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Abstract

There are several notions of convexity at a point in the literature, with applications
to inequalities, the mechanics and thermodynamics of continuous media, and nonlinear
programming. We came upon these notions in the process of constructing examples of
nonconvex minima, and we ended up introducing another one, inspired by a definition
of convexity with difference quotients. We study the interrelationships of these notions
for real functions of one variable under various smoothness assumptions. To argue
that a “generic minimum” is nonconvex, we demonstrate how to build one from any
discontinuity of a second derivative.
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1 Introduction

This article was started as an attempt to address a common misconception among beginners
in analysis — a function must be convex near a local minimum. In the course of producing
examples of nonconvex minima, we were naturally led to question whether these examples
are at least “convex” in some sense at the minimum point in question. We ended up finding
several ways of defining convexity of a function at a point in the literature. The notion of
a point of convexity was defined by Šilhavý in [19] and by Niculescu and Rovenţa in [12].
As Niculescu and Rovenţa explain, this notion is present, in an equivalent form, in a paper
of Dragomirescu and Ivan [5], and the technique of convex minorants, described by Steele
in [22, pp. 96–99], is also close to the concept of point of convexity. They also indicate
that another sufficient condition for convexity at a point, formulated in terms of secant line
slopes, can be found in the papers of Niculescu and Stephan [14, 15], and that related work
was done by Niculescu and Spiridon in [13]. Bazaraa and Shetty in [3] define the notion
of a function convex at a point. This was studied by Minuţă in [10]. A third notion of
punctual convexity was given by Florea and Păltănea in [6]. We introduce the notion of
total convexity, inspired by Galvani’s definition of convexity in terms of difference quotients,
which appears in E. Artin’s monograph on the Gamma function [1].

In Section 2, we study the relationships between these notions of pointwise convexity. In
the context of relating these notions with convexity near a point, we give a few examples in
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Section 3 clearing the misconception mentioned at the beginning of this article. Convexity
of a function can be expressed as its epigraph being a convex set. In the last section we prove
that the epigraph of a function being “convex at a point” is equivalent to that point being a
point of convexity of the function (also see [12, Lemma 2.1] and [19, Propositions 16.2.3 and
16.2.4]). To argue that the examples in Section 3 are rather generic, we demonstrate how to
construct a nonconvex minimum from any discontinuity of a second derivative. We conclude
the article by questioning whether smooth functions with certain convexity requirements
exist.

Throughout this article I stands for an open interval on the real line. Let f be a real-
valued function defined on I. We denote the left limit and the right limit of f at x0 by
f(x−

0 ) and f(x+
0 ), respectively:

f(x−
0 ) := lim

x→x−
0

f(x) and f(x+
0 ) := lim

x→x+
0

f(x).

For distinct x0 and x1, let φf (x0, x1) be the quotient

φf (x0, x1) =
f(x0)− f(x1)

x0 − x1
.

Note that φf (x0, x1) = φf (x1, x0). We write φ for φf if f is understood. The left derivative
of f at x0, denoted by f ′

−(x0), is the left limit at x0 of φ(x, x0). Analogously, the right
derivative of f at x0, denoted by f ′

+(x0), is the right limit of φ(x, x0) at x0. Either of
them is called a one-sided derivative of f at x0. We say that the one-sided derivatives of f
are increasing on I if both one-sided derivatives of f exist at every point in I and for all
x1 < x2 in I the following two conditions hold:

f ′
−(x1) ≤ f ′

+(x1) and f ′
+(x1) ≤ f ′

−(x2).

We say that f is weakly convex (i.e., Jensen convex) on I if for any x1, x2 ∈ I,

f

(
x1 + x2

2

)
≤ 1

2
(f(x1) + f(x2)).

Definition 1. A function f is convex on I if for any distinct x1, x2 ∈ I and 0 < t < 1,

f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2). (1.1)

It is clear that (1.1) is also true when x1 = x2, or t = 0, or t = 1, and requiring x1 < x2

makes no difference to the concept being defined. Geometrically, the definition means that
the graph of f is below the line segment between any two points on the graph.

The following definition of convexity, closer in spirit to calculus, appears in [1]. It seems
it was first given by Galvani in [7] (see also [11, Exercise 3, p. 31]).

