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Abstract

We obtain a new classification of the finite metacyclic groups in terms of group invari-
ants. We present an algorithm to compute these invariants, and hence to decide if two
given finite metacyclic groups are isomorphic, and another algorithm which computes
all the metacyclic groups of a given order. A GAP implementation of these algorithms
is given.
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1 Introduction

Classifying groups is a fundamental problem in group theory. Unfortunately it is a task
which seems out of reach except for restricted families of groups. One of the classes which
have received much attention is that of finite metacyclic groups. It is well known that every
finite metacyclic group has a presentation of the following form

Gm,n,s,t =
〈
a, b | am = 1, bn = as, ab = at

〉
for natural numbers m,n, s, t satisfying s(t − 1) ≡ tn − 1 ≡ 0 mod m. However, the pa-
rameters m,n, s and t are not invariants of the group. Traditionally, the authors dealing
with the classification of finite metacyclic groups select distinguished values of m,n, s and
t so that each isomorphism class is described by a unique election of the parameters (see
[13, 4, 1, 6, 8, 7, 10, 11, 9, 12]). This approach was culminated by C.E. Hempel who pre-
sented a classification of all the finite metacyclic groups in [5]. However it is not clear how to
use this classification to describe the distinguished parameters identifying a given metacyclic
group and how those distinguished parameters are connected with group invariants.

The aim of this paper is to present an alternative classification of the finite metacyclic
groups using a slightly different approach in terms of group invariants which allows an
easy implementation. Namely, we associate to every finite metacyclic group G a 4-tuple
MCINV(G) = (mG, nG, sG,∆G) where mG, nG and sG play the role of m,n and s in the
presentation above and ∆G is a cyclic subgroup of units modulo a divisor of mG. Our main
result consists in proving that MCINV(G) is an invariant of the group G which determines G
up to isomorphism, i.e. if G and H are two finite metacyclic groups then they are isomorphic
if and only if MCINV(G) = MCINV(H) ( Theorem A). Moreover, we describe in Theorem
B the possible values (m,n, s,∆) of MCINV(G) and for such value we show how to find an
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integer t such that MCINV(Gm,n,s,t) = (m,n, s,∆) (Theorem C). This allows a computer
implementation of the following function: one which computes MCINV(G) for any given
finite metacyclic group, and hence of another function which decide whether two metacyclic
groups are isomorphic, and another one which computes all the metacyclic subgroups of a
given order.

To define MCINV(G) we need to introduce some notation. First of all, we adopt the
convention that 0 is not a natural number, so N denotes the set of positive integers. Moreover
by a prime we mean a prime in N. If m ∈ N, p is a prime, π is a set of primes and A a finite
abelian group then we denote

π(m) = set of primes dividing m,
Um = group of units of the ring Z/mZ,
mp = maximum power of p dividing m,
mπ =

∏
p∈π mp,

Aπ = Hall π-subgroup of A,
Aπ′ = Hall π′-subgroup of A.

If t ∈ Z with gcd(t,m) = 1 then [t]m denotes the element of Um represented by t and ⟨t⟩m
denotes the subgroup of Um generated by [t]m. If q | m then Resq : Um → Uq denotes the
natural map, i.e. Resq([t]m) = [t]q.

Let T be a cyclic subgroup of Um. Then we define [T ] = (r, ϵ, o)

r = greatest divisor of m such that Resr2′ (T ) = 1 and Resr2(T ) ⊆ ⟨−1⟩r2 ;

ϵ =

{
−1, if Resr2(T ) ̸= 1;

1, otherwise.

o = |Resmν
(Tν′)|, with ν = π(m) \ π(r).

If moreover, n, s ∈ N then we denote

[T, n, s] = mν

∏
p∈π(r)

m′
p

with m′
p defined as follows:

if ϵp−1 = 1 then m′
p = min

(
mp, oprp,max

(
rp, sp, rp

spop
np

))
;

if ϵ = −1 then

m′
2 =


r2, if either o2 ≤ 2 or m2 ≤ 2r2;
m2

2 , if 4 ≤ o2 < n2, 4r2 ≤ m, and if s2 ̸= n2r2 then 2s2 = m2 < n2r2;

m2, otherwise.

(1.1)

Let A be a cyclic group of order m. Then the map σA : Um → Aut(A) associating [r]m
with the map a 7→ ar, is a group isomorphism. If moreover A is a normal subgroup of a
group G then we define

TG(A) = σ−1
A (InnG(A)),
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where InnG(A) is formed by the restriction to A of the inner automorphisms of G. We
introduce notation for the entries of TG(A) by setting

(rG(A), ϵG(A), oG(A)) = [TG(A)].

Definition 1.1. Let G be a group. A metacyclic kernel of G is a normal subgroup A of G
such that A and G/A are cyclic. A metacyclic factorization of a group G is an expression
G = AB where A is a normal cyclic subgroup of G and B is a cyclic subgroup of G.

A minimal kernel of G is a kernel of G of minimal order.
A metacyclic factorization G = AB is said to be minimal in G if (|A|, rG(A), [G : B])

is minimal in the lexicographical order. In that case we denote mG = |A|, nG = [G : A],
sG = [G : B] and rG = rG(A).

Clearly a group is metacyclic if and only if it has metacyclic kernel if and only if it has
a metacyclic factorization. Sometimes we abbreviate metacyclic kernel of G or metacyclic
factorization of G and we simply say kernel of G or factorization of G.

If G = AB is a metacyclic factorization of G then we denote

∆(AB) = Res[T,n,s](T ), with T = TG(A), n = [G : A] and s = [G : B].

We will prove that ∆(AB) is constant for all the minimal metacyclic factorizations (Corol-
lary 3.7). This allows to define the desired invariant:

MCINV(G) = (|A|, [G : A], [G : B],∆(AB)), with G = AB minimal factorization of G.

Our first result states that MCINV(G) determines G up to isomorphisms, formally:

Theorem A. Two finite metacyclic groups G and H are isomorphic if and only if
MCINV(G) = MCINV(H).

Our next result describes the values realized as MCINV(G) with G a finite metacyclic
group.

Theorem B. Let m,n, s ∈ N and let ∆ be a cyclic subgroup of Um′ with m′ | m. Let
[∆] = [r, ϵ, o] and ν = π(m) \ π(r). Then the following conditions are equivalent:

1. (m,n, s,∆) = MCINV(G) for some finite metacyclic group G.

2. (a) s divides m, |∆| divides n and mν = sν = m′
ν .

(b) (1.1) holds for every p ∈ π(r).

(c) If ϵ = −1 then m2

r2
≤ n2, m2 ≤ 2s2 and s2 ̸= n2r2. If moreover 4 | n, 8 | m and

o2 < n2 then r2 ≤ s2.

(d) For every p ∈ π(r) with ϵp−1 = 1, we have
mp

rp
≤ sp ≤ np and if rp > sp then

np < spop.

Our last result shows how to construct a metacyclic group G with given MCINV(G): If
m,n, s ∈ N with s | m then we define the following subgroup of Um:

Un,s
m = {[t]m : m | s(t− 1), and tn ≡ 1 mod m}.
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If T is a cyclic subgroup of Un,s
m generated by [t]m then we denote

Gm,n,s,T = Gm,n,s,t = {a, b : am = 1, bn = as, ab = at}.

It is easy to see that the isomorphism type of this group is independent of the election of the
generator [t]m of T (Lemma 2.2.(5)). Moreover, the assumption T ⊆ Un,s

m warranties that
|a| = m, |Gm,n,s,T | = mn and |b| = mn

s .

Remark 1.2. Suppose that m,n, s and ∆ ≤ Um′ satisfy the conditions of statement (2)
in Theorem B and [∆] = (r, ϵ, o). Then Resm′

p
(∆) =

〈
ϵp−1 + rp

〉
m′

p
for every p ∈ π(r)

and hence there is an integer t′ such that ∆ = ⟨t′⟩m′ and t′ ≡ ϵp−1 + rp mod m′
p for

every p ∈ π(r). Using the Chinese Remainder Theorem we can select an integer t such
that t ≡ t′ mod m′ and t ≡ ϵp−1 + rp mod mp for every p ∈ π(r) and let T = ⟨t⟩m.
Then T ⊆ Un,s

n , Resm′(T ) = ∆ and [T ] = [∆]. Then the following theorem ensures that
MCINV(Gm,n,s,T ) = (m,n, s,∆).

Theorem C. Let m,n, s ∈ N and let ∆ be a cyclic subgroup of Um′ with m′ | m. Suppose
that they satisfy the conditions of (2) in Theorem B and let T be a cyclic subgroup of Un,s

m

such that [T ] = [∆] and Resm′(T ) = ∆. Then (m,n, s,∆) = MCINV(Gm,n,s,T ).

For implementation it is convenient to replace the fourth entry of MCINV(G) by a dis-
tinguished integer tG so that G ∼= GmG,nG,sG,tG and G ∼= H if and only if (mG, nG, sG, tG) =
(mH , nH , sH , tH). We select tG satisfying the conditions of remark 1.2. In particular, [tG]mπ

is uniquely determined by the condition t ≡ ϵp−1 + rp mod mp for every p ∈ π(r). However
there is not any natural election of [tG]mπ′ and we simply take the minimum possible value.
More precisely, if (m,n, s,∆) = MCINV(G), (r, ϵ, o) = [∆] and m′ is given by (1.1) then
define

tG = min{t ≥ 0 : Resm′(⟨t⟩m) = ∆ and t ≡ ϵp−1 + rp mod mp for every p ∈ π(r)}.

We call (mG, nG, sG, tG) the list of metacyclic invariants of G. Clearly if H is another
metacyclic group then G ∼= H if and only if G and H have the same metacyclic invariants.
Moreover, by Theorem C, if (m,n, s, t) is the list of metacyclic invariants of G then G ∼=
Gm,n,s,t.

We outline the contains of the paper: In Section 2 we introduce the general notation, not
mentioned in this introduction, and present some preliminary technical results. In Section
3 we prove several lemmas on metacyclic factorizations aiming to an intrinsic description of
when a metacyclic factorization is minimal. It includes an algorithm to obtain a minimal
metacyclic factorization from an arbitrary one. This section concludes with Theorem 3.6
which is the keystone to prove Theorem A, Theorem B and Theorem C in Section 4. In Sec-
tion 5 we introduce an algorithm to compute the metacyclic invariants of a given metacyclic
group and use this to decide if two metacyclic groups are isomorphic, and another algorithm
to construct all the metacyclic groups of a given order. We present also implementations in
GAP [2] of these algorithms.

2 Notation and preliminaries

By default all the groups in this paper are finite. We use standard notation for a group G:
Z(G) = center of G, G′ = commutator subgroup of G, Aut(G) = group of automorphisms of
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G. If g, h ∈ G then |g| = order of g, gh = h−1gh, [g, h] = g−1gh. If π is a set of primes then
gπ and gπ′ denote the π-part and π′-part of g, respectively. When p is a prime we rather
write gp and gp′ than g{p} and g{p}′ , respectively. Similarly, if G is a finite abelian group
then Gp and Gp′ denote the p-part of G and the p′-part of G, respectively.

