an L-function in the Selberg class.
On the other hand, an L-function can be analytically continued as a meromorphic func-

tion in the complex plane C. Therefore, for the problem of value distribution of L-functions
sharing finite sets with meromorphic functions, one of the main tools is the Nevanlinna
theory on the value distribution of meromorphic functions.

In this paper, by a meromorphic function we mean a meromorphic function in the
complex plane C.

Let f be a meromorphic function in C, a ∈ C∪∞. Denote by Ef (a) the set of a-points
of f counted with its multiplicities.

For a nonempty subset S ⊂ C ∪∞, define

Ef (S) = ∪a∈SEf (a).

Two meromorphic functions f, g are said to share S, counting multiplicities (share S
CM), if Ef (S) = Eg(S).

In 1976 F. Gross ([4]) proved that there exist three finite sets Sj , (j = 1, 2, 3), such that
any two entire functions f and g, satisfying Ef (Sj) = Eg(Sj), j = 1, 2, 3, must be identical.
In the same paper, F. Gross posed the following question:

Question A. Can one find two (or possible even one) finite sets Sj , (j = 1, 2) such that
any two entire functions f, g, satisfying Ef (Sj) = Eg(Sj), (j = 1, 2), must be identical?

H. X. Yi ([14]-[16]) first gave an affirmative answer to Question A. He showed that the
set {z∈ C : zn(zp + a) + b = 0} with a, b ̸= 0, n ≥ p+ 9, p ≥ 2, (n, p) = 1 is a unique range
set for meromorphic functions.

In the last few years, the value distribution and uniqueness of L-functions has been
studied extensively. J. Steuding ([11]) showed that an L-function is uniquely defined by its
preimage of a single point c ∈ C, counted with multiplicity:

Theorem A ([11]). If two L−functions with a(1) = 1 share a complex value c ̸= ∞
CM, then they are identically equal.

P. C. Hu and B. Q. Li ([5]) pointed out that one should add the condition c ̸= 1.
In 2004, J. Steuding ([10], Theorem 4) showed that, two L-functions, satisfying some

additional conditions, coincide if they share two values IM. In 2011 B. Q. Li ([8]) was able
to remove these conditions.

Theorem B. Let L1 and L2 be two L-functions, satisfying the same functional equation
with a(1) = 1, and let a1, a2 ∈ C be two distinct values. If L−1

1 (aj) = L−1
2 (aj), j = 1, 2,

then L1 ≡ L2.
In 2015 P. C. Hu and A. D. Wu ([6] obtained uniqueness theorems for L-functions,

sharing a finite subset of C \ {1}, counted with multiplicities.
Theorem C ([6]). Fix a positive integer n and take a subset S = {c1, ..., cn} ⊂ C \ {1}

of distinct complex numbers, satisfying

n+ (n− 1)σ1(c1, ..., cn) + · · ·+ 2σn−2(c1, ..., cn) + σn−1(c1, ..., cn) ̸= 0,

where σj are the elementary symmetric polynomials, defined by

σj(c1, ..., cn) = (−1)j
∑

1≤i1<i2<···<ij≤n

ci1ci2 · · · cij , j = 1, ..., n− 1.

If two L-functions with a(1) = 1 share S CM, then they are identically equal.
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In 2017 Q. Q. Yuan, X. M. Li, and H. X. Yi [17] posed the following question:
Question B. What can be said about the relationship between a meromorphic function

f and an L-function L, if Ef (S) = EL(S)?
In this direction, they obtained the following result:
Theorem D.[17] Let f be a non-constant meromorphic function having finitely many

poles, and let L be an L-function. Let P (z) = zn+azm+b, where m,n are positive integers,
satisfying n > 2m+ 4, and (m,n)=1, a, b ∈ C are nonzero constants. Denote by S the zero
set of P. If f and L share S CM, then f = L.

From Theorem D it follows the existence of a class of subsets S with 7 elements, which
are zero sets of Yi’s polynomials, such that if Ef (S) = EL(S), then f = L, where f is a
non-constant meromorphic function having finitely many poles, L is an L-function.

In this paper we show the existence of a class of subsets S with 9 elements, such that
for a non-constant meromorphic function f and an L-function L, if Ef (S) = EL(S), then
f = L.

