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Discretization of Springer fibres
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Abstract

Consider a nilpotent element e of a simple complex Lie algebra. The Springer fibre
corresponding to e admits a discretization (discrete analogue) introduced by the author
in 1999. In this paper we propose a conjectural description of that discretization which
is more amenable to computation. We also propose a conjectural PBW basis of that
discretization.
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0 Introduction

0.1. Let G be an almost simple simply connected algebraic group over C with Lie algebra g.
Let e ∈ g be a fixed nilpotent element and let Be be the variety of Borel subalgebras of g that
contain e (a Springer fibre). We fix a homomorphism of algebraic groups ζ : SL2(C) → G
whose differential carries ( 0 1

0 0 ) to e. Let F be the centralizer in G of the image of ζ (a
reductive group). Let F̄ = F/(F 0ZG). (For any algebraic group G we denote by G0 the
identity component of G; ZG is the centre of G.) Following [4] we view Be as a variety with
C∗-action given by λ : b 7→ Ad(ζ

(
λ 0
0 λ−1

)
)b.

Let W be the (extended) affine Weyl group corresponding to the dual of G. Let c be
the two-sided cell of W associated to the G–conjugacy class of u = exp(e) ∈ G in [6, 4.8].
In this paper we consider the following four sets associated to e.

(a) The subset B±
Be

of KC∗(Be) (the K-group of C∗-equivariant coherent sheaves on Be)
introduced in [8, 5.15].

(b) The set R(c) of right cells of W that are contained in c.
(c) The set Ξe of connected components of the fixed point set BC∗

e of the C∗-action on
Be.

(d) The set Ξ̄e of orbits of the F̄ -action on Ξe induced by the conjugation action of F
on BC∗

e .
In the rest of this paper B±

Be
is renamed as B±

e . Note that in [8] it is conjectured (and in
[1] it is proved) that

(e) B±
e is a signed basis of the KC∗(point)-module KC∗(Be).

One of the themes of this paper is a conjectural diagram involving the sets (a)-(d).

Be
ρ−−−−→ R(c)

σ

y σ′

y
Ξe

ρ′

−−−−→ Ξ̄e
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Here Be is the set of orbits of multiplication by {1,−1} on B±
e ;

(f) ρ is the (conjectural) map in [8, 17.1(c)] which identifies R(c) with the set of F̄ -orbits
on Be (for the action of F̄ on Be induced by the conjugation action of F on Be);
σ is a (conjectural) surjective map (compatible with the actions of F̄ ) discussed in Section
1; ρ′ is the obvious orbit map; σ′ is the unique (surjective) map which makes the diagram
commutative.

In this paper we introduce a new (conjectural) signed basis B̃±
e of (a localization of)

KC∗(Be) which is in natural bijection with B±
e and is such that B±

e can be reconstructed
from the knowledge of B̃±

e and from the bar-involution of KC∗(Be) in a way similar (but
more intricate) to the way the canonical basis of the + part of a quantum group can be
reconstructed from a PBW basis of that + part. Thus we can think of B̃±

e as being some-
thing like a PBW (signed) basis. The set B̃±

e is naturally partitioned into subsets indexed
by Ξe in (c); this can be viewed as a surjective map B±

e → Ξe which factors through a

surjective map Be
σ→ Ξe appearing in the diagram above.

0.2. The set Be is a discretization (or discrete analogue) of Be in the sense that it is a
finite set with a number of elements equal to the sum of Betti numbers (or equivalently the
sum of Betti numbers in even degrees) of Be. (This follows from 0.1(e).)

0.3. The set Be indexes the simple objects in a certain block of unrestricted repre-
sentations of the analogue of g over a field of positive, large characteristic (this has been
conjectured in [7, §14] and proved in [1]).

0.4. In section 2 we state some conjectures which, if true, would describe completely
the finite set Be with action of F̄ (that is, they describes which isotropy groups appear and
how many points have isotropy groups in a fixed conjugacy class).

1 The maps Be → Ξe, R(c) → Ξ̄e

1.1. Let B be the variety of Borel subalgebras of g. We have Be = {b ∈ B; e ∈ b}. As
in 0.1 we consider KC∗(Be), the K-theory of C∗-equivariant coherent sheaves on Be; we
denote it by Ke. We regard Ke as a module over A := Z[v, v−1] (the representation ring of
C∗) in the usual way. Here v is an indeterminate representing the identity homomorphism
C∗ → C∗.