Let G be a metacyclic group. Observe that A is a kernel of G if and only if G has a
metacyclic factorization of the form G = AB. In that case, if

m = |A|, n = [G : A], s = [G : B] and T = TG(A) = ⟨t⟩m ,

then s | m, |B| = nm
s , T ⊆ Un,s

m and A and B have generators a and b, respectively, such
that bn = as and ab = at. Thus G ∼= Gm,n,s,T .

If p is a prime then vp denotes the p-adic valuation on the integers.

Let a ∈ Z and m ∈ N. If gcd(a,m) = 1 then om(a) denotes the order of [a]m i.e.
om(a) = min{n ∈ N : an ≡ 1 mod m}. If a ̸= 0 then we denote

S (a | m) =

m−1∑
i=0

ai =

{
m, if a = 1;
am−1
a−1 , otherwise.

This notation occurs in the following statement where g and h are elements of a group:

If gh = ga then (hg)m = hmgS(a|m). (2.1)

The following lemma collects some useful properties of the operator S (− | −) which will
be used throughout.

Lemma 2.1. Let p,R,m ∈ N with p prime and suppose that R ≡ 1 mod p.

1. Suppose that either p ̸= 2 or p = 2 and R ≡ 1 mod 4. Then

(a) vp(R
m − 1) = vp(R− 1) + vp(m) and vp(S (R | m)) = vp(m).

(b) opm(R) = pmax(0,m−vp(R−1)).

(c) If a = vp(R− 1) ≤ m then ⟨R⟩pm = {[1 + ypa]pm : 0 ≤ y < pm−a}.

2. Suppose that R ≡ −1 mod 4. Then

(a) v2(R
m − 1) =

{
v2(R+ 1) + v2(m), if 2 | m;

1, otherwise;

and v2(S (R | m)) =

{
v2(R+ 1) + v2(m)− 1, if 2 | m;

0, otherwise;
.

(b) o2m(R) =

{
1, if m ≤ 1;

2max(1,m−v2(R+1)), otherwise
.

(c) v2(R
m + 1) =

{
v2(R+ 1), if 2 ∤ m;

1, otherwise.
.
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Proof. (1a) The first equality can be easily proven by induction on m. Then the second
follows from Rm − 1 = (R− 1)S (R | m).

(1b) is a direct consequence of (1a).

(1c) By (1a) we have ⟨R⟩pm ⊆ {[1 + ypa]pm : 0 ≤ y < pm−a} and by (1b) the first set has

pm−a elements. As the second one has the same cardinality, equality holds.

(2a) Suppose that R ≡ −1 mod 4. If 2 ∤ m then Rm ≡ −1 mod 4 and hence v2(R
m −

1) = 1. As R2 ≡ 1 mod 4, if 2 | m then, by (1a) we have v2(R
m − 1) = v2((R

2)
m
2 − 1) =

v2(R
2−1)+v2

(
m
2

)
= v2(R+1)+v2(m). This proves the first part of (2a). Then the second

part follows from Rm − 1 = (R− 1)S (R | m).

(2b) follows easily from (2a).

(2c) Since R is odd, bothRm−1 and Rm+1 and are even and exactly one of v2(R
m−1) and

v2(R
m +1) equals 1. Thus, from (2a) we deduce that if 2 | m then v2(R

m +1) = 1. Suppose
otherwise that m is odd and greater than 2. Then v2(R

m−1 − 1) = v2(R+ 1) + v2(m− 1) >
v2(R+1), so that v2(R

m+1) = v2(R(Rm−1−1+1)+1) = v2(R+1+R(Rm−1−1)) = v2(R+1).

The following lemma follows by straightforward arguments.

Lemma 2.2. Let m,n, s ∈ N, let T be a cyclic subgroup of Um, and denote (r, ϵ, o) = [T ],
m′ = [T, n, s] and ∆ = Resm′(T ).

1. If T = ⟨t⟩m then |T | = om(t), r2 = max(gcd(m2, t−1), gcd(m2, t+1)) = gcd(m2, t−ϵ),
r2′ = gcd(m2′ , t− 1), and o = omν (t)ν′ with ν = π(m) \ π(r).

2. r | m′ | m and π(m) = π(m′).

3. [T ] = [∆].

4. For every p ∈ π(r) we have Resmp(Tp) =
〈
ϵp−1 + rp

〉
mp

and

|Resmp
(Tp)| =

{
2, if p = 2, ϵ = −1 and r2 = m2;
mp

rp
, otherwise.

5. If s | m and T ⊆ Un,s
m then mπ(r) | rn, mπ(r) | rs, o | nπ(m)\π(r) and if ϵ = −1 then

m2 ∈ {s2, 2s2}. If moreover T = ⟨t⟩m = ⟨u⟩m then there is a k ∈ N with gcd(k, |T |) = 1
and a 7→ ak, b 7→ bk defines an isomorphism Gm,n,s,t → Gm,n,s,u.

Definition 2.3. Given m,n, s ∈ N with s | m and a cyclic subgroup of Um, we say that T is
(n, s)-canonical if T ⊆ Un,s

m and if (r, ϵ, o) = [T ] then the following conditions are satisfied:

(Can–) If ϵ = −1 then s2 ̸= r2n2. If moreover, m2 ≥ 8, n2 ≥ 4, o2 < n2 then r2 ≤ s2.

(Can+) For every p ∈ π with ϵp−1 = 1 we have sp | n and rp | s or spop ∤ n.
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3 Metacyclic factorizations

In this section G is a finite metacyclic group. Moreover we fix the following notation:

π = set of prime divisors of |G| such that G has a normal Hall p′-subgroup,

π′ = π(|G|) \ π,
oG = |InnG(G′

π′)|π.

In our first lemma we show that π, π′ and oG are determined by any kernel of G.

Lemma 3.1. Let G = AB be a metacyclic factorization and let m = |A|, s = [G : A],
r = rG(A) and o = oG(A). Then

1. For every set of primes µ, AµBµ is a Hall µ-subgroup of G.

2. p ∈ π′ if and only if G′ \ Z(G) has an element of order p if and only if A \ Z(G) has
an element of order p.

3. G′
π′ = Aπ′ and Aπ′ ∩Bπ′ = 1.

4. π′ = π(m) \ π(r), sπ′ = mπ′ and o = oG.

5. G = Aπ′ ⋊
(
Bπ′ ×

∏
p∈π ApBp

)
. In particular [Bp′ , Ap] = 1 for every p ∈ π.

Proof. (1) As A is normal in G, AµBµ is a µ-subgroup of G and Aµ′Bµ′ is a µ′-subgroup of
G. Moreover G = AB = AµBµAµ′Bµ′ and hence [G : AµBµ] = |Aµ′Bµ′ |. Thus AµBµ is a
Hall µ-subgroup of G.

(2) As G/A is abelian, G′ ⊆ A. Let p ∈ π(|G|). If p ∤ m then ABp′ is a normal Hall
p′-subgroup of G and hence p ∈ π. Suppose otherwise that p | m and let C be the unique
subgroup of order p in A. Since C is normal in G, it follows that G′ \ Z(G) has an element
of order p if and only if A \ Z(G) has an element of order p if and only if C ̸⊆ Z(G). Since
Aut(C) is cyclic of order p − 1, if p ∈ π and N is a normal Hall p′-subgroup of G then
G = N ⋊ P with P a Sylow p-subgroup of G containing C and as [P,C] = 1 it follows
that [G,C] ⊆ [N,C] ⊆ N ∩ C = 1 and hence C ⊆ Z(G). Conversely, if C ⊆ Z(G) then
[Ap, Ap′Bp′ ] = 1 because the kernel of the restriction homomorphism Aut(Ap) → Aut(C) is
a p-group. As Ap′B normalizes Ap′Bp′ it follows that the latter is a normal Hall p′-subgroup
of G and hence p ∈ π.

(3) Let p ∈ π′, c an element of order p in A and a a generator of A. Since |Aut(⟨c⟩)| = p−1
and c ̸∈ Z(G), we have that abp = akp for some integer k such that gcd(k, p) = 1. Moreover,

k − 1 is coprime with p because 1 ̸= [c, b] = ck−1. Then Ap =
〈
ak−1
p

〉
⊆ G′ and hence

Ap = G′
p. Moreover, if g ∈ Ap∩Bp\{1} then [g,B] = 1 and c ∈ ⟨g⟩, yielding a contradiction.

Thus Ap ∩Bp = 1. Since this is true for each p ∈ π′, we have Aπ′ = G′
π′ and Aπ′ ∩Bπ′ = 1.

(4) is a direct consequence of (2) and (3).
(5) By (1) and (3), Aπ′Bπ′ = Aπ′ ⋊ Bπ′ is the unique Hall π′-subgroup of G and hence

G = (Aπ′ ⋊ B′
π′) ⋊ (AπBπ). Moreover, if p ∈ π and c is an element of order p in Ap then

c ∈ Z(G) by (2). This implies that [Bp′ , Ap] = 1 because the kernel of Resp : Aut(Ap) →
Aut(⟨c⟩) is a p-group. Then [Bπ′ , AπBπ] = 1 and AπBπ =

∏
p∈π ApBp.
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Next lemma shows that ϵG is determined by any minimal kernel of G.

Lemma 3.2. If A is a minimal kernel of G then ϵG = ϵG(A).

Proof. Let m = mG = |A|, ϵ = ϵG(A) and r = rG(A). If m2 ≤ 2 then ϵ = 1 = ϵG. Otherwise
4 | r2 and

G′
2 =

{
⟨ar2⟩ , if ϵ = 1;〈
a2
〉
, if ϵ = −1.

Then

|G′
2| =

{
m2

r2
, if ϵ = 1;

m2

2 , if ϵ = −1;

and hence ϵ = −1 if and only if m2 = 2|G′
2| > 2 if and only if ϵG = −1.

Let

RG = {rG(A) : A is a minimal kernel of G}.

Next lemma shows that |RG| ≤ 2 and in most cases |RG| = 1.

Lemma 3.3. Let m = mG, n = nG and o = oG. Then the following statements are
equivalent:

1. |RG| > 1.

2. n2 ≥ 4, m2 ≥ 8, ϵG = −1, o2 < n2 and RG = { r
2 , r} for some r with r2 = m2.

3. n2 ≥ 4, m2 ≥ 8, ϵG = −1, o2 < n2, r2 ∈ {m2

2 ,m2} for some r ∈ RG and [G : B]2 = m2

2
for some metacyclic factorization G = AB with m = |A|.

4. n2 ≥ 4, m2 ≥ 8, ϵG = −1, o2 < n2, r2 ∈ {m2

2 ,m2} for some r ∈ RG and [G : B]2 = m2

2
for every metacyclic factorization G = AB with m = |A|.