Definition 2. A function f is convex on I if for any x0 ∈ I, φ(x, x0) is an increasing
function in x on I \ {x0}.

It is easy to see that f is convex on I (in the sense of Definition 2) if and only if for any
distinct x0, x1, x2 in I with x1 < x2, the second order difference quotient,

Ψf (x0, x1, x2) :=
φf (x2, x0)− φf (x1, x0)

x2 − x1

=
(x2 − x1)f(x0) + (x0 − x2)f(x1) + (x1 − x0)f(x2)

(x0 − x1)(x1 − x2)(x2 − x0)
≥ 0.

(1.2)
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Since the value Ψf (x0, x1, x2) does not change by permuting the arguments, convexity of f
on I is equivalent to Ψf (x0, x1, x2) being nonnegative for all distinct triple x0, x1, x2 in I.
From now on, we simply write Ψ for Ψf if f is understood.

Proposition 1. Definition 1 and Definition 2 are equivalent.

Proof. Identifying the numbers strictly between x1 and x2 with the values strictly between
0 and 1 via

x0 7→ t :=
x0 − x2

x1 − x2
and t 7→ x0 := tx1 + (1− t)x2 (1.3)

shows that the inequality in (1.1) holds if and only if

f(x0) ≤
x0 − x2

x1 − x2
f(x1) +

x1 − x0

x1 − x2
f(x2) (1.4)

holds. A rearrangement of terms after dividing (x0 − x1)(x2 − x0) (which is positive since
x0 is strictly between x1 and x2) on both sides of (1.4) shows that it is equivalent to
Ψ(x0, x1, x2) ≥ 0; letting x1 and x2 range through all distinct pairs of points in I establishes
the proposition.

A number of properties of convex functions follow readily from the definition. For
example, since Ψcf+g = cΨf +Ψg, if f and g are convex on I and c ≥ 0, then so is cf + g.
Also, under the coordinate transformation X = ax + b, Y = cy + d (a, c ̸= 0), the value
of Ψ(x0, x1, x2) is multiplied by c. Thus, its sign will not change if c > 0. In particular,
translation of axes and reflection about the y-axis will not affect convexity.

We assume the reader is familiar with the following characterization of convexity [1,
Theorem 1.4]: A function is convex if, and only if, it has increasing one-sided derivatives.
Consequently, for a twice differentiable f , convexity of f on I is equivalent to f ′ being
increasing on I and that is equivalent to f ′′ ≥ 0 on I.

2 Pointwise Convexity

We list below the notions of pointwise convexity mentioned in the introduction. Inspired
by Definition 2, we add one of our own at the end of this list.

Definition 3. Let I be an open interval and f be a real-valued function defined on I. Then,
with repect to I,

1. [19, 12] a point x0 ∈ I is a point of convexity of f if

f(x0) ≤ tf(x1) + (1− t)f(x2) (2.1)

for any x1, x2 ∈ I and 0 < t < 1 such that x0 = tx1 + (1− t)x2.

2. [3] f is convex at x0 ∈ I if for any x1 ∈ I other than x0, and 0 < t < 1,

f(tx0 + (1− t)x1) ≤ tf(x0) + (1− t)f(x1). (2.2)
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3. [6] f is punctually convex (or p-convex, for short) at x0 ∈ I if

f(x0) + f(x1 + x2 − x0) ≤ f(x1) + f(x2) (2.3)

whenever x0 is strictly between x1, x2 ∈ I.

4. f is totally convex at x0 ∈ I if φ(x, x0) is an increasing function of x on I \ {x0}.
Equivalently, Ψ(x0, x1, x2) ≥ 0 for any distinct x1, x2 in I \ {x0}.

Note that in [6] p-convexity at a point was also called convexity at a point, so we had
to use the new name in order to distinguish the two notions. For readability, we often skip
mentioning the interval I if it is understood. For distinct points x0, x1, x2, we say that x1, x2

are on opposite sides of x0 if x0 is strictly between x1 and x2, i.e. (x0 − x1)(x2 − x0) > 0.
Analogously, x1, x2 are on the same side of x0 if they are not on opposite sides of x0, i.e.
(x0 − x1)(x2 − x0) < 0. Also, since we deal with convexity, we assume neighborhoods are
open and convex, so, on the real line, when we say a neighborhood of a point x0 we mean
an open interval containing x0.