For the case of non-constant meromorphic functions having finitely many poles, we
present a class of subsets S ⊂ C with 5 elements having the above property.

The obtained results improve the recent results due to Q.Q. Yuan, X.M. Li, and H.X.
Yi [17], where the cardinalities of subsets S should be at least 7.

Note that the subsets S considered in this paper are not zero sets of Yi’s polynomials,
as in [17], and our method uses the Second Fundamental Theorem of Nevanlinna theory for
moving targets.

Now let us describe main results of the paper.
Let n,m ∈ N∗, a ∈ C, a ̸= 0.
Consider polynomials P (z) of the following form:

P (z) = (n+m+ 1)
( m∑
i=0

(m
i

) (−1)i

n+m+ 1− i
zn+m+1−iai

)
+ 1 = Q(z) + 1,

where

Q(z) = (n+m+ 1)
( m∑
i=0

(m
i

) (−1)i

n+m+ 1− i
zn+m+1−iai

)
. (1.1)

Suppose that

(n+m+ 1)(

m∑
i=0

(m
i

) (−1)i

n+m+ 1− i
)an+m+1 ̸= −1,−2. (1.2)

Then P
′
(z) = (n + m + 1)zn(z − a)m, and P

′
has a zero at 0 of order n, a zero at a of

order m. Note that, from the condition (1.2) it follows that P has only simple zeros.
We shall prove the following theorems.

Theorem 1. Let f be a non-constant meromorphic function, L be an L-function, P (z) be
defined as in (1.1) with conditions (1.2), S = {z|P (z) = 0}. If n ≥ 2,m ≥ 2, n +m ≥ 8 ,
then the condition Ef (S) = EL(S) implies f = L.
Theorem 2. Let f be a non-constant meromorphic function, having finitely many poles,
L be an L-function, P (z) be defined as in (1.1) with conditions (1.2), S = {z|P (z) = 0}. If
n−m ≥ 2, then the condition Ef (S) = EL(S) implies f = L.
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Remark. i) From Theorem 1 it follows that there exists a class of subsets S with 9
elements such that, if Ef (S) = EL(S), then f = L, where f is a non-constant meromorphic
function, L is an L-function.

ii) In Theorem 2, take m = 1, n = 3, then degP = 5, and we have a class of subsets
S with 5 elements such that if Ef (S) = EL(S), then f = L, where f is a non-constant
meromorphic function having finitely many poles.

2 Preliminaries

We recall some basic notions and known results on value distribution of meromorphic
functions and L-functions. We assume that the reader is familiar with the notations in the
Nevanlinna theory (see [3]).

Let f(z) be a meromorphic function. The number of poles of f(z) in the disc {|z| ≤ r}
will be denoted by n(r, f), and we assume that a pole of order m contributes m to the value
of n(r, f). Then the counting function is defined as

N(r, f) =

∫ r

o

n(t, f)− n(0, f)

t
dt+ n(0, f) log r,

and N(r, f) is defined in the same way with n(t, f) being replaced by the number of poles
of f (ignoring multiplicities) in {|z| < t}.

The approximating function is defined as

m(r, f) =
1

2π

∫ 2π

o

log+ |f(reiθ)|dθ, log+ |x| = max(0, log |x|).

The characteristic function is defined as

T (r, f) = N(r, f) +m(r, f).

Then we have two Fundamental Theorems of the Nevanlinna theory:
First Fundamental Theorem. Let f(z) be a non-constant meromorphic function. Then

T (r, f) = T (r,
1

f
) +O(1).

Second Fundamental Theorem. Let f(z) be a non-constant meromorphic function, let
a1, a2, · · · , aq be distinct values in C. Then we have

(q − 1)T (r, f) ≤ N(r, f) +

q∑
i=1

N(r,
1

f − ai
)−N0(r,

1

f ′ ) + S(r, f),

where N0(r,
1
f ′ ) is the counting function of those zeros of f ′, which are not zeros of function