Furthermore, suppose that G = AB is a metacyclic factorization satisfying the conditions
of (3) and let a be a generator of A and b be a generator of B and s = [G : B]. Let

C =

〈
b

nm
2′

2s
2′ a

〉
. Then G = CB is another metacyclic factorization with |C| = m and

rG(C) ̸= rG(A).

Proof. Let ϵ = ϵG, o = oG, R = RG and for every p ∈ π let Rp = {rp : r ∈ R}. Fix a minimal
kernel A of G and let r = rG(A).

Let p ∈ π. If ϵp−1 = 1 then |G′
p| = mp

rp
. Thus in this case |Rp| = 1. Therefore r2′ is

constant for every r ∈ R and hence |R| = |R2|. Moreover, if ϵ = 1 then G′
2 = m2

r2
and hence

R2 = { m2

|G′
2|}. In this case none of the conditions (1)-(4) hold. Otherwise, 4 | rG(A)2 | m2.

Thus, ifm2 < 8 then rG(A)2 = 4 for every minimal kernel A ofG and hence |R| = |R2| = 1, so
that again none of the conditions (1)-(4) hold. Thus in the remainder of the proof we assume
that ϵ = −1 and 8 ≤ m2. Then G′

2 = A2 and hence ⟨−1 + rG(A)2⟩m2
2

= Resm2
2
(TG(A)) =

σ−1
G′

2
(InnG(G

′
2)), which is independent of A. This shows that if R2 contains an element
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smaller than m2

2 then it only has one element and hence again none of the conditions (1)-(4)
holds. So in the remainder of the proof we assume that R2 ⊆ {m2

2 ,m2}.
Suppose that o2 = n2. Then, by Lemma 3.1.(4), CG(G

′
π′)2 = A2, and hence

⟨−1 + rG(A)2⟩m2
= Resm2(TG(CG(G

′
π′)2))

is independent of A. Therefore, in this case |R2| = 1, so that |R| = 1. So again in this case
none of the conditions (1)-(4) hold and in the remainder of the proof we also assume that
o2 < n2.

Suppose that n2 < 4. Then none of the condition (2)-(4) holds and as ϵ = −1, we have
n2 = 2. By means of contradiction suppose that (1) holds. By the previous paragraph
R2 = {m2

2 ,m2} and hence G has two minimal kernels A and C with rG(A)2 = m2 and
rG(C)2 = m2

2 . If G = AB and G = CD are metacyclic factorization of G then A2B2 and
C2D2 are Sylow 2-subgroups of G and hence they are isomorphic. However, by Lemma
2.2.(5), [A2B2 : B2] is either m2 or m2

2 . In the first case A2B2 is dihedral and in the second
case A2B2 is quaternionic. This yields a contradiction because from rG(C)2 = m2

2 it follows
that C2D2 is neither dihedral nor quaternionic.

Thus in the remainder we assume that m2 ≥ 8, n2 ≥ 4, o2 < n2, ϵ = −1 and R2 ⊆
{m2

2 ,m2}. Moreover, by the above arguments we have that R ⊆ { r
2 , r} for some r with

r2 = m2. Thus (1) and (2) are equivalent.
(4) implies (3) is clear.
(3) implies (2). Let G = AB be a metacyclic factorization of G satisfying the conditions of

(3). Let s = [G : B] and r = rG(A). Select generators a of A and b of B and let z = b
nm

2′
2s

2′ ,
c = za and C = ⟨c⟩. We will prove that if G = CB is another metacyclic factorization
with |C| = m and rG(C) ̸= r, so that (2) holds. Indeed, since o2 < n2, we have [z, aπ′ ] = 1.
Moreover, [zp′ , ap] = 1 for every p ∈ π. If moreover, p ̸= 2 then [zp, ap] = 1 because [bn, a] = 1.

Finally, r2 ∈ {m2

2 ,m2} and hence om2
(−1+r2) = 2. As 4 | n and ab22 = a−1+r2

2 it follows that
[z2, a2] = 1. This shows that z ∈ Z(G). As s = [G : B] and [G : A] = n we have bn = asx

for some integer x coprime with m. Then c2 = a
2+sx

m
2′

s
2′ = a2+xs2m2′ = a2+xm

2 = a2+
m
2 . As

8 | m it follows that |C| = m. Suppose that ab = at. Then t+ 1 ≡ r2 mod m2. Let r′ ∈ N
with r′2′ = r2′ and {r2, r′2} = {m2

2 ,m2} and let t′ be an integer such that t′ ≡ t mod m2′

and t′ ≡ −1 + r′2 mod m2. As 8 | m we have t′ ≡ t ≡ −1 mod 4 and hence t′ = 1 + 2y for
some odd integer y. Then ct

′
= zzt

′−1at
′
= zz2yat

′
= zat

′+ym
2 . Moreover, t′ + ym

2 ≡ t′ ≡ t

mod m2′ and t′ + ym
2 ≡ −1 + r′2 +

m2

2 ≡ −1 + r2 ≡ t mod m2. Therefore ct
′
= zat = cb.

This shows that C is a cyclic normal subgroup of G and clearly G = CB is a metacyclic
factorization satisfying the desired condition.

Before proving (1) implies (4) we prove that if G = AB = CD are metacyclic factoriza-
tions with |A| = |B| = m then [G : B]2 = [G : D]2. The assumption ϵ = −1 implies that
G′

2 = A2 = C2. As A2B2 and C2D2 are Sylow 2-groups of G we may assume that they
are equal and hence if A2 = ⟨a⟩ and B = ⟨b⟩ we may write c = biaj and d = bkal. Since
c2 ∈ C2 = A2 we have n2

2 | i and as 4 | n, necessarily 2 | i and hence 2 ∤ k. Then, using that

rG(A), rG(C) ∈ {m2

2 ,m2} we have that d2 = b2k or d2 = b2kal
m2
2 . In both cases d4 = b4

and hence D4 = B4. As 4 | n it follows that A2 ∩ B2 = Bn2
2 = Dn2

2 = C2 ∩D2. Therefore,
[G : B]2 = [A2B2 : B2] = [A2, A2 ∩B2] = [C2 : C2 ∩D2] = [G,D]2, as desired.

(1) implies (4). Suppose that |R| > 1. By the assumptions and the previous arguments
we know that the only condition from (4) which is not clear is that if G = AB is a metacyclic
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factorization with m = |A| and s = [G : B] then s2 = m2

2 . So suppose that s2 = m2.
Since |R| > 1, there is a second metacyclic factorization G = CD with |C| = m and
{rG(A)2, rG(C)2} = {m2

2 ,m2}. By the previous paragraph [G : D]2 = [G : B]2 = 1. By
symmetry we may assume that rG(A)2 = m2 and rG(C) = m2

2 . As above we may assume
that A2B2 = C2D2 and if A2 = ⟨a⟩, B2 = ⟨b⟩, C2 = ⟨c⟩ and D2 = ⟨d⟩ then ab = a−1,

cd = c−1+
m2
2 , G′

2 = A2
2 = C2

2 , A2 ̸= C2 and A2 ∩ B2 = C2 ∩ D2 = 1. Write c = biaj

and d = bkal with i, j, k, l ∈ N. Since c2 ∈ A we have that n2

2 | i and as 4 | n2, we
have that k is odd and [bi, a] = 1. Thus b2i = c2a−2j ∈ A2 ∩ B2 = 1. Then c2 = a2j

and as C2 = A2, necessarily j is odd. However, from b2i = 1, [bi, a] = 1 and 8 | m we have

bi2a
(−1+

m2
2 )j

2 = b
(−1+

m2
2 )i

2 a
(−1+

m2
2 )j

2 = c
−1+

m2
2

2 = cd2 = bi2a
−j
2 and hence 2 | j, a contradiction.

In our next result we show a way to decide if a factorization of G is minimal and we prove
that the following algorithm transforms a metacyclic factorization of G into a minimal one.

Algorithm 1. Input: A metacyclic factorization G = AB of a finite group G.

Output: a, b ∈ G with G = ⟨a⟩ ⟨b⟩ a minimal metacyclic factorization of G.

1. m := |A|, n := [G : A], s := [G : B],

2. a := some generator of A, b := some generator of B, and y ∈ N with bn = ay.

3. r := rG(A), ϵ := ϵG(A) and o = oG(A).

4. for p ∈ π(r) with ϵp−1 = 1

(a) if sp ∤ n then b := bap and s := sp′np.

(b) if rp ∤ s, spop | n and t ∈ N satisfy a
bp
p = atp, compute x ∈ N satisfying

xS
(
t

n
sp | sp

)
≡ r − y mod mp and set a := b

n
sp
p ap′axp, m := sp

m
rp
, n := n

rp
sp
,

and

(r, ϵ) :=

{
(4r2′ ,−1), if 8 | m, sp = 2, and r2 = m2

2 ;

(rp′sp, 1), otherwise.

5. If ϵ = −1, 4 | n, 8 | m, o2 < n2 and r2 ∤ s then a := b
m

2′n
2s

2′ a and r := r2′s2

6. If ϵ = −1 and s2 = r2n2 then b := ba2 and s := s
2 .

7. Return (a, b).

Proposition 3.4. Let G = AB be a metacyclic factorization and let m = |A|, n = [G : A],
s = [G : B] and T = TG(A). Then G = AB is minimal as metacyclic factorization of G if
and only if T is (n, s)-canonical.

Furthermore, if the input of Algorithm 1 is a metacyclic factorization of G and its output
is (a, b) then G = ⟨a⟩ ⟨b⟩ is a minimal metacyclic factorization of G.
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Proof. Let (r, ϵ, o) = [TG(A)]. By Lemma 3.1, π′ = π(m) \ π(r). Fix y, t ∈ N with bn = ay

and ab = at. Then s = gcd(t,m), gcd(t,m) = 1, r2′ = gcd(m2′ , t−1) and r2 = gcd(m2, t−ϵ).
For every prime p let Gp = ApBp.

Claim 1. If condition (Can+) holds then A is a minimal kernel of G.
Suppose that condition (Can+) holds and let C be kernel of G. We want to prove that

|C| ≥ m and for that it is enough to show that |Cp| ≥ mp for every prime p. This is obvious
if mp = 1, and it is a consequence of Lemma 3.1.(3), if p ∈ π′. So we suppose that p ∈ π and
mp ̸= 1. Hence p | r.

Suppose first that ϵp−1 = −1. Then p = 2 and A2
2 = G′

2 ⊆ C2. However C2 ̸⊆ A2
2 because

G2/A
2
2 is not cyclic. Therefore |C2| ≥ 2|A2

2| = m2.
Suppose otherwise that ϵp−1 = 1. Then G′

p = A
rp
p and |G′

p| = mp

rp
. Assume that rp | sp.