Our first move to understand the relationships between these notions is to also charac-
terize the first three of them in terms of difference quotients.

Proposition 2. If f is defined on an open interval containing x0,

• x0 is a point of convexity of f if, and only if, whenever x1, x2 are on opposite sides
of x0

Ψ(x0, x1, x2) =
φ(x2, x0)− φ(x1, x0)

x2 − x1
≥ 0.

• f is convex at x0 if, and only if, whenever x1, x2 are distinct points on the same side
of x0

Ψ(x0, x1, x2) =
φ(x2, x0)− φ(x1, x0)

x2 − x1
≥ 0.

• f is p-convex at x0 if, and only if, whenever x1, x2 are on opposite sides of x0 with
x0 + x′

0 = x1 + x2,
φ(x2, x

′
0)− φ(x1, x0)

x2 − x1
≥ 0

and this inequality is also equivalent to{
Ψ(x1, x0, x

′
0) + Ψ(x2, x0, x

′
0) ≥ 0 if x0 ̸= x′

0;

Ψ(x0, x1, x2) ≥ 0 if x0 = x′
0.

Proof. The points x1, x2 are on opposite sides of x0 if, and only if, there exists 0 < t < 1,
such that x0 = tx1+(1−t)x2. Thus, the proof of Proposition 1, shows that x0 being a point
of convexity of f is equivalent to Ψ(x0, x1, x2) ≥ 0 for any x1, x2 on opposite sides of x0.
The same proof also shows that the inequality in (2.2) holds if and only if Ψ(x2, x0, x1) ≥ 0
with x2 = tx0 + (1− t)x1. For distinct x1, x2 on the same side of x0, by switching x1 and
x2, if necessary, we can assume x2 is between x0 and x1. Since the value Ψ(x0, x1, x2) is
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unchanged by permutations of x0, x1, x2, we conclude that f being convex at x0 is equivalent
to Ψ(x0, x1, x2) ≥ 0 for any distinct x1, x2 on the same side of x0.

A function f being p-convex at x0 means for any x1, x2 on opposite sides of x0,

f(x2)− f(x′
0) + f(x1)− f(x0) ≥ 0 (2.4)

where x′
0 := x1 + x2 − x0. Dividing this inequality by the positive quantity (both x0 and

x′
0 are strictly between x1 and x2)

(x2 − x1)(x2 − x′
0) = (x2 − x1)(x0 − x1)

establishes the equivalence of (2.4) with

φ(x2, x
′
0)− φ(x1, x0)

x2 − x1
≥ 0. (2.5)

When x0 = x′
0, then (2.5) becomes Ψ(x0, x1, x2) ≥ 0 and if x0 ̸= x′

0, then φ(x′
0, x0) is

defined. As the quantity

r :=
x2 − x1

x2 − x0
=

x2 − x1

x′
0 − x1

is also positive, the inequality in (2.5) is equivalent to

r

(
φ(x2, x

′
0)− φ(x0, x

′
0)

x2 − x1
− φ(x1, x0)− φ(x′

0, x0)

x2 − x1

)
=

x2 − x1

x2 − x0

φ(x2, x
′
0)− φ(x0, x

′
0)

x2 − x1
− x2 − x1

x′
0 − x1

φ(x1, x0)− φ(x′
0, x0)

x2 − x1

= Ψ(x2, x0, x
′
0) + Ψ(x1, x0, x

′
0) ≥ 0.

This finishes the proof.

With these characterizations the following proposition is immediate.

Proposition 3. Total convexity implies the other notions of pointwise convexity in Defi-
nition 3.

The next few examples show that for each of the first three notions in Definition 3
there exist functions that possess that property but not the other two. Hence, in view of
Proposition 3, all three of them are strictly weaker than total convexity.

Example 1. The point 0 is an absolute minimum of the function f(x) = x2/3. Hence, 0
is a point of convexity of f and f is also p-convex at 0. However, f is not convex at 0.
The opposite is true about 0 for −f ; that is, −f is convex at 0 but 0 is neither a point of
convexity of −f nor −f is p-convex at 0.