(f − a1)...(f − aq).
Recall that S(r, f) denotes a quantity satisfying S(r, f) = O{log(rT (r, f))} for all r

outside possibly a set of finite Lebesgue measure.
A meromorphic function f is said to be a small function with respect to a meromorphic

function g if T (r, f) = o(T (r, g)) when r → +∞. For the convenience of the reader, we
recall Second Fundamental Theorem of the Nevanlinna theory for moving targets (see, for
example, [9]).
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Lemma 1. (Second Fundamental Theorem for moving targets) Let f be a non-
constant meromorphic function and let a1, a2, · · · , aq be distinct meromorphic functions on
C ∪ {∞}. Assume that ai are small functions with respect to f for all i = 1, · · · , q. Then,
the inequality

(q − 2)T (r, f) ≤
q∑

i=1

N(r,
1

f − ai
) + S(r, f)

holds for all r, except for a set of finite Lebesgue measure.

Lemma 2. ([1])
∑m

i=0

(m
i

) (−1)i

n+m+1−i is not an integer, where n,m ≥ 1 are integers.

In ([1], Lemma 2.2), Banerjee proved the Lemma for n,m ≥ 3, but it is clear that the
Lemma is valid for n,m ≥ 1.

For a discrete subset S = {a1, a2, ..., aq} ⊂ C, we consider its generated polynomial of
the following form

R(z) = (z − a1)(z − a2)...(z − aq). (1.3)

Assume that the derivative of R(z) has mutually distinct k zeros d1, d2, · · · , dk with multi-
plicities q1, q2, · · · , qk, respectively. We often consider polynomials satisfying the following
condition, introduced by Fujimoto ([2]):

R(di) ̸= R(dj), 1 ≤ i < j ≤ q. (1.4)

A polynomial P (z) is called a uniqueness polynomial for meromorphic (entire) functions
if for arbitrary two non-constant meromorphic (entire) functions f and g, the condition
P (f) = P (g) implies f = g .

Lemma 3. ([2]) Let R(z) be a polynomial of the form (1.3), satisfying the condition (1.4).
Then R(z) is a uniqueness polynomial if and only if

∑
1≤l<j≤k

qlqj >

k∑
i=1

ql.

In particular, the above inequality is always satisfied whenever k ≥ 4. When k = 3 and
max{q1, q2, q3} ≥ 2, or when k = 2, min{q1, q2} ≥ 2, and q1 + q2 ≥ 5.

Lemma 4. ([3]). Let f be an entire function of finite order ρ. If f has no zeros, then
f(z) = eh(z), where h(z) is a polynomial of degree less than ρ.

Lemma 5. ([3]) For any non-constant meromorphic function f, we have
i) T (r, f (k)) ≤ (k + 1)T (r, f) + S(r, f);
ii) S(r, f (k)) = S(r, f).

Now let k be a positive integer. As usually, denote by N (k(r, f) the counting function

of the poles of order ≥ k of f , where each pole is counted only once, and by N(r, 1
f ′ ; f ̸= 0)

the counting function of the zeros z of f
′
satisfying f(z) ̸= 0, where each zero is counted

only once. We also denote by N1)(r, f) the counting function of the simple poles of f . If z
is a zero of f , denote by νf (z) its multiplicity.
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Lemma 6. Let f, g be two non-constant meromorphic functions. Set

F =
1

f
, G =

1

g
, H =

F
′′

F ′ − G
′′

G′ .

Suppose H ̸≡ 0, and Ef (0) = Eg(0). Then

N(r,H) ≤ N (2(r, f) +N (2(r, g) +N(r,
1

f ′ ; f ̸= 0) +N(r,
1

g′ ; g ̸= 0).

For the proof, see [7] (Lemma 2.3). Moreover, from the proof of Lemma 2.3 in [7] it
follows that if a is a common simple zero of f and g, then H(a) = 0.

We shall use the following lemma on L-functions.

Lemma 7. ([11]. Let L be a non-constant L-function. Then

i) T (r, L) = dL

π r log r + O(r), where dL = 2
∑K

i=1 λi is the degree of L, and K,λi are
respectively the positive integer and positive real number in the functional equation of the
definition of L-functions;

ii) N(r, 1
L ) =

dL

π r log r +O(r), N(r, L) = S(r, L).

From this Lemma it follows that N(r, L) = S(r, L) = O(log r).

3 Proof of main results

3.1 More Lemmas

First we establish some lemmas.