Then Gp/G
′
p = (Ap/G

′
p) × (BpG

′
p/G

′
p) and rp = |Ap/G

′
p| ≤ np = [BpG

′
p : G′

p]. As
(Gp/G

′
p)/(Cp/G

′
p) ∼= Gp/Cp is cyclic, necessarily rp | [Cp : G′

p] and hence mp | |Cp|, as
desired. Assume otherwise that rp ∤ sp. By condition (Can+) we have sp | np and spop ∤ np.
In particular p | op. By Lemma 3.1.(3), Cπ′ = Aπ′ and thence Cp ⊆ CGp

(Aπ′)p = ApB
op
p .

Using again that Gp/Cp is cyclic and p | op, we must have Cp =
〈
bxpap

〉
for x ∈ N with op | x

and x ≤ n. Let R ∈ N such that a
bxp
p = aRp . Then R satisfies the hypothesis of Lemma 2.1.(2c)

and hence vp

(
S
(
R | n

xp

))
= vp(n)−vp(x) ≤ vp(n)−vp(o) < vp(s) = vp(yxp′) and therefore

vp

(
yxp′ + S

(
R | n

xp

))
= vp(n)− vp(x). Then |Cp| = np

xp
|(bxpap)

np
xp | = np

xp

∣∣∣∣∣ayxp′+S
(
R|np

xp

)
p

∣∣∣∣∣ =
mp. This finishes the proof of Claim 1.

Claim 2. If TG(A) is (n, s)-canonical then for every metacyclic factorization G = CD with
|C| = m one has rG(C) ≥ r and |D| ≤ |B|.

If rG(C) < r then, by Lemma 3.3, m2 ≥ 8, n2 ≥ 4, ϵ = −1, o2 < n2, rG(C)2 = m2

2 = s2
and r2 = m2, in contradiction with the second part of condition (Can–). Thus rG(C) ≥ r.

To prove that |D| ≤ |B| we show that |Dp| ≤ |Bp| for each prime p. This is clear if p ∤ m
and a consequence of Lemma 3.1.(4) if p ∈ π′. Otherwise p | r. Since both Gp and CpBp are
Sylow p-subgroups of G we may assume that Gp = CpDp.

Assume first that ϵp−1 = 1. Then by assumption sp | np. Let d = bxpa
y
p be a generator

of Dp and let R ∈ N such that a
bxp
p = aRp . The assumption ϵp−1 = 1 implies that R

satisfies the hypothesis of Lemma 2.1.(1a) and hence mp | S
(
R | mp

np

sp

)
and from (2.1)

we deduce that d
mpnp

sp = a
yS

(
(1+rp)

x|mp
np
sp

)
p = 1 and hence |Dp| ≤ mpnp

sp
= |bp|. Suppose

otherwise that ϵp−1 = −1, i.e. p = 2 and ϵ = −1. Then C2
2 = G′

2 = A2 and C2 ∩ D2 ⊆
Z(G2) ∩ C2 = Z(G2) ∩ C2

2 = Z(G2)A = A
m2
2 and hence |C2 ∩D2| ≤ 2. Thus |D2| = [D2 :

C2∩D2] |C2∩D2| = [G2 : C2] |C2∩D2| ∈ {n2, 2n2}. Similarly, |B2| ∈ {n2, 2n2}. If |B2| = 2n2

then |D2| divides |B2| as desired. Suppose otherwise that |B2| = n2. Then m2 = s2 and
hence m2 divides r2n2

2 , by the hypothesis (Can–) and lemma 2.2.(5). If D2 ⊆
〈
a, b22

〉
then

C2 = ⟨b2ax2⟩ for some integer x and hence n2 = 2 because C2
2 =

〈
a22
〉
. Then D2 ⊆ ⟨a2⟩ so

that D2 is normal in G2 and hence
〈
a22
〉
= C2

2 = [D2, C2] ⊆ C2 ∩D2 ⊆
〈
a

m2
2

2

〉
⊆

〈
a22
〉
. Then

m2 = 4 and G2 is dihedral of order 8. Then every metacyclic factorization of G2 is of the form
⟨a2⟩ ⟨c⟩ with |c| = 2. Thus |D2| = 2 = |b2|, as wanted. Assume otherwise that D2 ̸⊆

〈
a2, b

2
2

〉
.
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Then D2 = ⟨b2ax2⟩ for some integer x and let R ∈ N such that ab22 = aR2 . The hypothesis
ϵ = −1 implies that R satisfies the hypothesis of Lemma 2.1.(2a). Since m2 divides r2n2

2 , we

get v2(S (R | n2)) = v2(r2) + v2(n2) − 1 ≥ v2(m2) and hence (b2a
x
2)

n2 = a
xS(−1+r2|n2)
2 = 1.

Then |D2| = n2, as desired. This finishes the proof of Claim 2.

The necessary part in the first statement of the proposition follows from claims 1 and 2.

Claim 3. If p | r, ϵp−1 = 1 and sp ∤ np then [G : bap] = sp′np < s.

First of all n = |bapA| and hence n divides |bap|. Using (2.1) we have (bap)
n = ayp′a

y+S(t|n)
p

and vp([G : ⟨bap⟩]) = vp(S (t | n)) = vp(n) < vp(s) = vp(y), by Lemma 2.1.(1a) and the
assumption. Thus |bap| = n m

sp′np
and hence [G : bap] = sp′np. This finishes the proof of

Claim 3.

By Claim 3, if the first part of (Can+) fails then G = AB is not minimal because
G = A ⟨bap⟩ is a factorization with [G : b] > [G : ⟨bap⟩]. Moreover, the factorization
G = A ⟨bap⟩ satisfies the first part of condition (Can+) and hence after step (4a) of Algorithm
1, the factorization G = ⟨a⟩ ⟨b⟩ satisfies the first part of (Can+) for the prime p.
Claim 4. Suppose that p | r, ϵp−1 = 1, sp | n, rp ∤ s and spop | n. Let R ∈ N with

a
b

n
sp
p

p = aR. Then there is an integer x such that r− y ≡ xS (R | sp) mod mp. This justifies

the existence of x in step (4) of Algorithm 1. Let c = b
n
sp
p ap′axp and C = ⟨c⟩. Then G = CB

is a metacyclic factorization of G with |C| = m
sp
rp

< |A|. Moreover,

(rG(C), ϵG(C)) :=

{
(4r2′ ,−1), if 8 | m, sp = 2, and r2 = m2

2 ;

(rp′sp, 1), otherwise.

The assumption spop | np implies that op | n
sp

and hence [b
n
sp
p , aπ′ ] = 1. As also

[bp, aπ\{p}] = 1 we deduce that [b
n
sp
p , ap′ ] = 1. On the other hand, since rp ∤ sp, vp(y) =

vp(s) < vp(r) and therefore vp(r − y) = vp(s) = vp(S (t | sp)), by Lemma 2.1.(1a). There-
fore there is an integer x coprime with p such that r − y ≡ xS (R | sp) mod mp. Using

(2.1) we have csp = bnpa
sp
p′ a

xS(R|sp)
p = a

sp
p′ a

y+xS(R|sp)
p = a

sp
p′ arp. Then G′

p′ ⊆ ⟨ap′⟩ ⊆ C and

G′
p =

〈
arp
〉
⊆ C. Thus G′ ⊆ C and hence G = CB is a metacyclic factorization of G with

|C| = sp|ap′ ||arp| = m
sp
rp

< m = |A|. As Cp′ = Ap′ , we have rG(C)p′ = rG(A)p′ = rπ′ . If

ϵG(C)p−1 = 1 then
mp

rp
= |G′

p| =
|Cp|

rG(C)p
=

mpsp
rprG(C)p

and hence in this case rG(C) = rp′sp.

Otherwise, i.e. if p = 2 and ϵG(C) = −1 then 2|C2| ≤ s2 ≤ |C2| and 4 ≤ rG(C)2 ≤ |C2| =
m2s2
r2

= 2|G′
2| = 2m2

r2
and hence s2 = 2, |C2| = 4 = rG(C)2 and r2 = m2

2 . Conversely,
if s2 = 2 and r2 = m2

2 then |C2| = 4 and hence rG(C)2 = 4. Moreover, as G2 is not
commutative then ϵG(C) = −1. This finishes the proof of Claim 4.

Claim 4 shows that if the first part of (Can+) holds but the second one fails then G = AB
is not minimal. It furthermore the parameters associated to the factorization G = CB, i.e.
|C|, [G : C], [G : B], rG(C), ϵG(C), oG(C), satisfy condition (Can+) for the prime p and hence,
after step (4b) of Algorithm 1, the current factorization G = ⟨a⟩ ⟨b⟩ satisfies this condition.
Moreover, if ϵG(C) = 1 then rp(C) = sp ≤ np and condition (C+) holds for the prime p.
Thus when the algorithm finishes the loop in step (4), the metacyclic factorization satisfies
condition (Can+) and hence the current value of ⟨a⟩ is a minimal kernel of G by Claim 1.
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Observe that the modification of a and b in steps (4a) and (4b) for some prime p does
not affect the subsequent calculations inside the loop. Indeed, suppose that p and q are two
different divisors of r with ϵp−1 = ϵq−1 = 1, and the prime p has been considered before
the prime q in step (4). This has affected a and b which have been transformed by first
transforming b into d = bap and then transforming a into c = dpap′axp = bpap′a1+x

p . In
principal we should recalculate the natural number y computed in step (2) to a new y′.
However, as p ∈ π, [bp′ , ap] = [bq′ , ap] = 1 and hence ap′ = cp′ and bp′ = dp′ . Therefore
dq = cyq and hence y′ ≡ y mod mq. Therefore when in step (4b) for the prime q we compute
x satisfying if r − y ≡ xS (R | sq) ≡ mod mq we also have r − y′ ≡ xS (R | sq) mod mq.

By Lemma 3.3, if the second part of condition (Can–) is satisfied then rG(A) = rG.
Otherwise, rG(A) > rG, and hence the factorization G = AB is not minimal, However,
after step (5) the factorization G = ⟨a⟩ ⟨b⟩ satisfy both |a| = mG and rG(⟨a⟩) = rG. In the
remainder of the algorithm the kernel ⟨a⟩ is not modified and hence this is going to be valid
in the remainder of the algorithm.

Finally suppose that the first part of (Can–) fails, so that p = 2, ϵ = −1 and s2 =
r2n2. Then 4 | r and ⟨t⟩m2

= ⟨−1 + r2⟩m2
. Moreover, by Lemma 2.2.(5), we have that

s2 ∈ {m2

2 ,m2} and m2 | r2n2. Therefore s2 = m2 = r2n2. Then v2(S (t | n2)) = v2(r) +
v2(n)−1 = v2(m)−1, by Lemma 2.1.(2a). As in the proof of Claim 3, we use the metacyclic
factorization of G = A ⟨ba2⟩. If G = AB is minimal then we have n|(ba2)n| = |ba2| ≤
|b| = n|as| = nm

s . Therefore |(ba2)n| ≤ m
s . Using (2.1) once more and [b2′ , a2] = 1, we

obtain (ba2)
n = aya

S(t|n2)
2 = ay2′a

m2
2

2 . Thus |(ba2)n| = 2m
s and hence |ba2| = 2ms

s = 2|B|,
contradicting the minimality. Thus G = AB is not minimal. Moreover, the new metacyclic
factorization satisfies (Can–) because, |ba2|2 = 2|b|2 and hence if s′ = [G : ⟨ba2⟩] then
s′2 = m2

2 ̸= m2 = r2n2.