Example 2. The point x = 0, being an absolute minimum of the function f(x) = 1−cos(x),
is a point of convexity of f . As

f(7π/4− π/2) + f(0) > f(7π/4) + f(−π/2),
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and φ(3π/4, 0) > φ(7π/8, 0) (or, alternatively, φ′(3π/4, 0) < 0), we have that f is neither
p-convex nor convex at 0. The restriction of f to I = (−π, π) becomes p-convex at 0. This
can be seen from Theorem 2 of [6], as f ′(x) = sin(x) and x have the same sign on I. Yet,
this restriction of f to I is still not convex at 0, because both 3π/4 and 7π/8 are in I (or,
alternatively, 3π/4 ∈ I). However, if we move to a small enough neighborhood of 0, say
(−π/2, π/2), then f becomes outright convex on that interval.

The above example highlights the role of the interval I in all notions of pointwise con-
vexity in Definition 3. For a function that is neither convex nor p-convex at a point of
convexity with respect to any neighborhood of that point, see Example 7.

Example 3. Take a Hamel basis of R over Q containing a positive and a negative number,
say −1 and

√
2. Map the basis elements to −1 and extend this assignment to a function f

on R by linearity. First, let us note that f is p-convex at every point x0, in particular at 0.
This is because by Q-linearity of f ,

f(x0) + f(x1 + x2 − x0) = f(x0) + f(x1) + f(x2)− f(x0) = f(x1) + f(x2).

Next, let us also note that for any 0 ̸= q ∈ Q, φ(q, 0) = 1 and φ(q
√
2, 0) = −1/

√
2. In

particular, for each n ≥ 1, φ(1/n, 0) = φ(−1/n, 0) = 1 and φ(
√
2/n, 0) = −1/

√
2. So, f is

neither convex at 0 nor 0 is a point of convexity of f with respect to any neighborhood of 0.

It is clear from Definition 3 and the characterizations in Proposition 2 that a function
convex on I must be pointwise convex at each point in the interval with respect to any of
the notions in Definition 3. The converse is also true except for punctual convexity. This
anomaly is demonstrated by the function f in Example 3. We have already argued that it
is p-convex everywhere. By Q-linearity, f only takes rational values and is not constant on
any open interval. Thus, f is not continuous and hence not convex on any open interval.
What punctual convexity of f at every point in an open interval I does imply is that f is
weakly convex on I: for distinct x1, x2 ∈ I, by p-convexity of f at (x1 + x2)/2,

f

(
x1 + x2

2

)
≤ f(x1)

2
+

f(x2)

2

and the inequality also holds when x1 = x2 for trivial reasons. So, the anomaly of punctual
convexity goes away under continuity as weakly convex continuous functions are convex [1,
Theorem 1.5]. So, we have just proved:

Proposition 4. If a function is convex on an open interval I, then it is pointwise convex
at every point in I with respect to any notion of pointwise convexity in Definition 3. The
converse is also true, except continuity of f on I is required in the case of punctual convexity.

Actually, there is a finer statement to be made. If f is continuous on I and is p-convex at
x0, then x0 must be a point of convexity of f by Lemma 3 (case n = 2) in [6]. Also, note that
the functions in Example 1 and Example 2 are continuous. So, no additional implications
among these notions of pointwise convexity are true under continuity. However, if a function
is convex at a differentiable point, then the point must also be a point of convexity. In fact,
something slightly more general is true.
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Proposition 5. Suppose f is convex at x0 and f ′
−(x0) ≤ f ′

+(x0). Then x0 is a point of
convexity of f .

Proof. Since f is convex at x0, so φ(x, x0) is increasing on both sides of x0. So, for any
x1 < x0 < x2,

φ(x1, x0) ≤ φ(x−
0 , x0) = f ′

−(x0) ≤ f ′
+(x0) = φ(x+

0 , x0) ≤ φ(x2, x0).

Thus, x0 is a point of convexity of f .

We conclude this section with two brief remarks. First, monotonicity of φ(x, x0) on the
left (resp. right) side of x0 implies f ′

−(x0) ∈ R∪ {+∞} (resp. f ′
+(x0) ∈ R∪ {−∞}). Thus,

the assumption f ′
−(x0) ≤ f ′

+(x0), treated as an inequality of extended reals, already implies
both limits are real numbers. Second, a weakly convex function needs not be p-convex at
every point, as the following example demonstrates.