Lemma 8. Let f be a non-constant meromorphic function. Then

N(r,
1

f
)− 1

2
N1)(r,

1

f
) ≤ 1

2
N(r,

1

f
).

Proof. We have

N(r,
1

f
)− 1

2
N1)(r,

1

f
) =

1

2
(2N(r,

1

f
)−N1)(r,

1

f
))

=
1

2
(N(r,

1

f
) +N1)(r,

1

f
) +N (2(r,

1

f
)−N1)(r,

1

f
))

=
1

2
(N(r,

1

f
) +N (2(r,

1

f
)) ≤ 1

2
N(r,

1

f
).

Lemma 9. Let f be a non-constant meromorphic function and L be an L-function, P (z)
be defined as in (1.1). If either n ≥ 3, m = 1 or n,m ≥ 2, m + n ≥ 5, and P (f) = P (L),
then f = L.
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Proof. Recall that P (z) is a polynomial in C[z], having no multiple zeros, and of degree
n+m+ 1. Write

P (z) = (n+m+ 1)
( m∑
i=0

(m
i

) (−1)i

n+m+ 1− i
zn+m+1−iai

)
+ 1 = Q(z) + 1,

where

Q(z) = (n+m+ 1)
( m∑
i=0

(m
i

) (−1)i

n+m+ 1− i
zn+m+1−iai

)
.

We have P
′
(z) = (n+m+ 1)zn(z − a)m. Consider the following possible cases:

Case 1. n ≥ 3, m = 1. Then

P (z) = zn+2 − (n+ 2)a

n+ 1
zn+1 + 1, P

′
(z) = (n+ 2)zn(z − a).

Set b =
(n+ 2)a

n+ 1
, h =

f

L
. Since P (f) = P (L) we obtain

fn+2 − bfn+1 = Ln+2 − bLn+1. (3.1)

It implies

L = b
hn+1 − 1

hn+2 − 1
. (3.2)

Suppose that h is not a constant. Let r1, r2, ..., rn+1, (rj ̸= 1, j = 1, 2, · · · , n + 1) be
the roots of unity of degree n + 2. Since n + 1 ≥ 4, by the Picard Theorem we always
find two distinct numbers ri, rj such that h − ri, h − rj , have zeros. Because rn+1

j ̸= 0,
(rj ̸= 1, j = 1, 2, · · · , n + 1) from (3.2) we see that L has at least two distinct poles, a
contradiction, since L has only one possible pole at s = 1.

So h is a constant. Then (3.2) implies hn+2 = 1 and hn+1 = 1, because L is not a
constant. Therefore h = 1 and f = L.

Case 2. n,m ≥ 2, n+m ≥ 5.

By Lemma 2.2, we see that
∑m

i=0

(m
i

) (−1)i

n+m+1−i is not an integer. For polynomial P (z),

P
′
(z) = (n+m+ 1)zn(z − a)m has two distinct zeros z = 0, z = a. Set

A =

m∑
i=0

(m
i

) (−1)i

n+m+ 1− i
,

then A ̸= 0. We have P (0) = Q(0) + 1 = 1, P (a) = Q(a) + 1 = (n+m+ 1)Aan+m+1 + 1.
Since a ̸= 0, P (a) ̸= P (0). On the other hand, min{n,m} ≥ 2, n+m ≥ 5, from Lemma 2.3
it follows that P (z) is a uniqueness polynomial, and from P (f) = P (L) we get f = L.

Lemma 10. Let f, g be two non-constant meromorphic functions, and P (z) be defined as
in (1.1). If min{n,m} ≥ 2 and

1

P (f)
=

c

P (g)
+ c1.

Then c1 = 0.
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Proof. From the proof of Lemma 3.2, we see that P (a) ̸= P (0), where 0, a are two distinct
zeros of P

′
(z). Applying Proposition 7.1 in [2] we get c1 = 0.

Lemma 11. Let f be a non-constant meromorphic function, L be an L-function, P (z) be
defined as in (1.1) with the condition (1.2). If either n ≥ 3,m = 1, or n,m ≥ 2, then the
condition P (f) = cP (L) for a constant c ̸= 0 implies c = 1 and f = L.