In [8, 5.15] we have defined an involution β̃ : Ke → Ke, a symmetric A-bilinear pairing
(||) : Ke ×Ke → A and the subset

B±
Be

= {ξ ∈ Ke; β̃(ξ) = ξ, (ξ||ξ) ∈ 1 + v−1Z[v−1]}

of Ke − {0} (now denoted by B±
e ). We will also write¯instead of β̃.

1.2. Let ′A be the subring of Q(v) consisting of quotients f/g where g ∈ Z[v] has
constant term 1 and f ∈ A; let ′′A be the subring of Q(v) consisting of quotients f/g where
g ∈ Z[v] has constant term 1 and f ∈ Z[v]. We have A ⊂ ′A, ′′A ⊂ ′A.

For any m ∈ Z let

gm = {x ∈ g; Ad(ζ
(
λ 0
0 λ−1

)
)x = λmx ∀λ ∈ C∗}.
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Then p :=
∑

m∈N gm is the Lie algebra of a parabolic subgroup P of G containing F . Let
M be the (finite) set of orbits of P on B (for the conjugation action). Let Me = {ω ∈
M;Be ∩ ω ̸= ∅}. Let M̃e be the set of all subvarieties X ⊂ Be such that X is a connected
component of Be ∩ ω for some ω ∈ Me.

If X ∈ M̃e is a connected component of Be∩ω with ω ∈ Me, we set B<X
e = ∪ω′(Be∩ω′)

where ω′ ∈ Me is subject to ω′ ⊂ ω̄ (closure in B) and ω′ ̸= ω; we set B≤X
e = X ∪ B<X

e .
By arguments in [8, Section 1] (based on results in [3]) we see that the A-linear

maps KC∗(B<X
e ) → Ke, KC∗(B≤X

e ) → Ke induced by the closed imbedding B<X
e ⊂ Be,

B≤X
e ⊂ Be, are injective; hence the ′A-linear maps ′A ⊗A KC∗(B<X

e ) → ′A ⊗A Ke,
′A ⊗A KC∗(B≤X

e ) → ′A ⊗A Ke obtained by extension of scalars are injective. Hence
′A ⊗A KC∗(B<X

e ) and ′A ⊗A KC∗(B≤X
e ) can be identified with their image ′K<X

e and
′K≤X

e in ′Ke :=
′A⊗A Ke.) The same arguments show that we have an exact sequence

0 → KC∗(B<X
e ) → KC∗(B≤X

e ) → KC∗(X) → 0

associated to the inclusions B<X
e ⊂ B≤X

e , X ⊂ B≤X
e ; from this we deduce an exact sequence

0 → ′K<X
e → ′K≤X

e
t→ ′KC∗(X) where ′KC∗(X) = ′A⊗A KC∗(X).

We have naturally Ke ⊂ ′Ke.
Now (||) : Ke×Ke → A extends to a symmetric ′A-bilinear pairing ′Ke× ′Ke → ′A. For

any X ∈ M̃e let ′KX
e be the set of all ξ ∈ ′K≤X

e such that (ξ||ξ′) = 0 for any ξ′ ∈ ′K<X
e .

Restricting t : ′K≤X
e

t→ ′KC∗(X) to ′KX
e we obtain a map

(a) ′KX
e → ′KC∗(X).

Let ′′Ke be the ′′A-submodule of ′Ke generated by B±
e .

1.3. We now state some conjectural properties of the submodules ′KX
e of ′Ke.

(i) We have a direct sum decomposition ′Ke = ⊕X∈M̃e

′KX
e . Hence for b ∈ B±

e

we can write uniquely b =
∑

X∈M̃e
bX where bX ∈ ′KX

e . Moreover, the maps 1.2(a)
are isomorphisms, hence they convert the direct sum decomposition above into ′Ke =
⊕X∈M̃e

′KC∗(X).