In order to prove that the last entry of MCINV(G) is well defined and prove Theorem A
we need one more lemma which is inspired in Lemmas 5.5 and 5.7 of [5].

Lemma 3.5. Let p be a prime and consider the group P = Gm,n,s,ϵ+r with m and n powers
of p, r and s divisors of m and ϵ ∈ {1,−1} satisfying the following conditions: p | r, m | rn,
if 4 | m then 4 | r, if ϵ = 1 then m | rs and if ϵ = −1 then 2 | n, 4 | m and m | 2s. Let o be a
divisor of n and N = ⟨a, bo⟩. Denote

w =


min(o, m

r ,max(1, s
r ,

so
n )), if ϵ = 1;

1, if ϵ = −1 and , o | 2 or m | 2r;
m
2r , if ϵ = −1, 4 | o < n, 4r | m, and if s ̸= nr then 2s = m < nr;
m
r , otherwise.

If y is an integer coprime with p then the following conditions are equivalent:

1. There are c ∈ N and d ∈ byN such that P = ⟨c, d⟩, |c| = m, dn = cs and cd = cϵ+r.

2. y ≡ 1 mod w.

Proof. Observe that N is the unique subgroup of G of index o containing a. We will make a
wide use of (2.1) and Lemma 2.1, sometimes without specific mention. We consider separately
the cases ϵ = 1 and ϵ = −1.
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Case 1. Suppose ϵ = 1.
(1) implies (2). Suppose that c and d satisfy the conditions of (1). If w = 1 then obviously

(2) holds. So we may assume that w ̸= 1 and in particular p | o and pr | m. The first implies
that N ⊆ ⟨a, bp⟩ and the second that P/ ⟨ap, bp⟩ is not cyclic. Therefore c ̸∈ ⟨ap, bp⟩ and
hence ⟨c⟩ = ⟨bxva⟩ with o | v | n and p ∤ x. Write d = by1az with y1, z ∈ Z. From the
assumption d ∈ byN we have that y1 ≡ y mod o and hence y ≡ y1 mod w. Therefore, it
suffices to prove that y1 ≡ 1 mod w. From cd = c1+r we have

bxvaz(1−(1+r)xv)+(1+r)y1 = (bxva)b
y1az

= (bxva)1+r = bxvabxvraS((1+r)xv|r).

Then n | vr and bxvr = axs
vr
n . Thus

z(1− (1 + r)xv) + (1 + r)y1 − 1 ≡ xs
vr

n
+ S ((1 + r)xv | r) mod m.

This implies that that r divides xsvr
n , since r divides m. As r is coprime with x, it fol-

lows that n divides sv. Moreover, (1 + r)xv ≡ 1 mod rv, by Lemma 2.1.(1a), and hence
S ((1 + r)xv | r) ≡ r mod rv. As r, v,m and s are powers of p we deduce that

(1 + r)y1 ≡ 1 + r mod min(m, rv,
svr

n
).

Using Lemma 2.1.(1b) it follows that y1 ≡ 1 mod min(mr , v,
sv
n ).

Suppose that y1 ̸≡ 1 mod w. Then

min
(m
r
, o,

so

n

)
≤ min

(m
r
, v,

sv

n

)
< w = min

(m
r
, o,max

(
1,

s

r
,
so

n

))
and hence s

r >
(
1, so

n

)
and m

r ≥ w = min
(
o, s

r

)
> min

(
m
r , v,

sv
n

)
. Thus

s

r
≥ w = min

(
o,

s

r

)
> min

(
v,

sv

n

)
≥ min

(
o,

so

n

)
.

Since n | vr it follows that min(v, sv
n ) < s

r ≤ sv
n and hence o ≤ v = min(v, vs

n ) < min(o, s
r ), a

contradiction.
(2) implies (1). We now suppose that y ≡ 1 mod w and we have to show that there

is c ∈ N and d ∈ byN satisfying the conditions in (1). If y ≡ 1 mod o then bN = byN
and hence c = a and d = b satisfy the desired condition. If (1 + r)y ≡ 1 + r mod m then
ab

y

= a1+r and hence c = ay and by satisfy the desired conditions. So we suppose that
y ̸≡ 1 mod o and (1 + r)y ̸≡ 1 + r mod m. The first implies that w < o and the second
that y − 1 is not multiple of om(1 + r) = m

r , by Lemma 2.1.(1b) and hence w < m
r . Thus

w = max(1, s
r ,

os
n ) < min(o, m

r ).
By Lemma 2.1.(1b) we have (1 + r)y = 1 + r(1 + xu) with p ∤ x, u a power of p and

vp(w) ≤ vp(u) = vp(y − 1) < vp(
m
r ) ≤ vp(s). Moreover, if u = 1 then p ∤ 1 + x. Let

c1 = bx
nu
s a. We now prove that |c1| = m. Observe that nu

s ≥ nw
s ≥ o. Therefore c1 ∈ N .

Moreover, as vp(u) < vp(s) it follows that |c1 ⟨a⟩ | = s
u and c

s
u
1 = a

xs+S
(
(1+r)x

nu
s | s

u

)
. If

u ̸= 1 then vp(r) ≥ vp(
s
w ) ≥ vp(

s
u ) = vp(S

(
(1 + r)x

nu
s | s

u

)
) = vp(xs + S

(
(1 + r)x

nu
s | s

u

)
)

and therefore G′ = ⟨ar⟩ ⊆ ⟨c1⟩ and |c1| = m, as desired. Otherwise, i.e. if u = 1 then w = 1
and hence s ≤ r and p | o | n

s . Then xs+ S
(
(1 + r)x

nu
s | s

)
≡ s(x+ 1) ̸≡ 0 mod pr because
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s ≤ r and p ∤ x+1. Therefore also in this case vp(r) ≤ vp(xs+S
(
(1 + r)x

nu
s | s

)
) and hence

G′ ⊆ ⟨c1⟩ and |c1| = m, as desired.
Since (1 + r)x

nu
s ≡ 1 mod rnu

s we have S
(
(1 + r)x

nu
s | r

)
≡ r mod rnu

s . Therefore

(1+r)y−1−xru−S
(
(1 + r)x

nu
s | r

)
≡ 0 mod rnu

s . Moreover, vp(1−(1+r)x
nu
s ) = vp(r

nu
s ),

and hence there is an integer z satisfying

z(1− (1 + r)x
nu
s ) + (1 + r)y ≡ 1 + xru+ S ((1 + r)xu | r) mod m.

Let d = byaz ∈ byN . Using that u ≥ w ≥ s
r we have

cd1 = (bx
nu
s a)b

yaz

= bx
nu
s az(1−(1+r)x

nu
s )+(1+r)y = bx

nu
s a

1+xru+S
(
(1+r)x

nu
s |r

)
= c1+r

1 ,

On the other hand

dn = (byaz)n = asy+zS((1+r)y|n)

and

cs1 = (bx
nu
s a)s = a

xus+S
(
(1+r)x

nu
s |s

)
.

if s ≥ n then o > w = max( son , s
r ) ≥

so
n ≥ o, a contradiction. Therefore, s is a proper divisor

of n and hence vp(sy+zS ((1 + r)y | n)) = s. Then dn and cs1 are elements of ⟨a⟩ of the same
order. Therefore bn = cks for some integer k coprime with p. Then c = ck1 and d satisfy the
conditions of (1).

Case 2. Suppose that ϵ = −1.
(1) implies (2). Suppose that c and d = byaz satisfy the conditions of (1). Then 4 | r

and G′ =
〈
a2
〉
=

〈
c2
〉
. As in Case 1 we may assume that w ̸= 1. Then both o and m

r are
multiple of 4 and we must prove, on the one hand that y ≡ 1 mod m

2r and, on the other
hand that y ≡ 1 mod m

r , if one of the following conditions hold: o = n or, s = m ̸= nr, or
2s = m = nr. From 4 | o and G/ ⟨c⟩ being cyclic we deduce ⟨c⟩ = ⟨bxva⟩ with o | v | n and
2 ∤ x. From G′ =

〈
a2
〉
=

〈
c2
〉
it follows that n

2 | v so that v is either n or n
2 . If v = n then

⟨c⟩ = ⟨a⟩. Therefore a−1+r = ad = a(−1+r)y and hence (−1 + r)y−1 ≡ 1 mod 2m. Then
y ≡ 1 mod m

r by Lemma 2.1.(2b). This proves the result if o = n because in that case v is
necessarily n.

Suppose otherwise that v = n
2 . Then we distinguish the cases m < nr and m = nr.

Assume that m < nr. Then, as 4 | o | v we have om(−1 + r) = max
(
2, m

r

)
≤ n

2 = v and
hence bv is central in G. Then, having in mind that 4 | r and m | 2s, we have

bxva(−1+r)y = (bxva)b
yaz

= (bxva)−1+r = bxva(bxva)r−2 = bxvar−1+xs( r
2−1) = bxva−1+s+r.

Therefore (−1+r)y ≡ −1+r+s mod m and in particular (−1+r)y ≡ −1+r mod s, since
s | m. Using Lemma 2.1 once more we deduce that y ≡ 1 mod m

2r and if s = m then y ≡ 1
mod m

r .
Suppose otherwise that m = nr. Then, from Lemma 2.1.(2a) we have v2((−1+r)v−1) =

v2(r) + v2(v) = v2(r) + v2(n) − 1 = v2(
m
2 ) so that ab

v

= a1+
m
2 and (bxva)2 = a2+s+m

2

and hence (bxva)4 = a4. As 4 | o it follows that (bxva)n = an. On the other hand, as
y is odd, it follows that v2((−1 + r)y + 1) = v2(r) ≥ 2, by Lemma 2.1.(2c). Therefore,
v2(S ((−1 + r)y | n)) = v2(rn)−1 = v2(m)−1, by Lemma 2.1.(2a). Then S ((−1 + r)y | n) ≡
m
2 mod m an hence, having in mind that 8 | m

2 | s we deduce that as = cs = dn =
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ays+zS((−1+r)y|n) = as+zm
2 . Therefore z is even. On the other hand from cd = c−1+r and

having in mind that (−1 + r)v − 1 ≡ m
2 mod m and z is even, we obtain

bxva(−1+r)y = (bxva)b
yaz

= (bxva)−1+r =

= bxva(bxva)r−2 = bxva(axs+2+m
2 )

r
2−1 = bxva−1+s+r+m

2 .