Proof. From Case 2 of Lemma 3.2 we have P (a) ̸= P (0). Set F = P (f), G = P (L). From
P (f) = cP (L), c ̸= 0, it implies

F = cG, T (r, f) = T (r, L) +O(1), S(r, f) = S(r, L). (3.3)

First, assume that c ̸= 1.
If c = P (a), from (3.3) and P (a) ̸= 0, we have

F − 1 = P (a)(G− 1

P (a)
). (3.4)

We consider P (z) − 1
P (a) . By P (0) = 1 and P (a) = c ̸= 1 we obtain P (0) − 1

P (a) ̸= 0.

Moreover, since P (a) ̸= −1 and P (a) = c ̸= 1 we obtain P (a) − 1
P (a) ̸= 0. Therefore

P (z)− 1
P (a) has only simple zeros, let they be given by b

′

i, i = 1, 2, ..., n+m+ 1.

Note that P (z) − 1 has a zero at 0 of order n + 1, and m distinct simple zeros. Let
c
′

i, i = 1, 2, ...,m, be distinct simple zeros of P (z) − 1. Applying Second Fundamental

Theorem to the function L and the values b
′

1, b
′

2, ..., b
′

n+m+1, by (3.3), (3.4) and noting that
N(r, L) = S(r, L) we get

(n+m)T (r, L) ≤ N(r, L) +

n+m+1∑
i=1

N(r,
1

L− b
′
i

) + S(r, L),

≤ N(r,
1

f
) +

m∑
i=1

N(r,
1

f − c
′
i

) + S(r, L),

≤ T (r, f) +mT (r, f) + S(r, L)

= (m+ 1)T (r, L) + S(r, L).

This is a contradiction to the assumption that n ≥ 2.
Therefore, c ̸= P (a). Then from (3.3) we have

F − c = c(G− 1). (3.5)

From P (f) = cP (L), c ̸= 0, it implies T (r, f) = T (r, L) +O(1) and N(r, f) = N(r, L), and
therefore S(r, f) = S(r, L).

Now consider P (z)− c. By P (0) = 1 and c ̸= 1 we have P (0)− c = 1− c ̸= 0. Moreover
c ̸= P (a). So P (z)− c has only simple zeros, let they be given by ei, i = 1, 2, ..., n+m+ 1.
Now we consider P (z) − 1. We see that P (0) = 1, P (z) − P (0) = P (z) − 1 has a zero
at 0 of order n + 1, and m distinct simple zeros. Let ti, i = 1, 2, ...,m, be distinct simple
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zeros of P (z)−1. Applying Second Fundamental Theorem to the function f and the values
e1, e2, · · · , en+m+1, by (3.5) we get

(n+m)T (r, f) ≤ N(r, f) +

n+m+1∑
i=1

N(r,
1

f − ei
) + S(r, f)

≤ N(r,
1

L
) +

m∑
i=1

N(r,
1

L− ti
) + S(r, f)

≤ T (r, L) +mT (r, L) + S(r, f)

= (m+ 1)T (r, f) + S(r, f).

This is a contradiction to the assumption that n ≥ 2.

Therefore, we have c = 1. Then

P (f) = P (L) (3.6)

From Lemma 3.2 we obtain f = L.

3.2 Proof of Theorem 1

Proof. 1. Let n,m ≥ 2, n+m ≥ 9, P (z) = (z − a1)...(z − an+m+1). Set

F =
1

P (f)
, G =

1

P (L)
,H =

F
′′

F ′ − G
′′

G′ .

We first prove that H ≡ 0.

Suppose that H ̸≡ 0.

Claim 1. We have

1/ (n+m)T (r, L) ≤ N(r,
1

P (L)
)−No(r,

1

L′ ) + S(r, L),

where No(r,
1
L′ ) is the counting function of those zeros of L

′
, which are not zeros of

function L(L− a)(L− ai), i = 1, ..., n+m+ 1,

and

(n+m− 1)T (r, f) ≤ N(r,
1

P (f)
)−No(r,

1

f ′ ) + S(r, f),

where No(r,
1
f ′ ) is the counting function of those zeros of f

′
, which are not zeros of

function f(f − a)(f − ai), i = 1, ..., n+m+ 1.