Example 4. Let f be the function in Example 3. Then for any x1, x2,

f2

(
x1 + x2

2

)
=

(
1

2
(f(x1) + f(x2))

)2

≤ 1

2
f2(x1) +

1

2
f2(x2).

So, f2 is weakly convex on R. However, f2 is not p-convex at 0 as

f2(0) + f2(
√
2− 1) = 4 > 2 = f2(

√
2) + f2(−1).

3 Convexity near a point

In this section, we consider convexity locally. We examine the relationship between local
convexity and the notions of pointwise convexity discussed in the previous section. For
convenience, we say that something happens near a point if it happens in all sufficiently small
neighborhoods of that point. Since convexity on an open interval implies total convexity at
any point in that interval, convexity near x0 implies total convexity at x0 with respect to
all sufficiently small neighborhoods of x0. The reverse implication, however, is invalidated
by the following function.

Example 5. The function

f(x) =

{
x2

(
2
5 + x2 cos

(
1
x

))
if x ̸= 0

0 if x = 0.

is totally convex at 0 on R but not convex near 0. This can be seen by checking that the
derivative of φ(x, 0) (x ̸= 0) is strictly positive and that f ′′(1/(2kπ)) < 0 < f ′′(1/(2k+1)π)
for all k ≥ 2.

In fact, even smooth (i.e., C∞) examples exist.
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Figure 1: φf (x, 0) and φ′
f (x, 0) for the function f in Example 5

Example 6. Consider the smooth function

h(x) =

{
e−1/x2

(cos(1/x) + 2) if x ̸= 0

0 if x = 0.

Let g(x) =
∫ x

0
h(t)dt and f(x) = xg(x). Then f(x) is also smooth and φ(x, 0) = g(x), and

so its derivative is h(x) which is positive for all nonzero x. Hence, f(x) is totally convex at
0. One checks readily that the dominating term of f ′′(x) = xh′(x) + 2h(x) for x near 0 is

e−1/x2

(3 sin(1/x3) + 2 cos(1/x3) + 2).

This term is positive when both sin(1/x3) and cos(1/x3) are
√
2/2 and is negative when both

are −
√
2/2. Consequently, f ′′(x) changes signs near 0 and hence f is not convex near 0.

This phenomenon, however, cannot happen for real analytic functions.

Proposition 6. Suppose f is a twice differentiable function on I and f ′′ is continuous at
a point of convexity x0 ∈ I of f . If x0 is not a limit point of the zeros of f ′′, then f is
convex near x0.

Proof. Since x0 is not a limit point of the zeros of f ′′, by passing to an open subinterval
of I, we can assume f ′′ is zero-free on I0 := I \ {x0}. If f ′′ > 0 on I0, then f ′′ ≥ 0 on
I by continuity, and so f is convex near x0. If f ′′ < 0 on I0, then −f is convex near x0.
Consequently, −φ(x1, x0) ≤ −φ(x2, x0) for all x1 < x2. But, as x0 is a point of convexity of
f , φ(x1, x0) ≤ φ(x2, x0) for all x1 < x0 < x2. Therefore, φ(x, x0) must be constant near x0

(and the constant is f ′(x0)). Thus, f(x) is linear, contradicting the fact that f ′′ is zero-free
on I0. The remaining case is that f ′′ changes sign across x0. Without loss of generality,
f ′′(x) > 0 for x > x0 and f ′′(x) < 0 for x < x0. Since x0 is a point of convexity of f , for
x1 < x0 < x2,

f(x0)− f(x1)

x0 − x1
≤ f(x2)− f(x0)

x2 − x0
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Letting x2 → x0, we conclude that for all x1 < x0,

f(x0)− f(x1)

x0 − x1
≤ f ′(x0).

So f ′(u) ≤ f ′(x0) for some x1 < u < x0. But as f ′′ < 0 on (x1, x0), f
′(u) ≥ f ′(x0). This

means f ′(u) = f ′(x0), and so by the mean value theorem f ′′(v) = 0 for some v ∈ (u, x0) ⊆
I0, contradicting the fact that f is zero-free on I0.