(ii) Let b ∈ B±
e . There is a unique Xb ∈ Me such that bX ∈ v(′′Ke) for all X ∈

M̃e − {Xb} and bXb − b ∈ v(′′Ke) (so that bXb /∈ v(′′Ke)). The map B±
e → M̃e, b 7→ Xb is

surjective.
In this and the next subsection (but not in other subsections) we identify Be with a subset
of B±

e by choosing one element in each orbit of multiplication by {1,−1} on B±
ϵ . Setting

b̃ = bXb for any b ∈ Be we have b̃ =
∑

b′∈Be
cb,b′b

′ where cb,b′ ∈ ′′A satisfy cb,b ∈ 1+ v(′′A),
cb,b′ ∈ v(′′A) for b ̸= b′. It follows that the square matrix (cb,b′) indexed by Be × Be has
determinant in 1+v(′′A) hence is invertible in ′′A. Since {b; b ∈ Be} is an ′′A-basis of ′′Ke,
it follows that

(a) B̃e := {b̃; b ∈ Be} is again an ′′A-basis of ′′Ke.

1.4. We show that the A-basis Be can be reconstructed from the ′A-basis B̃e of ′Ke

(assuming 1.3(i),(ii)).
We shall indicate a number of steps which start with B̃e and end with Be (the definition

of these steps does not involve Be, but the verification of their correctness does).
Step 1. We note that ′′Ke is defined purely in terms of B̃e (it is the ′′A-submodule of

′Ke generated by B̃e).
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Step 2. We set +Ke = Ke ∩ ′′Ke.
Step 3. Let −Ke be the image of +Ke under¯: Ke → Ke.
Step 4. We form +Ke ∩ −Ke.
Step 5. We have a map +Ke ∩ −Ke

ι→ +Ke/v
+Ke (restriction of the obvious map

+Ke → +Ke/v
+Ke).

Step 6. We have a map +Ke/v
+Ke

ι′→ ′′Ke/v
′′Ke induced by the obvious inclusion

+Ke ⊂ ′′Ke.
Step 7. For any b ∈ B̃e there is a unique element τ(b) ∈ +Ke ∩ −Ke such that ι′ι(τ(b))

is the image of b in ′′Ke/v
′′Ke.

Step 8. The elements {t(b); b ∈ B̃e} form a Z-basis of +Ke ∩ −Ke and an A-basis of
Ke. This is Be.
We now justify Step 7. Note that +Ke is the set of all

∑
b∈Be

cbb where for any b we have

cb ∈ A ∩ ′′A or equivalently cb ∈ Z[v]. (If a ∈ Z[v, v−1] is of the form f/g where g ∈ Z[v]
has constant term 1 and f ∈ Z[v], then a ∈ Z[v]. Indeed, we have a =

∑
i∈Z aiv

i where
ai ∈ Z satisfies ai = 0 for i ≫ 0 and for i ≪ 0, since a ∈ A, and ai = 0 for i < 0, since
a ∈ ′′A.) It follows that −Ke is the set of all

∑
b∈Be

cbb where for any b we have cb ∈ Z[v−1].
Hence +Ke∩−Ke is the set of all

∑
b∈Be

cbb where for any b we have cb ∈ Z. The map ι′ in
Step 6 is an isomorphism. (We use that the map Z[v]/vZ[v] → ′′A/v(′′A) induced by the
inclusion Z[v] → ′′A is an isomorphism.) Moreover the map ι in Step 5 is an isomorphism.
Now Step 7 holds in view of Steps 5 and 6. We now justify Step 8. Under the isomorphism
ι′ι, the Z-basis Be of +Ke ∩ −Ke corresponds to the Z-basis of ′′Ke/v(

′′Ke) formed by the
image of Be or equivalently by the image of B̃e. This justifies Step 8.

We note that we can reconstruct Be from slightly less than the knowledge of B̃e: it is
enough to have ′′Ke and the image of B̃e under ′′Ke → ′′Ke/v(

′′Ke).

1.5. In this subsection we assume that G is of type A2 and e ∈ g is subregular nilpotent.
Using [10, Sec.5], we see that B±

e consists of ± three elements b1, b2, b3 satisfying (bi||bi) =
1 + v−2 and (bi||bj) = −v−1 if i ̸= j. The set M̃e has three elements which can be
denoted by X1, X2, X3 so that ′KX3

e = ′K≤X3
e has basis {b3 + vb1 + vb2}, ′K≤Xi

e has basis
{b3 + vb1 + vb2, bi} for i = 1, 2. It follows that for i = 1, 2, ′KXi

e has basis {bi − δ−1(v3 −
v2)(b3 + vb1 + vb2)} where δ = 1− v2 − 2v3 + 2v4.