2/ N(r,
1

P (L)
) ≤ n+m+ 1

2
T (r, L) +

1

2
N1)(r,

1

P (L)
) + S(r, L),

and

N(r,
1

P (f)
) ≤ n+m+ 1

2
T (r, f) +

1

2
N1)(r,

1

P (f)
) + S(r, f).

Proof. 1/ Applying Second Fundamental Theorem to L and the values a1, a2, · · · , an+m+1,
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and 0, a, we obtain

(n+m+ 2)T (r, L) ≤ N(r, L) +N(r,
1

L
) +N(r,

1

L− a
)+

+

n+m+1∑
i=1

N(r,
1

L− ai
)−No(r,

1

L′ ) + S(r, L).

On the other hand

N(r, L) = S(r, L), N(r,
1

L
) ≤ T (r, L) + S(r, L),

and

N(r,
1

L− a
) ≤ T (r, L) + S(r, L),

n+m+1∑
i=1

N(r,
1

L− ai
) = N(r,

1

P (L)
).

Then we have

(n+m)T (r, L) ≤ N(r,
1

P (L)
)−No(r,

1

L′ ) + S(r, L).

The inequality for f is proved by a similar argument.
2/ Applying Lemma 3.1 we get

N(r,
1

P (L)
) ≤ 1

2
[N(r,

1

P (L)
) +N1)(r,

1

P (L)
)].

On the other hand

N(r,
1

P (L)
) ≤ T (r, P (L)) + S(r, L) = (n+m+ 1)T (r, L) + S(r, L).

Therefore,

N(r,
1

P (L)
) ≤ n+m+ 1

2
T (r, L) +

1

2
N1)(r,

1

P (L)
) + S(r, L).

Similarly, we have the inequality for f.
Claim 1 is proved.
Claim 2. We have
1/ (n+m)T (r, L) + S(r, L) ≤ (n+m+ 1)T (r, f) + S(r, f),
(n+m− 1)T (r, f) + S(r, f) ≤ (n+m+ 1)T (r, L) + S(r, L).
In particular, S(r, f) = S(r, L).

2/ N(r,H) ≤ 3T (r, f)+2T (r, L)+No(r,
1

f ′ )+No(r,
1

L′ )+S(r), where we denote S(r) =

S(r, f) = S(r, L).
Proof of Claim 2.
1/ Applying Second Fundamental Theorem to the functions L and the values a1, a2, · · · , an+m+1,

we have

(n+m)T (r, L) ≤ N(r, L) +

n+m+1∑
i=1

N(r,
1

L− ai
) + S(r, L).
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Noting that N(r, L) = S(r, L), EL(S) = Ef (S), we obtain

(n+m)T (r, L) + S(r, L) ≤
n+m+1∑

i=1

N(r,
1

f − ai
) + S(r, f)

≤ (n+m+ 1)T (r, f) + S(r, f).

Similarly,

(n+m)T (r, f) ≤ N(r, f) +

n+m+1∑
i=1

N(r,
1

f − ai
) + S(r, f),

it implies

(n+m)T (r, f) ≤ T (r, f) +

n+m+1∑
i=1

N(r,
1

L− ai
) + S(r, f).

Therefore

(n+m− 1)T (r, f) + S(r, f) ≤ (n+m+ 1)T (r, L) + S(r, L).

Part 1 is proved.
2/ Noting that H has only simple poles, from Lemma 2.6 we obtain

N(r,H) ≤ N (2(r, P (f)) +N (2(r, P (L))

+N(r,
1

P ′(f)
;P (f) ̸= 0) +N(r,

1

P ′(L)
;P (L) ̸= 0) + S(r). (3.7)

On the other hand,

N(r, P (L)) =N(r, L) = S(r),

N (2(r, P (f)) =N(r, f) ≤ T (r, f) + S(r).

Then

N(r,H) ≤ T (r, f) +N(r,
1

P ′(f)
;P (f) ̸= 0)

+N(r,
1

P ′(L)
;P (L) ̸= 0) + S(r). (3.8)

Moreover, we have

N(r,
1

[P (f)]′
;P (f) ̸= 0) = N(r,

1

fn
)

+N(r,
1

(f − a)m
; (f − a1) · · · (f − an+m+1) ̸= 0)

≤ N(r,
1

f
) +N(r,

1

f − a
) +No(r,

1

f ′ )

≤ 2T (r, f) +No(r,
1

f ′ ) + S(r). (3.9)
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Similarly,

N(r,
1

[P (L)]′
;P (L) ̸= 0) ≤ 2T (r, L) +No(r,

1

L′ ) + S(r). (3.10)

Claim 2 follows from inequalities (3.8), (3.9), (3.10).
Claim 3. We have

1/ (n+m− 3)T (r, L) ≤ 3T (r, f)−No(r,
1

L′ ) +No(r,
1

f ′ ) + S(r).