Therefore (−1 + r)y ≡ −1 + r+ s+ m
2 mod m. Again, from m | 2s and Lemma 2.1.(2b) we

deduce that y ≡ 1 mod m
2r and if s = m

2 then y ≡ 1 mod m
r .

(2) implies (1). Suppose that y ≡ 1 mod w. As y is odd, if o | 2 then b ∈ byN and hence
a and b satisfy condition (1). So we assume from now on that 4 | o. In particular 4 | n.
Suppose that m | 2r, i.e. r is either m or m

2 and let c = ay and d = bya2. In this case b2

is central in P and hence cd = cb = c−1+r and applying statements (2a) and (2c) of Lemma
2.1 we obtain dn = ays+S((−1+r)y|n) = ays = cs. Hence c and d satisfy the conditions of (1).

Thus from now on we assume that 4 divides both o and m
r . Suppose that y ≡ 1 mod m

r .

Then ab
y

= ab = a−1+r because b
m
r is central in P . Moreover, as m | 2s and y is odd we

have (by)n = asy = as. Therefore c = a and d = by satisfy condition (1) and this finishes the
proof of the lemma if w = m

r and it also proves that for w = m
2r we may assume that y ̸≡ 1

mod m
r . So suppose that w = m

2r and y ̸≡ 1 mod m
r . Then y ≡ 1 + m

2r mod m
r , o < n and

either m = s = nr or 2s = m < nr. Let c = b
n
2 a and d = by. Then, in both cases, c2 = a2+

m
2

and, as m
2 is multiple of 4 we have that G′ =

〈
a2
〉
=

〈
c2
〉
, |c| = m and cs = as. Moreover,

c−1+r = (b
n
2 a)−1+r = b

n
2 a(b

n
2 a)r−2 = b

n
2 aa(2+

m
2 )( r

2−1) =

= b
n
2 a−1+r+m

2 = b
n
2 a(−1+r)(1+m

2 ) = (b
n
2 a)b

1+ m
2r = cd

and
dn = as(1+

m
2r ) = as = cs.

Then c and d satisfy the conditions of (1).

Theorem 3.6. Let m,n, s ∈ N with s | m and let T and T̄ be (n, s)-canonical cyclic subgroups
of Um. Set [r, ϵ, o] = [T ], [r̄, ϵ̄, ō] = [T̄ ], π = π(r) ∪ (π(n) \ π(m)), π̄ = π(r̄) ∪ (π(n) \ π(m)),
m′ = [T, n, s] and m̄′ = [T̄ , n, s].

Then the following statements are equivalent.

1. Gm,n,s,T and Gm,n,s,T̄ are isomorphic.

2. Resm′(T ) = Resm̄′(T̄ ).

3. π = π̄, Resmπ′ (Tπ′) = Resmπ′ (T̄π′) and Resmπ′m′
p
(Tp) = Resmπ′m′

p
(T̄p) for every p ∈ π.

Proof. Let G = Gm,n,s,T and Ḡ = Gm,n,s,T̄ . To distinguish the generators a and b in the

presentation of G and Ḡ we denote the latter by ā and b̄. We also denote A = ⟨a⟩, B = ⟨b⟩,
Ā = ⟨ā⟩ and B̄ =

〈
b̄
〉
. The hypothesis warrants that G = AB and Ḡ = ĀB̄ are minimal

metacyclic factorizations by Proposition 3.4. In particular, |A| = |Ā| = m = mG = mḠ,
[G : A] = [Ḡ : Ā] = n = nG = nḠ, [G : B] = [Ḡ : B̄] = s = sG = sḠ, T = TG(A) and
T̄ = TḠ(Ā).
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(2) implies (3) Suppose that statement (2) holds. Then, using that π(m) = π(m′) =
π(m̄′), we have Resp(T ) = Resp(Resm′(T )) = Resp(Resm′(T̄ )) = Resp(T̄ ) for every prime p
dividing m. Thus, π′ = π̄′ and, as mπ′ = m′

π, we have

Resmπ′ (Tπ′) = Resm′
π′
(T )π = Resm′

π′
(T̄ )π = Resmπ′ (T̄π′)

and

Resmπ′m′
p
(Tp) = Resm′

π′∪{p}
(T )p = Resm′

π′∪{p}
(T̄ )p = Resmπ′m′

p
(T̄p)

for every p ∈ π(m) \ π′.
(1) implies (2). Suppose that G ∼= Ḡ. Then, as T and T̄ are (n, s)-canonical they yield

the same parameters, i.e. π′ = π̄′, o = ō, etc.
Let f : Ḡ → G be an isomorphism and let c = f(ā), d = f(b̄), C = ⟨c⟩ and D = ⟨d⟩.

Then Cπ′ = f(Ḡ′
π′) = G′

π′ = Aπ′ , by Lemma 3.1.(3). Furthermore, Cπ′Dπ′ = Aπ′Bπ′

because AB and ĀB̄ are the unique Hall π′-subgroup of G and Ḡ, respectively. Then
Resmπ′ (T ) = TG(Aπ′) = TG(Cπ′) = Resmπ′ (T̄ ). As Resmπ

(Tπ′) = Resmπ
(T̄π′) = 1 it

follows that Resm′(Tπ′) = Resm′(T̄π′). Since T and T̄ are cyclic, it remains to prove that
Resm′(Tp) = Resm′(T̄p) for every p ∈ π. Moreover, as G and Ḡ have the same parameters ϵ
and r we have Resmp

(Tp) = Resmp
(T̄p) =

〈
ϵp−1 + rp

〉
mp

. Denote R = ϵp−1 + rp and select

generators t of Resmπ′m′
p
(Tp) and t̄ of Resmπ′m′

p
(Tp) such that Resmp

(t) = Resmp
(t̄)[R]mp

.

We already know that Resm′
π′
(T ) = Resm′

π′
(T̄ ) and in particular, there is an integer x

coprime with p such that t̄ = tx mod mπ′ . If op ≤ 2 then Resm′
π′
(t) = Resm′

π′
(t̄) and if

om′
p
(R) ≤ 2 then Resm′

p
(tx) = [Rx]m′

p
= [R]mp

= Resm′
p
(t̄). In both cases Resmπ′m′

p
(T ) =

⟨t⟩ = ⟨tx⟩ = Resmπ′m′
p
(T̄ ), as desired. Therefore, in the remainder we may assume that both

op and om′
p
(R) are greater than 2 and, in particular, om′

p
(R) =

m′
p

rp
= Resm′

p
(T ) and this

number coincides with the w in Lemma 3.5.
On the other hand ApBp and f(ĀpB̄p) = CpDp are Sylow p-subgroup of G and hence

they are conjugate in G. Composing f with an inner automorphism of G we may assume
that CpDp = ApBp. Then ⟨c, dop⟩ = f(

〈
ā, b̄op

〉
) = f(CḠp

(Ḡ′
π′)) = CGp

(G′
π′) = ⟨a, bop⟩. By

Lemma 3.5 we have d = byg for some g ∈ CGp
(G′

π′) and y ≡ 1 mod w. Thus Resmπ′ (t̄) =
Resmπ′ (t

y) and Resm′
p
(t̄) = Resm′

p
(t) = Resm′

p
(R) = Resm′

p
(Ry) = Resm′

p
(ty), because

y ≡ 1 mod om′
p
(R). Thus Resm′

π′m
′
p
(T̄p) = Resm′

π′m
′
p
(t̄) = Resm′

π′m
′
p
(ty) = Resm′

π′m
′
p
(Tp),

as desired.
(3) implies (1) Suppose that the conditions of (3) holds. We may assume that a = ā and

take generators t of T and t̄ of T̄ so that G = ⟨a, b⟩, Ḡ =
〈
a, b̄

〉
, with |a| = m, [G : ⟨a⟩] = n,

bn = as, ab = at, ab̄ = at̄. Moreover, from the assumption we may assume abπ′ = ab̄π′ and
for every p ∈ π we have Resmπ′m′

p
(Tp) = Resmπ′m′

p
(T̄p). In particular, for every p ∈ π, we

have
〈
ϵp−1 + rp

〉
m′

p
= Resm′

p
(Tp) = Resm′

p
(T̄p) =

〈
ϵ̄p−1 + r̄p

〉
. Since rp | m′

p | mp it follows

that ϵ = ϵ̄ and rp = r̄p. Thus r = r̄.
We claim that for every p ∈ π we can rewrite Gp = ⟨ap, bp⟩ as Gp = ⟨cp, dp⟩ with

cp ∈
〈
ap, b

op
p

〉
= CGp

(aπ′) and dp ∈ byCGp
(aπ′) such that |cp| = mp, c

dp
p = c

Rp
p , a

dp

π′ = a
b̄p
π′

and d
np
p = c

sp
p .

Indeed, let p ∈ π. The assumption
〈
Resmπ′m′

p
(tp)

〉
=

〈
Resmπ′m′

p
(t̄p)

〉
implies that there

is an integer y coprime with |Resmπ′m′
p
(tp)| such that Resmπ′m′

p
(t̄p) = Resmπ′m′

p
(tp)

y. If
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op ≤ 2 or omp(R) ≤ 2 then, as in the proof of (1) implies (2) we have that Resmπ′mp(t) =
Resmπ′mp(t̄) so that cp = ap and dp = bp satisfies the desired conditions. So assume that

op > 2 and omp
(R) > 2. From the equality a

bp
p = a

b̄p
p we deduce that Ry ≡ R mod m′

p

and this implies that y ≡ 1 mod w where w = om′
p
(R) =

m′
p

rp
and again this w coincides

with the one in Lemma 3.5. Applying Lemma 3.5 we deduce that ⟨ap, bp⟩ contain elements
cp ∈

〈
ap, b

o
p

〉
= CGp(aπ′) and dp ∈ byCGp(aπ′) such that ⟨ap, bp⟩ = ⟨cp, dp⟩, |cp| = mp,

a
dp

π′ = a
byp
π′ = a

b̄p
π′ , c

dp
p = c

Rp
p and d

np
p = c

sp
p , as desired. This finishes the proof of the claim.

For every p ∈ π let cp and dp as in the claim and set c = aπ′
∏

p∈π cp and d = bπ′
∏

p∈π dp

we deduce that G = ⟨c, d⟩ with |c| = m, dn = cs and cd = at̄. Therefore G ∼= Ḡ.

The following corollary is a direct consequence (1) implies (2) of Theorem 3.6. It shows
that ∆G is well defined.

Corollary 3.7. If G = AB = CD are two minimal factorizations of G then ∆(AB) =
∆(CD).