Theorem 1. A function is convex near an analytic point of convexity.

Proof. Suppose a function f is analytic at a point of convexity x0. Then f satisfies the
assumption of Proposition 6 on some open neighborhood I of x0. So, f is convex near x0

if x0 is not a limit point of the zeros of f ′′. Now, if x0 is a limit point of the zeros of f ′′

then, as f ′′ is also analytic at x0, it follows from the identity theorem of power series [17,
Theorem 8.5] that f ′′ must be identically zero near x0. Therefore, f is convex near x0 as
well.

Our next example shows that a smooth function does not need to be convex or p-convex
at a point of convexity.

Example 7. The function

f(x) =

{
e−1/x2

(cos(1/x3) + 2) if x ̸= 0

0 if x = 0.

is positive for nonzero x. Hence, 0 is a point of convexity of the function on R. One checks
that, near 0, the dominating term of φ′(x, 0) and f ′(x), respectively, are

3e−1/x2

x5
sin

(
1

x3

)
and

3e−1/x2

x4
sin

(
1

x3

)
.

So, near 0, φ′(x, 0) takes opposite signs on either side of 0, and therefore f is not convex
at 0 with respect to any neighborhood of 0. Moreover, for all n sufficiently large,

f ′(an) > f ′(0) = 0 > f ′(bn)

where an = −((2n + 1/2)π)−1/3 < 0 < bn = ((2n − 1/2)π)−1/3. So, according to [6,
Theorem 2], f is not p-convex at 0 with respect to any neighborhood of 0.

Next we focus on the pairwise implications of the notions in Definition 3. Since total
convexity implies the others, we only need to focus on the remaining ones. From their
characterizations in terms of Ψ, the following proposition is immediate.

Proposition 7. If a function is convex at a point of convexity, then it is totally convex,
and hence p-convex, at that point.
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Figure 2: f ′(x) and φf (x, 0) of the function f in Example 8

Example 2 shows that a function f , with respect to some neighborhood of x0, does not
need to be convex at x0 even if x0 is a point of convexity of f and f is p-convex at x0.
The following example shows that this can happen even with respect to an arbitrarily small
neighborhood of x0.

Example 8. Let f : R → R be the function defined by

f(x) =

{
2x2 + 3x3 sin(1/x) x ̸= 0;

0 x = 0.

Then, f(x) > 0 for all nonzero x that is sufficiently close to 0. Thus, 0 is a point of
convexity of f . Also, f ′(0) = 0 and for x ̸= 0,

f ′(x) = x(4− 3 cos(1/x)) + 9x2 sin(1/x),

φ′(x, 0) = 2− 3 cos(1/x) + 6x sin(1/x).

So, f ′(x) and x have the same sign near 0 (in fact, this is true for all x). Therefore,
according to Theorem 2 of [6], f is p-convex at 0 with respect to any sufficiently small
neighborhood of 0. On the other hand, φ′(x, 0) changes sign near 0. Therefore, f is not
convex at 0 with respect to any neighborhood of 0.

The same kind of analysis shows that, near 0, the function defined by{
ax2n + bx2n+1 sin(1/x) x ̸= 0;

0 x = 0

has 0 as a point of convexity and is p-convex but not convex at 0 as long as 0 < (2n−1)a <
b < 2na. In particular, taking a = 2 and b = 4n− 1 gives a family of Cn examples.

We now prove that convexity and punctual convexity at a point together imply the point
in question must be a point of convexity.

Proposition 8. If f is both convex and p-convex at a point, then that point must be a point
of convexity of f .
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Proof. Suppose f is both convex and p-convex at a point x0. By a translation of axes, we can
assume x0 = 0. Take any x1 < 0 < x2. Since either 0 < −x1 ≤ x2 or x1 ≤ −x2 < 0, arguing
with f(−x) if necessary, we can assume −x1 ≤ x2. The inequalities φ(x1, 0) ≤ φ(−x1, 0)
and φ(−x1, 0) ≤ φ(x2, 0) follow, respectively, from f being p-convex and convex at 0.
Consequently, φ(x1, 0) ≤ φ(x2, 0) establishing that x0 = 0 is a point of convexity of f .