2/ (n+m− 6)T (r, f) ≤ 2T (r, L)−No(r,
1

f ′ ) +No(r,
1

L′ ) + S(r).

Proof. Note that from Lemma 2.6, if a is a common simple zero of P (f) and P (L), then
H(a) = 0. Therefore, from this and by First Fundamental Theorem we get:

N1)(r,
1

P (L)
) = N1)(r,

1

P (f)
) ≤ N(r,

1

H
) ≤ T (r,H) + 0(1)

= N(r,H) +m(r,H) +O(1). (3.11)

By the logarithmic derivative lemma, we have

m(r,H) = m(r,
F

′′

F ′ − G
′′

G′ )

≤ m(r,
F

′′

F ′ ) +m(r,
G

′′

G′ ) +O(1)

= S(r, F
′
) + S(r,G

′
) +O(1). (3.12)

On the other hand, from Lemma 2.5 we get

S(r, F
′
) = S(r, F ), S(r,G

′
) = S(r,G).

Moreover,

T (r, F ) = T (r, P (f)) +O(1) = (m+ n+ 1)T (r, f) +O(1),

T (r,G) = T (r, P (L)) +O(1) = (m+ n+ 1)T (r, L) +O(1).

Therefore,

S(r, f) = S(r, F ) = S(r, F
′
), S(r, L) = S(r,G) = S(r,G

′
).

Combining (3.11) and (3.12) we get

N1)(r,
1

P (L)
) = N1)(r,

1

P (f)
) ≤ N(r,H) + S(r). (3.13)

1/ From Claim 1 we have

(n+m)T (r, L) ≤N(r,
1

P (L)
)−No(r,

1

L′ ) + S(r),

(n+m)T (r, L) ≤n+m+ 1

2
T (r, L) +

1

2
N1)(r,

1

P (L)
)−No(r,

1

L′ ) + S(r),
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and then

(n+m− 1)T (r, L) ≤ N1)(r,
1

P (L)
)− 2No(r,

1

L′ ) + S(r). (3.14)

From this and (3.13) and noting that

N(r,H) ≤ 3T (r, f) + 2T (r, L) +No(r,
1

f ′ ) +No(r,
1

L′ ) + S(r),

we obtain

(n+m− 3)T (r, L) ≤ 3T (r, f)−No(r,
1

L′ ) +No(r,
1

f ′ ) + S(r).

Part 1 is proved.
2/ From Claim 1 and Part 2 of Claim 2, by using similar arguments as in Part 1, we

obtain Part 2.
Now we use Claims 1, 2, 3 to obtain a contradiction, and complete the proof of H ≡ 0.
Claim 2 and Claim 3 give us

(n+m− 3)T (r, L) ≤ 3.
n+m+ 1

n+m− 1
T (r, L)−No(r,

1

L′ ) +No(r,
1

f ′ ) + S(r),

(n+m− 6)
n+m

n+m+ 1
T (r, L) ≤ 2T (r, L)−No(r,

1

f ′ ) +No(r,
1

L′ ) + S(r).

Adding two inequalities and using straight calculations, we obtain:

(2(n+m) +
7

n+m+ 1
− 6

n+m− 1
− 15)T (r, L) ≤ S(r).

This contradicts n+m ≥ 8.
We have proved H ≡ 0. Therefore,

1

P (f)
=

c

P (L)
+ c1

for some constants c ( ̸= 0) and c1. By Lemma 3.3 we obtain c1 = 0.
Thus, there is a constant C ̸= 0 such that P (f) = CP (L). From Lemma 3.4, we obtain

f ≡ L. Theorem 1 is proved.