4 Proofs of the main results

Proof of Theorem A. Let G and Ḡ be finite metacyclic groups and let G = AB and Ḡ = ĀB̄
be minimal metacyclic factorizations of G and Ḡ respectively. Denote m = |A|, m̄ = |Ā|,
n = [G : A], n̄ = [Ḡ : Ā], s = [G : B], s̄ = [Ḡ : B̄], T = TG(A) and T̄ = TḠ(Ā). We also
denote m′ = [T, n, s], m̄′ = [T̄ , n̄, s̄], ∆ = Resm′(T ) and ∆̄ = Resm̄′(T̄ ). Then G ∼= Gm,n,s,T ,
Ḡ ∼= Gm̄,n̄,s̄,T̄ , m = mG, n = nG, s = sG, n̄ = nḠ, m̄ = mḠ, s = sḠ, T is (n, s)-canonical
and T̄ is (n̄, s̄)-canonical. Moreover, ∆ = ∆G and ∆̄ = ∆Ḡ.

If G ∼= G′ then m = m̄, n = n̄, s = s̄ and, by Theorem 3.6 we have ∆ = ∆̄. Thus
MCINV(G) = MCINV(Ḡ).

Conversely, if MCINV(G) = MCINV(Ḡ) then m = |A| = mG = mḠ = |Ā| = m̄ and
similarly n = n̄ and s = s̄. Moreover, Resm′ [T ] = ∆G = ∆Ḡ = Resm̄′(T̄ ). Then G ∼= Ḡ by
Theorem 3.6.

In the remainder of the section we use the notation in Theorem B.

Proof of 1. implies 2. in Theorem B. Suppose that (m,n, s,∆) = MCINV(G) for some
metacyclic group G and let G = AB be a minimal factorization of G. Then m = mG = |A|,
n = nG = [G : A], s = sG = [G : B] and if T = TG(A) then ∆ = ∆(AB) = Resm′(T ).
In particular, s | m, T is a cyclic subgroup of Un,s

m , [T ] = [∆] and m′
ν = mν . Moreover,

ν = π(m′) \ π(r) and sν = mν , by Lemma 3.1. Moreover, |∆| divides n, because it divides
|T |, which in turn divides n. Then conditions (2a) and (2b) of Theorem B hold. By Lemma
2.2, Lemma 3.1 and Lemma 3.2 we have π = πG, π

′
G = ν, o = oG, ϵ = ϵG and r = rG.

Let p ∈ π(r). If ϵp−1 = 1 then
mp

rp
= |Resmp(Tp)| ≤ np and if ϵ = −1 then max(2, m2

r2
) =

|Resm2
(T2)| ≤ |T2| ≤ n2 and m2 ≤ 2s2. As the metacyclic factorization G = AB is minimal,

T is (n, s)-canonical by Proposition 3.4. Then the remaining conditions in (2c) and (2d)
follow.
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Proofs of Theorem C and 2. implies 1. in Theorem B. Suppose that m,n, s and ∆ satisfy
the conditions of 2. in Theorem B. By Remark 1.2 there is a cyclic subgroup T of Un,s

m with
Resm′(T ) = ∆ and [T ] = [∆]. Let t ∈ N with T = ⟨t⟩m. Let G = Gm,n,s,t and denote A = ⟨a⟩
and B = ⟨b⟩. We will prove that G = AB is a minimal factorization of G that m = |A|,
n = [G : A], s = [G : B] and ∆ = ∆(AB). This will complete the proofs of Theorem B and
Theorem C.

Of course G = AB is a metacyclic factorization of G and T = TG(A). Since mν = sν , n
is multiple of |∆| and |Resmν

(T )| = |Resmν
(∆)|, it follows that |Resmν

(T )| divides n and
s(t− 1). On the other hand if p | r then t ≡ ϵp−1 + rp mod mp. Therefore, if ϵ

p−1 = 1 then
omp

(t) =
mp

rp
| n and s(t − 1) ≡ srp ≡ 0 mod mp. Otherwise, i.e. if ϵ = −1 and p = 2,

then 2 | |∆| | n and m2

r2
≤ n2 and m2 | 2s. Thus om2(t) = om2(−1 + r2) = max(2, m2

r2
) ≤ n2

and m2 | t(s − 1). This shows that m divides both tn − 1 and s(t − 1), i.e. T ⊆ Un,s
m .

Then |A| = m and [G : A] = n, and hence [G : B] = s. From condition (2b) we have
that ∆ = Resm′(TG(A)) = ∆(AB) and from conditions (2d) and (2c) it follows that T is
(n, s)-canonical. Then the metacyclic factorization G = AB is minimal by Proposition 3.4.

Having in mind that a metacyclic group is nilpotent if and only if oG = 1 one can
easily obtain from Theorem B a description of the finite nilpotent metacyclic groups or
equivalently the values of the lists of metacyclic invariants of the finite nilpotent metacyclic
groups. Observe that (1) corresponds to cyclic groups, (2) to 2-generated abelian groups, (3)
to non-abelian nilpotent metacyclic groups G with ϵG = 1 and (4) to metacyclic nilpotent
groups with ϵG = −1.

Corollary 4.1. Let m,n, s ∈ N and t ∈ N ∪ {0}. Then (m,n, s, t) is the list of metacyclic
invariants of a finite metacyclic nilpotent group if and only if s | m, t < m and one of the
following conditions hold:

1. m = 1.

2. t = 1 and s = m ≤ n.

3. π(t− 1) = π(m), lcm
(
t− 1, m

t−1

)
| s | n and if 4 | m then 4 | t− 1.

4. There is a divisor r of s2′m2 such that π(r) = π(m), 4 | r, t ≡ 1 + r2′ mod m2′ ,

t ≡ −1 + r2 mod m2,
m2′
r2′

| s2′ | n2′ , max
(
2, m2

r2

)
≤ n2, m2 ≤ 2s2 and s2 ̸= n2r2. If

moreover 4 | n and 8 | m then r2 ≤ s2.

In that case Gm,n,s,t is nilpotent with metacyclic invariants (m,n, s, t).

5 A GAP implementation

In this section we show how we can use the results in previous sections to construct some
GAP functions for calculations with finite metacyclic groups. The code of these functions is
available in [3]. We start with two auxiliar functions. We call metacyclic parameters to any
list (m,n, s, t) with m,n, s ∈ N and [t]m ∈ Un,s

m , i.e. s(t− 1) ≡ tn − 1 mod m. In that case
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MetacyclicGroupPC([m,n,s,t]) outputs the group Gm,n,s,t with a power-conjugation pre-
sentation. The boolean function IsMetacyclic returns true if the input is a finite metacyclic
and false otherwise.

gap> G:=MetacyclicGroupPC([10,20,5,3]);

<pc group of size 200 with 5 generators>

gap> IsMetacyclic(G);

true

gap> Filtered([1..16],x->IsMetacyclic(SmallGroup(100,x)));

[ 1, 2, 3, 4, 5, 6, 8, 9, 14, 16 ]

To introduce the next function we start presenting an algorithm that uses Algorithm 1
to compute MCINV(G) for a given metacyclic group G. Observe that in Algorithm 1 the
values of m = |a|, n = [G : ⟨a⟩], s = [G : ⟨a⟩] and (r, ϵ, o) = [TG(⟨a⟩)] are updated along the
calculations. We use this in step 2 of the following algorithm.

Algorithm 2. Input: A finite metacyclic group G.
Output: MCINV(G).

1. Compute a metacyclic factorization G = AB of G.

2. Perform Algorithm 1 with input (A,B) saving not only the output (⟨a⟩ , ⟨b⟩) but also
m,n, s, r, ϵ and o computed along.

3. Compute m′ using (1.1) and t ∈ N such that ab = at.

4. Return (m,n, s,Resm′(⟨t⟩m)).

A slight modification of Algorithm 2 allows the computation of the list of metacyclic
invariants of a finite metacyclic group:

Algorithm 3. Input: A finite metacyclic group G.
Output: The list of metacyclic invariants of G.

1. Compute a metacyclic factorization G = AB of G.

2. Perform Algorithm 1 with input (A,B) saving not only the output (⟨a⟩ , ⟨b⟩) but also
m,n, s, r and ϵ computed along.

3. Compute m′ using (1.1) and t ∈ N such that ab = at and set ∆ := Resm′(⟨t⟩m).

4. Use the Chinese Remainder Theorem to compute the unique 1 ≤ t ≤ mπ(r) such that
t ≡ ϵp−1 + rp mod mp for every p ∈ π(r).

5. While gcd(t,m′) ̸= 1 or ⟨t⟩m′ ̸= ∆, t := t+mπ(r).

6. Return (m,n, s, t).

Observe that G = ⟨a⟩ ⟨b⟩ is a minimal metacyclic factorization at step 2 of Algorithm 3,
and m = mG, n = nG and s = sG. At step 3, we have TG(⟨a⟩) = ⟨t⟩m and hence G ∼= Gm,n,s,t

and ∆ = ∆G = Resm′(⟨t⟩m). However, this t is not tG yet. The t at step 4 is the smallest one
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with t ≡ ϵp−1 + rp mod mp for every p ∈ π(r) and the next steps search for the first integer
t satisfying this condition as well as representing an element of Um with Resm′(⟨t⟩m) = ∆.

The GAP function MetacyclicInvariants implements Algorithm 3. For example in the
following calculations one computes the metacyclic invariants of all the metacyclic groups of
order 200.

gap> mc200:=Filtered([1..52],i->IsMetacyclic(SmallGroup(200,i)));;

gap> List(mc200,i->MetacyclicInvariants(SmallGroup(200,i)));

[[25,8,25,24],[1,200,1,0],[25,8,25,7],[100,2,50,99],[100,2,50,49],

[100,2,100,99],[50,4,50,49],[2,100,2,1],[4,50,4,3],[4,50,2,3],[50,4,50,7],

[5,40,5,4],[5,40,5,1],[5,40,5,2],[20,10,10,19],[20,10,10,9],[20,10,20,19],

[10,20,10,9],[10,20,10,1],[20,10,20,11],[20,10,10,11],[10,20,10,3]]

The GAP functions MCINV and MCINVData implement Algorithm 2 representing MCINV(G)
in two different ways. While MCINV(G) outputs MCINV(G) if G is a metacyclic group,
MCINVData(G) ouputs a 5-tuple [m,n,s,m’,t] such that MCINV(G) = (m,n, s, ⟨t⟩m′). The
input data G can be replaced by metacyclic parameters [m,n, s, t] representing the group
Gm,n,s,t:

gap> G:=SmallGroup(384,533);

<pc group of size 384 with 8 generators>

gap> MetacyclicInvariants(G);

[ 8, 48, 4, 5 ]

gap> x:=MCINV(G);

[ 8, 48, 4, <group of size 1 with 1 generator> ]

gap> y:=MCINVData(G);

[ 8, 48, 4, 4, 1 ]

gap> x[4]=Group(ZmodnZObj(y[5],y[4]));

true

gap> H:=MetacyclicGroupPC([8,48,4,5]);

<pc group of size 384 with 8 generators>

gap> IdSmallGroup(H);

[ 384, 533 ]

gap> MetacyclicInvariants([20,4,8,11]);