4 Final Remarks

In this last section we include the results that we believe are worth mentioning but do not
quite fit into our earlier discourse.

Another common way of defining convexity of a function f on an open interval I is via
its epigraph:

epi(f) = {(x, y) : x ∈ I, y ≥ f(x)}.

Convexity of f on I is equivalent to epi(f) being a convex set [11, p. 115]. It is also
equivalent to epi(f) having a supporting line at each point of I. By that we mean for each
x0 ∈ I, there is an affine function ℓ(x) = f(x0) +m(x− x0) such that f(x)− ℓ(x) ≥ 0 for
any x ∈ I. A slight modification of a proof of this latter equivalence [16, Theorems D and
E, p. 12] actually shows the following result (also see [12, Lemma 2.1] and [19, Propositions
16.2.3 and 16.2.4]).

Proposition 9. A point x0 is a point of convexity of f if, and only if, epi(f) has a
supporting line at x0.

Proof. Suppose ℓ(x) = f(x0) +m(x − x0) defines a supporting line of epi(f) at x0. Then
being a minimum of the function g := f − ℓ, x0 is a point of convexity of g. Note that
Ψℓ is constantly zero for ℓ(x) being affine, so Ψf = Ψg+ℓ = Ψg + Ψℓ = Ψg. Thus, x0

is a point of convexity of f as well. Conversely, if x0 is a point of convexity of f , then
φ(x1, x0) ≤ φ(x2, x0) for any x1 < x0 < x2. Therefore, both

s := sup
x1<x0

φ(x1, x0) and u := inf
x2>x0

φ(x2, x0)

exist and s ≤ u. It is straightforward to verify that ℓ(x) := f(x0) + m(x − x0) defines a
supporting line of epi(f) for any s ≤ m ≤ u.

Corollary 1. If f has one-sided derivatives at a point of convexity x0 and f ′
−(x0) ≥ f ′

+(x0)
then f is differentiable at x0 and the tangent of f at x0 is the unique supporting line of
epi(f) at x0.

Proof. It is immediate from their definitions that

f ′
−(x0) ≤ s := sup

x1<x0

φ(x1, x0) and f ′
+(x0) ≥ u := inf

x2>x0

φ(x2, x0).

When x0 is a point of convexity of f , the proof of Proposition 9 shows that s ≤ u. If,
in addition, f ′

−(x0) ≥ f ′
+(x0), then these four quantities must be the same. Hence, f is

differentiable at x0 and f ′(x0) is their common value. In that case, as shown in the proof
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of Proposition 9, the tangent line of f at x0 is a supporting line of the epigraph of f at x0.
For uniqueness, let ℓ(x) = f(x0)+m(x−x0) define a supporting line of epi(f) at x0. Then
f − ℓ has a minimum at x0 and since f is differentiable at x0, (f − ℓ)′(x0) = f ′(x0)−m = 0.
So, ℓ(x) is defining the tangent line of f at x0.

Example 5 shows that a function does not have to be convex near a local minimum. We
now go a step further showing how to construct a nonconvex minimum from a discontinuity
point of a second derivative. Let g be a twice differentiable function on an open interval I
with g′′ discontinuous at some x0 ∈ I. Let ℓ(x) be the linear function g(x0)+g′(x0)(x−x0)
defining the tangent of g(x) at x0. Since g(x) and g(x) − ℓ(x) have the same second
derivative, replacing g by g− ℓ, we can assume g′(x0) = 0. By applying the following result
(Theorem 2) to h = g′′, we conclude either Lg′′(0) or Rg′′(0) contains a nonempty open
interval (m,M). Pick c in (m,M) other than g′′(x0). Then g′′(x)− c does not vanish at x0,
and on at least one side of x0, g

′′(x) − c takes both positive and negative values near x0.
The function f(x) := g(x) − c(x − x0)

2/2 is twice differentiable with f ′(x0) = g′(x0) = 0
and f ′′(x0) = g′′(x0)− c ̸= 0. Thus, arguing with −f if needed, we can assume f ′′(x0) > 0.
And so, x0 is a local minimum of f by the second derivative test [20, 3.65.a]. However, f
cannot be convex near x0, as f

′′(x) = g′′(x)− c changes sign in every neighborhood of x0.