3.3 Proof of Theorem 2

We denote the order of a meromorphic function f by ρ(f). Write

P (z) = (n+m+ 1)
( m∑
i=0

(m
i

) (−1)i

n+m+ 1− i
zn+m+1−iai

)
+ 1 = zn+1R(z) + 1,

where R(z) is a polynomial of degree m. Recall that n − m ≥ 2, m ≥ 1, and then either
n ≥ 3, m = 1, or n ≥ 4, m ≥ 2, n+m ≥ 6.
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From Part 1 of Claim 2 of Theorem 1 we get:

(n+m)T (r, L) + S(r, L) ≤(n+m+ 1)T (r, f) + S(r, f),

(n+m− 1)T (r, f) + S(r, f) ≤(n+m+ 1)T (r, L) + S(r, L). (3.15)

In particular, S(r, f) = S(r, L).
From this and because f has finitely many poles, by Lemma 2.7 we obtain

N(r, L) = S(r, L), N(r, L) = S(r) = N(r, f), ρ(f) = ρ(L) = 1. (3.16)

Since f and L share S CM, we have

P (f)

P (L)
=

fn+1R(f) + 1

Ln+1R(L) + 1
= R1e

φ(z), (3.17)

where R1 ̸≡ 0 is a rational function and φ(z) is an entire function. Then ρ(R1) = 0, by
([3], Theorem 1.4) and (3.16) we get

ρ(P (f)) = ρ(f) = 1, ρ(P (L)) = ρ(L) = 1. (3.18)

From (3.17), (3.18), and Lemma 2.4 we have

ρ(eφ(z)) = ρ(
P (f)

R1P (L)
) ≤ max{ρ(R1), ρ(P (f)), ρ(P (L))} = ρ(L) = 1,

φ(z) = Az +B,

where A,B are constants. Set
h(z) = R1e

φ(z).

Then we have

T (r, h) ≤ T (r,R1) + T (r, eφ) =
|A|
π

r +O(log r).

Therefore, T (r, h) = O(r). By Lemma 2.7 we have

T (r, L) =
dL
π
r log r +O(r),

where dL is the degree of L and dL > 0 if L ̸≡ 1 ([11]). So we have T (r, h) = o(T (r, L)).
Because S(r, L) = O(log r) (Lemma 2.7), and S(r, f) = O(log r) as f is of finite oder ([12]),
from (3.15) we obtain:

(n+m)T (r, L) + S(r, L) ≤(n+m+ 1)T (r, f) + S(r, f),

(n+m− 1)T (r, f) + S(r, f) ≤(n+m+ 1)T (r, L) + S(r, L),

where the inequalities hold except for a set of finite Lebesgue measure.
Therefore

n+m

n+m+ 2
T (r, L) ≤ T (r, f) ≤ n+m+ 2

n+m− 1
T (r, L),

except for a set of finite Lebesgue measure.
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It follows T (r, h) = o(T (r, f). This means that h is a small function for the functions f
and L.

From (3.17) it implies

fn+1R(f)− (h− 1) = hLn+1R(L).

We shall prove that h ≡ 1.
Suppose h ̸≡ 1. Applying Second Fundamental Theorem for fn+1R(f) and the small

functions ∞, 0, h− 1, and noting that T (r, L) = T (r, f) + S(r), N(r, L) = S(r) = N(r, f),
and the degree of R is m, we get

(n+m+ 1)T (r, f) +O(1) = T (r, fn+1R(f))

≤ N(r, fn+1R(f)) +N(r,
1

fn+1R(f)
) +N(r,

1

fn+1R(f)− (h− 1)
) + S(r)

≤ N(r, f) +N(r,
1

f
) +N(r,

1

R(f)
) +N(r,

1

Ln+1R(L)
) + S(r)

≤ (1 +m)T (r, f) +N(r, L) +N(r,
1

L
) +N(r,

1

R(L)
) + S(r)

≤ (1 +m)(T (r, f) + T (r, L)) + S(r)

≤ (2m+ 2)T (r, f) + S(r).

Therefore

(n−m− 1)T (r, f) ≤ S(r).

This contradicts to n−m ≥ 2. Thus h ≡ 1, and

fn+1R(f) + 1 = Ln+1R(L) + 1,

i.e. P (f) = P (L). From Lemma 3.2, we obtain f ≡ L. Theorem 2 is proved.
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