We have

bi = δ−1(v3 − v2)(b3 + vb1 + vb2) + (bi − δ−1(v3 − v2)(b3 + vb1 + vb2)),

for i = 1, 2,

b3 = δ−1(1− v2)(b3 + vb1 + vb2)− v(b1 − δ−1(v3 − v2)(b3 + vb1 + vb2))

−v(b2 − δ−1(v3 − v2)(b3 + vb1 + vb2))

Hence
b̃i = bi − δ−1(v3 − v2)(b3 + vb1 + vb2) for i = 1, 2,

b̃3 = δ−1(1− v2)(b3 + vb1 + vb2).

The map B±
e → M̃e is ±bi 7→ Xi for i = 1, 2, 3. We see that 1.3(i),(ii) hold in this case.
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1.6. In this subsection we assume that G is of type D4 or G2 and e ∈ g is subregular
nilpotent. Using [9], [10], we see thatB±

e consists of± five elements b0, b1, b2, b3, b4 satisfying
(bi||bi) = 1 + v−2 for i = 0, 1, 2, 3, 4, (bi||bj) = 0 if i ̸= j in 1, 2, 3, 4, (b0||bi) = −v−1 for

i = 1, 2, 3, 4. The set M̃e has four elements which can be denoted by X0, X1, X2, X3 so
that ′KX0

e = ′K≤X0
e has basis {b0, b4+ v2(b1+ b2+ b3)}. ′K≤Xi

e has basis {b4+ v2(b1+ b2+
b3), b0, bi} for i = 1, 2, 3. It follows that for i = 1, 2, 3, ′KXi

e has basis

{bi + (v + v3)ϵ−1b0 + v4ϵ−1(b4 + v2(b1 + b2 + b3))}

where ϵ = 1 + 2v2 − 3v6. We have

b4 = ϵ−1(1 + 2v2)(b4 + v2(b1 + b2 + b3)) + 3ϵ−1(v3 + v5)b0

−
∑

i∈{1,2,3}

v2ϵ−1(v4(b4 + v2(b1 + b2 + b3)) + (v + v3)b0 + ϵbi),

bi = −ϵ−1v4(b4 + v2(b1 + b2 + b3))− ϵ−1(v + v3)b0

+ϵ−1(v4(b4 + v2(b1 + b2 + b3)) + (v + v3)b0 + ϵbi)

for i = 1, 2, 3. Hence
b̃0 = b0,

b̃4 = ϵ−1(1 + 2v2)(b4 + v2(b1 + b2 + b3)) + 3ϵ−1(v3 + v5)b0,

b̃i = ϵ−1(v4(b4 + v2(b1 + b2 + b3)) + (v + v3)b0 + ϵbi) for i = 1, 2, 3.

The map B±
e → M̃e is ±bi 7→ Xi for i = 0, 1, 2, 3 and ±b4 7→ X0. We see that 1.3(i),(ii)

hold in this case.

1.7. If ω ∈ Me, then F acts on Be ∩ ω by conjugation. This induces an action of F̄ on
the set of connected components of Be ∩ ω. By [3], this action of F̄ is transitive. Thus, F̄
acts naturally on M̃e and the map M̃e → Me (with X 7→ ω when X ⊂ Be ∩ ω) has fibres
given precisely by the F̄ -orbits on M̃e.

By [3], if X ∈ M̃e, then XC∗
= X ∩ BC∗

e is a connected component BC∗

e that is an
element of Ξe; moreover, X 7→ XC∗

is a bijection M̃e
∼→ Ξe. Thus we may identify M̃e

with Ξe and Me with Ξ̄e (see 0.1).
Using the identification M̃e = Ξe, the map B±

e → M̃e in 1.3(ii) can be identified with
a map B±

e → Ξe, which factors through a (surjective) map σ : Be → Ξe. Thus all maps in
the diagram in 0.1 are defined.