[ 4, 20, 4, 3 ]

gap> MCINVData([20,4,8,11]);

[ 4, 20, 4, 4, 3 ]

Note that two finite metacyclic groupsG andH are isomorphic if and only if MCINV(G) =
MCINV(H) if and only if G and H have the same metacyclic invariants. The function
AreIsomorphicMetacyclicGroups uses this to decide if two metacyclic groups G and H are
isomorphic. It outputs true if G and H are isomorphic finite metacyclic groups and false

if they are finite metacyclic groups but they are not isomorphic. In case one of the inputs
is not a finite metacyclic group then it fails. The input data G and H can be replaced by
metacyclic parameters of them.

gap> H:=MetacyclicGroupPC([100,30,10,31]);

<pc group of size 3000 with 7 generators>
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gap> K:=MetacyclicGroupPC([300,30,10,181]);

<pc group of size 9000 with 8 generators>

gap> AreIsomorphicMetacyclicGroups(H,K);

false

gap> AreIsomorphicMetacyclicGroups([300,10,10,31],K);

false

gap> G:=MetacyclicGroupPC([300,10,10,31]);

<pc group of size 3000 with 7 generators>

gap> MetacyclicInvariants(G);

[ 100, 30, 10, 31 ]

gap> MetacyclicInvariants(H);

[ 100, 30, 10, 31 ]

gap> MetacyclicInvariants(K);

[ 50, 180, 10, 31 ]

We now explain a method to compute all the metacyclic group of a given order N .
We start producing all the tuples (m,n, s, r, ϵ, o) such that MCINV(G) = (m,n, s,∆) and
[∆] = (r, ϵ, o) for some finite metacyclic group G and some cyclic subgroup ∆ of Um′ with
m′ as in (1.1). For such group G we denote IN(G) = (m,n, s, r, ϵ, o). The following lemma
characterizes when a given tuple (m,n, r, s, r, ϵ, o) equals IN(G) for some finite metacyclic
group:

Lemma 5.1. Let m,n, s, r, o ∈ N and ϵ ∈ {1,−1} and let π′ = π(m) \ π(r) and π =
π(mn) \ π′. Then IN(G) = (m,n, s, r, ϵ, o) for some finite metacyclic group G if and only if
the following conditions hold:

(A) s | m, r | m, o | nπ, mπ | rn, mπ | rs, sπ′ = mπ′ and if 4 | m then 4 | r.
(B) If p ∈ π(r) and ϵp−1 = 1 then sp | n and either rp | s or spop ∤ n.
(C) If ϵ = −1 then 2 | n, 4 | m, m2 | 2s, s2 ̸= n2r2. If moreover 4 | n, 8 | m and o2 < n2

then r2 | s.
(D) o | lcm{q−1 : q ∈ π′} and for every q ∈ π′ with gcd(o, q−1) = 1 there is p ∈ π′∩π(n)

with p | q − 1.

Proof. Suppose first that (m,n, s, r, ϵ, o) = IN(G) for some finite metacyclic group G. Then
MCINV(G) = (m,n, s,∆) for some cyclic subgroup ∆ of Um′ with [∆] = (r, ϵ, o). Then
the conditions in statement 2. of Theorem B hold and this implies that conditions (A)–(C)
hold. To prove (D) we fix a metacyclic factorization G = AB and observe that o = oG(A) =
|Resmπ′ (TG(A))π| and Resmπ′ (TG(A))π is a cyclic subgroup of (Umπ′ )π. Then o divides the
exponent of (Umπ′ )π which is lcm{(q − 1)π : q ∈ π′}. This proves the first part of (D). To
prove the second one we take q ∈ π′ such that gcd(o, q− 1) = 1. By Lemma 3.1.(4), we have
Resq(TG(A)) ̸= 1. However Resq(TG(A))π | gcd(o, q − 1) = 1 and hence, if p is a divisor of
Resq(TG(A)) then p | |Uq| = q − 1, p | [G : A] = n and p ̸∈ π, so that p ∈ π′. This finishes
the proof of (D).

Conversely, suppose that conditions (A)-(D) hold. By condition (D), 2 ̸∈ π′ and hence if
q ∈ π′ then Umq

is cyclic of order φ(mq). Therefore for every q ∈ π′, the group Uq contains a
cyclic subgroup of order q−1. Therefore Um contains a cyclic subgroup of order k = lcm{q−1 :
q ∈ π′}. Furthermore, by (D), for every p ∈ π we have that op | k and hence op | q − 1 for
some q ∈ π′. Then Umq contains an element of order op and, as Umπ′

∼=
∏

q∈π′ Umq , it follows
that Umπ′ contains an element of order o. Let τ = {q ∈ π′ : gcd(o, q − 1) = 1}. By (D), for
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every q ∈ τ there is pq ∈ π′ ∩ π(n) such that pq | q − 1. Let h =
∏

q∈τ pq. For every q ∈ τ ,
there is an element in Umq of order pq. Then Umτ has an element of order h. As o | nπ and
h | nπ′ , Umπ′ has a cyclic subgroup S of order oh. Then Aut(Cm) has a cyclic subgroup T
such that Resmπ′ (T ) = S and Resmp

(T ) = Resmp
(T ) =

〈
ϵp−1 + rp

〉
mp

for every p ∈ π. By

condition (B), if p ∈ π(r) and ϵp−1 = 1 then |Resmp
(T )| = mp

rp
| np. By condition (C), if

ϵ = −1 then 2 ∈ π, 2 | n and m2

r2
| n by (A). Thus |Resmp(T )| = max(2, m2

r2
) | n. Then

|Resmp(T )| divides n for every p ∈ π. This implies that |T | = lcm(|S|, |Resmp(T )|, p ∈ π)
and this number divides n. On the one hand we have sp′ = mπ′ and if p ∈ π then either
mp | rs or p = 2, ϵ = −1 and 2m2 | s. Using this it is easy to see that Resm

s
(T ) = 1. This

proves that T ⊆ Un,s
m and by the election of T it follows that [T ] = (r, ϵ, o). Moreover, from

conditions (B) and (C), it follows that T is (n, s)-canonical and hence Gm,n,s,T = ⟨a⟩ ⟨b⟩ is a
minimal factorization. Thus IN(Gm,n,s,T ) = (m,n, s, r, ϵ, o), as desired.

Our last algorithm is based in Lemma 5.1 and computes a list containing exactly one
representative of each isomorphism class of the metacyclic groups of a given order.

Algorithm 4. Input: A positive integer N .
Output: A list containing exactly one representative of each isomorphism class of the

metacyclic groups of order N .

1. M := [ ], an empty list, π′ := π(m) \ π(r), π′ := π(N) \ π′.

2. P := {(m,n, s, r, ϵ, o) : n,m, s, r, o ∈ N, ϵ ∈ {1,−1}, N = mn and conditions (A)-(D) hold}.

3. For each (m,n, s, r, ϵ, o) ∈ P :

(a) m′ := mπ′
∏

p∈π(r) m
′
p with m′

p as in (1.1) and s′ := sm′

m .

(b) For every cyclic subgroup ∆ of Un,s′

m′ with [∆] = (r, ϵ, o):

• Select a cyclic subgroup T of Um such that Resm′(T ) = ∆.

• Add Gm,n,s,T to the list M .

4. Return the list M .

Observe that if (m,n, s, r, ϵ, o) satisfy conditions (A)-(D) then m divides sm′. Indeed, if
p ∤ r then mp = m′

p. If ϵ = −1 then m2

2 divides s and 2 | m′, hence in this case m2

s2
| m′.

Finally, if p ∈ π(r) and ϵp−1 = 1. Then p ∈ π and hence mp ≤ rpsp by condition (A).
Therefore

mp

sp
≤ min(mp, rpop). If rp | sp then also

mp

sp
≤ sp. Otherwise spop ∤ n and hence

rp
spop
np

> rp ≥ mp

sp
. This proves that

mp

sp
| m′ for every prime p, so that m | sm′, as desired.

This justify that s′ ∈ N is step (3a).

On the other hand if T is as in (3b) then T ⊆ Un,s
m . Indeed, m

s = m′

s′ and hence Resm
s
(T ) =

Resm′
s′
(∆) = 1. Moreover Resmπ′ (T ) = Resm′

π′
(∆) and hence |Resmπ′ (T )| divides n. On the

other hand [T ] = (r, ϵ, o) = [T ] and hence if ϵp−1 = 1 then |Resmp
(T )| = mp

rp
| n, by (A).

Otherwise |Resm2
T2| = max(2, m2

r2
) which divides n by (A) and (C).

The function MetacyclicGroupsByOrder(N) implements a combination of Algorithm 3
and Algorithm 4 and returns the complete list of metacyclic invariants of metacyclic groups
of order N .
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gap> MetacyclicGroupsByOrder(200);

[[1,200,1,0],[2,100,2,1],[4,50,2,3],[4,50,4,3],[5,40,5,1],[5,40,5,2],

[5,40,5,4],[10,20,10,1],[10,20,10,3],[10,20,10,9],[20,10,10,9],[20,10,10,11],

[20,10,10,19],[20,10,20,11],[20,10,20,19],[25,8,25,7],[25,8,25,24],

[50,4,50,7],[50,4,50,49],[100,2,50,49],[100,2,50,99],[100,2,100,99]]

gap> MetacyclicGroupsByOrder(8*3*5*7);

[[1,840,1,0],[2,420,2,1],[3,280,3,2],[4,210,2,3],[4,210,4,3],[5,168,5,2],

[5,168,5,4],[6,140,6,5],[7,120,7,2],[7,120,7,6],[7,120,7,3],[10,84,10,3],

[10,84,10,9],[12,70,6,5],[12,70,6,11],[12,70,12,11],[14,60,14,3],[14,60,14,9],

[14,60,14,13],[15,56,15,2],[15,56,15,14],[20,42,10,9],[20,42,10,19],

[20,42,20,19],[21,40,21,20],[28,30,14,3],[28,30,14,5],[28,30,14,11],

[28,30,14,13],[28,30,14,27],[28,30,28,3],[28,30,28,11],[28,30,28,27],

[30,28,30,17],[30,28,30,29],[35,24,35,2],[35,24,35,3],[35,24,35,4],

[35,24,35,13],[35,24,35,19],[35,24,35,34],[42,20,42,41],[60,14,30,29],

[60,14,30,59],[60,14,60,59],[70,12,70,3],[70,12,70,9],[70,12,70,13],

[70,12,70,19],[70,12,70,23],[70,12,70,69],[84,10,42,41],[84,10,42,83],

[84,10,84,83],[105,8,105,62],[105,8,105,104],[140,6,70,9],[140,6,70,19],

[140,6,70,39],[140,6,70,69],[140,6,70,89],[140,6,70,139],[140,6,140,19],

[140,6,140,39],[140,6,140,139],[210,4,210,83],[210,4,210,209],[420,2,210,209],

[420,2,210,419],[420,2,420,419]]
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