Theorem 2. If a derivative h : I → R is discontinuous at a point x0 ∈ I, then at least one
of the following two sets contains a nonempty open interval

Rh(x0) :=
⋂
δ>0

h ((x0, x0 + δ)) , Lh(x0) :=
⋂
δ>0

h ((x0 − δ, x0)) .

Proof. Since h, a derivative, has a discontinuity point x0, according to the result [8, The-
orem 2.1] of Klippert, either h(x+

0 ) or h(x−
0 ) does not exist and neither of them is +∞

or −∞. Arguing with h(−x) instead of h(x), if necessary, we can assume h(x+
0 ) does not

exist (and h(x+
0 ) ̸= ±∞). It follows from the intermediate value property of derivatives

(Darboux’s Theorem [2, 6.2.12], [4, Theorem 2.1]) that for each sufficiently small δ > 0,
h ((x0, x0 + δ)) contains the open interval (mδ,Mδ) where mδ,Mδ are, as extended reals,
the infimum and supremum of h on (x0, x0 + δ), respectively. As a result,⋂

δ>0

h ((x0, x0 + δ)) ⊇
⋂
δ>0

(mδ,Mδ) ⊇ (m,M)

where m = limδ→0+ inf h ((x0, x0 + δ)) and M = limδ→0+ suph ((x0, x0 + δ)). It remains to
argue that m is strictly less than M . Suppose on the contrary that m = M . Since for each
sufficiently small δ > 0,

−∞ ≤ inf h ((x0, x0 + δ)) ≤ h(x0 + δ/2) ≤ suph ((x0, x0 + δ)) ≤ +∞,

letting δ → 0+, we conclude that h(x+
0 ) = m = M . That contradicts the requirements

being put on h(x+
0 ).
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Let us also note that in our construction of nonconvex minimum g′′(x0) cannot fall
outside the interval [m,M ] because of Darboux’s Theorem. However, g′′(x0) needs not be
in (m,M). For instance, there is a differentiable function F on R, given by Sahoo in [18],
whose derivative f is nonnegative, discontinuous at 0 with f(0) = 0. In addition, f is
nonconstant near 0, but vanishing at some point on either side of 0. So, for the function
g(x) :=

∫ x

0
F (t)dt, we have that g′′(x) = f(x) and

m := lim
δ→0+

inf g′′ ((x0 − δ, x0)) = lim
δ→0+

inf g′′ ((x0, x0 + δ)) = g′′(0) = 0.

In Example 8, we give, for each n, a Cn function that is p-convex but not convex at
0 with respect to all sufficient small neighborhood of 0. However, no analytic example is
possible as the p-convex point must be a point of convexity [6, Lemma 3] and so according
to Theorem 1 the function must be convex at that point with respect to some neighborhood.
This leaves us with the natural question: Is there a smooth function f that is p-convex, but
not convex, at 0, with respect to any neighborhood of 0, no matter how small?

To give a better overview of the relationships between different notions of pointwise
convexity established in this article, we display them in the following diagram and table.

convex near x0

��
totally convex at x0

rz
�� #+

p-convex at x0
continuity

+3 x0 is a point of
convexity

a
n
a
ly
ti
c

a
t
x
0

��

convex at x0
f ′
−(x0)≤f ′

+(x0)

ks

convex near x0

Figure 3: Relationships between different notions of pointwise convexity
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Statement Reference

convex at x0 ≠⇒ p-convex at x0 or x0 is a
point of convexity

Example 1

p-convex at x0 and x0 is
a point of convexity

≠⇒ convex at x0
Example 2,
Example 8

p-convex at x0 ≠⇒ convex at x0 or x0 is a
point of convexity

Example 3

convex at x0 and x0 is a
point of convexity

=⇒ totally convex (and
hence p-convex) at x0

Proposition 7,
Proposition 3

x0 is a point of
convexity

≠⇒ convex at x0 or p-convex
at x0

Example 2,
Example 7

convex at x0 and p-
convex at x0

=⇒
x0 is a point of convexity
(and hence the function
is totally convex at x0)

Proposition 8,
Proposition 7

Table 1: A summary of results: joint implications and missing arrows in Figure 3
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