1.8. One can define a (non-conjectural) direct sum decomposition Q(v) ⊗A Ke =
⊕X∈M̃e

K(X) into Q(v)-vector subspaces K(X) indexed by X ∈ M̃e by noting that by a

known localization property we have Q(v)⊗AKe = Q(v)⊗AKC∗(BC∗

e ) and then using the
direct sum decomposition of the last vector space coming from the decomposition of BC∗

e

into connected components (which are indexed by M̃e). One can project any b ∈ B±
e to

the summands in this decomposition and one can ask whether these projections behave as
in 1.3(ii). It appears that this is not the case.
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2 Be and the Burnside group of F̄

2.1. Let H be a finite group. Let Ω(H) be the Burnside group of H that is, the free abelian
group with generators the various conjugacy classes of subgroups of H. To any finite set X
with an H-action (or H-set) we can associate an element (X) ∈ Ω(H) by the requirement
that (X ⊔X ′) = (X)+ (X ′) for two finite H-sets and (H/H ′) = H ′ for any subgroup H ′ of
H where H/H ′ is an H-set under left translation.

Let M(H) be the set of all pairs (s, ρ) where s ∈ H and ρ is an irreducible representation
over C (up to isomorphism) of the centralizer ZH(s) of s in H; the pairs (s, ρ) are taken
modulo H-conjugacy. Let C[M(H)] be the C-vector space with basis M(H).

Now let X be a finite H-set. For any (s, ρ) ∈ M(H) the fixed point set Xs has an action
of ZH(s) (restriction of the H-action on X) hence we can consider the multiplicity Ns,ρ of ρ
in the permutation representation of ZH(s) on Xs. We set [X] =

∑
(s,ρ)∈M(H) Ns,ρ(s, ρ) ∈

C[M(H)]. Now (X) 7→ [X] for any finite H-set defines a homomorphism
(a) Ω(H) → C[M(H)].

2.2. We choose a Borel subgroup B of F 0 and a maximal torus T of B. Let F ′ = {g ∈
F ; gBg−1 = B, gTg−1 = T}. Then F ′0 = T and the obvious map F ′/TZG → F/F 0ZG = F̄
is an isomorphism. Let BT

e = {b ∈ Be; Ad(t)b = b for all t ∈ T}. Now F ′ acts on BT
e by

g : b 7→ Ad(g)b. This action is trivial on TZG hence it induces an action of F ′/TZG = F̄
on BT

e .
Let s ∈ F̄ . Let BT,s

e be the fixed point set of the action of s on BT
e . Note that ZF̄ (s) acts

on BT,s
e as the restriction of the F̄ -action on BT

e . Hence for any i there is an induced action
of ZF̄ (s) on Hi(BT,s

e ,C). We define an element ϕe ∈ C[M(F̄ )] in which the coefficient of
(s, ρ) ∈ M(F̄ ) is:

(a)
∑

i(−1)i(multiplicity of ρ in the ZF̄ (s)-module Hi(BT,s
e ,C)).

The following is a strengthening of the statement 0.2 that Be is a discretization of Be.

Conjecture 2.3. We have [Be] = ϕe ∈ C[M(F̄ )].

2.4. Let W ′ be the affine Weyl group corresponding to the dual of the adjoint group of
G. We have W ′ ⊂ W . We can find a finite parabolic subgroup W ′′ of W ′ and a two-sided
cell c′′ of W ′′ such that c′′ ⊂ c (see [6, 4.8(d)]); moreover, by [11, 1.5(b2)], we can assume
that the finite group Gc′′ associated to c′′ in [5, 3.5] coincides with F̄ . Let Fe be the set of
subgroups of F̄ = Gc′′ attached in [5, 3.8] to the various left cells of W ′′ contained in c′′ (or
rather one such subgroup in each F̄ = Gc′′-conjugacy class). From [12] we see that:

(a) The elements [F̄ /H] ∈ C[M(F̄ )] for various H ∈ Fe are linearly independent.
For b ∈ Be let F̄b ⊂ F̄ be the stabilizer of b for the F̄ -action on Be.

Conjecture 2.5. Fe (see 2.4) is a set of representatives for the F̄ -conjugacy classes of
subgroups of F̄ of the form F̄b for some b ∈ Be.

2.6. Assuming that 2.3 and 2.5 hold, we see that the element (Be) of the Burnside
group Ω(F̄ ) is explicitly determined. Indeed, the element ϕe ∈ C[M(F̄ )] can be explicitly
computed from the knowledge of Green functions for G and its subgroups. Using 2.3 we
see that [Be] ∈ C[M(F̄ )] is explicitly determined. Using 2.5 we see that (Be) is determined
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by [Be] hence is also explicitly determined.

2.7. Assuming 2.5 and that ρ is as in 0.1(f) we see that to any Γ ∈ R(c) one can attach a
subgroup HΓ ∈ Fe characterized by the condition that HΓ is conjugate to F̄b for some/any
b ∈ ρ−1(Γ). We note that the subgroups HΓ ⊂ F̄ associated to the various Γ ∈ R(c) can be
regarded as affine analogues of the finite groups associated in [5] to the right cells (or left
cells) inside a two-sided cell of a finite Weyl group.

2.8. For ξ ∈ Ξe we denote by F̄ξ the stabilizer of ξ in the F̄ -action on Ξe. Assuming
2.5 and the truth of the conjectures in 1.3, we note that the map σ : Be → Ξe in 1.7 is
F̄ -equivariant. Hence if b ∈ Be then

(a) F̄b ⊂ F̄σ(b).
This seems to be an equality in many (but not all) cases. Assume for example that G is of
type E8 and e is such that F̄ = S5. In this case the subgroups {F̄ξ; ξ ∈ Ξe} of F̄ are exactly
the conjugates of the subgroups in Fe (a result of [3]); we expect that in this case (a) is an
equality.

Assume now that G is of type E8 and e is of type E8(b6) (notation as in [2, p. 407]).
In this case we have F̄ = S3 and for ξ ∈ Ξe, F̄ξ is one of the subgroups S2, S3 or a cyclic
group of order 3 of S3 (this can be deduced from [3, 4.1]); if in (a), F̄σ(b) is cyclic of order
3, we expect to have F̄b = {1} so that (a) is not an equality.

3 The bijection 0.3(a); an example

In this section we consider the example where G is of type G2 and that e is a subregular
nilpotent element. Let W be as in 0.1. The simple reflections in W are s0, s1, s2 where
s0s1 has order 3, s1s2 has order 6 and s0s2 = s2s0. In this case c is the two-sided cell of W
containing s0, s1, s2. It is known [4] that c consists of all non-identity elements of W with
a unique reduced expression. We write i1i2i3 instead of si1si2si3 . The elements of c are

0 01 012 0121 01212 012121 0121210
01210

10 1 12 121 1212 12121 121210
1210

2 21 212 2121 21212
210 21210

Note the apparition of two Coxeter graph of affine type E7 and one of affine type D6.
We write the elements of Be as [0], [1], [2], [2′], [2′′]. where the action of F = F̄ = S3 on Be

keeps [0] and [1] fixed and permutes cyclically [2], [2′], [2′′]. The irreducible representations
of S3 are denoted by 1, r, ϵ where r is 2-dimensional and ϵ is the sign. The irreducible
representations of S2 are denoted by 1, ϵ where ϵ is the sign. The unit representation of S1

is denoted by 1.
We show that c is in natural bijection with the set of irreducible F -vector bundles on

Be ×Be (up to isomorphism).
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To an element of c we associate the irreducible F -vector bundle on Be × Be which
appears in the same position in the following list.

([0][0]; 1) ([0][1]; 1) ([0][2]; 1) ([0][1]; r) ([0][2]; ϵ) ([0][1]; ϵ) ([0][0]; ϵ)
([0][0]; r)

([1][0]; 1) ([1][1]; 1) ([1][2]; 1) ([1][1]; r) ([1][2]; ϵ) ([1][1]; ϵ) ([1][0]; ϵ)
([1][0]; r)

([2][2]; 1) ([2][1]; 1) ([2][2′]; 1) ([2][1]; ϵ) ([2][2]; ϵ)
([2][0]; 1) ([2][0]; ϵ)

Here a symbol ([?][?]; ?) represents a vector bundle on Be×Be: the first two components
give a point in the support of the vector bundle, the third component is the representation
of the stabilizer of that point in the fibre at that point.

Acknowledgement Supported by NSF grant DMS-2153741.
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