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Abstract

We introduce the class of trees with integer nodes generated by the Ducci process
applied on the digit representation of the nodes in some number system. There are two
possible options: one is to let the size of the torus go down freely during the process
and the other is to keep it fixed. We give revealing examples and discuss general
characteristics in the two cases.
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1 Introduction

Started probably in the late 19th century [15, 18] as a simple challenging problem with
numbers, the Ducci game developed into a provocative subject with features linking com-
bined aspects from algebra [4, 5, 11], combinatorics, geometry of numbers, number the-
ory [2, 3, 6–9, 12, 21, 24] cellular automata, discrete dynamical systems and/or theoretical
computer science [16,17,20,22,23,25–27].

In the original settings, a tuple of d ≥ 2 integers are placed around a circle (a torus of
dimension one) and then, recursively, these numbers are replaced in between by the absolute
value of the difference of the adjacent numbers. As the size of the tuple, called also the
size of the torus, is finite and the set of natural numbers has a first element, the process
eventually enters into a cycle. Notable is the fact that whatever the starting d-tuple, the final
cycle consists only of zeros if and only if d is a power of two. This has been demonstrated
several times independently by different authors approaching the subject from different
angles (see [1,4,13–15,17,27,30] and the references therein). A distinguished motivation for
the outgrowth was the entry of the subject into mathematical folklore through its occasional
tempting popularization in educational mathematics journals [1, 10,13,15,17,27–30].

In a related variant, the process can be described as a sequence of numbers, such as

1001 → 1012 → 1133 → 2464 → 6006 → 6062 → 6688 → 2464 → 6006, . . . (1.1)

Here, the subsequence [2464, 6006, 6002, 6688] repeats and is called cycle. The length of
the cycle is called period, a term that is also used for multiples of the length of a cycle.
The subsequence of numbers before the cycle, [1001, 1012, 1133] in (1.1), is called precycle.
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Characterizing the length of cycles and precycles is one of the interesting and complex
problems of Ducci processes in their various variants. If the components of the game are
seen as the digits of numbers written in a numeration base, the maximum length of the
cycles is studied by Breuer [4] and Dular [19].

To explain the drive behind the action, let b, d ≥ 2 be the base and the size (also called
level or dimension), and let 1 ≤ h ≤ d − 1 be a displacement, which are supposed to be
fixed integers. Consider the operator Tb,h : Zd

b → Zd
b defined by

Tb,h(n1, . . . , nd) :=
(
(n1 + n1+h) (mod b) , (n2 + n2+h) (mod b) , . . . , (nd + nd+h) (mod b)

)
,

where the notation of the subscripts is circular mod d, that is, nj with j larger than d
is the same as nj−d. Adjoining the operations of representation of an integer in base b

before and after the application of Tb,h, we associate Tb,h with an operator T̃b,h(n) that
acts on positive integers. To preserve the size during the iterations, the convention is to
see the smaller numbers as having in front zero digits for all necessary large orders. Thus,
in size d ≥ 2, if n1, . . . , nd are the digits of the representation of n, in base b, that is,
n = n1n2 · · ·nd = n1b

d−1 + · · · + nd−1b + nd, and Tb,h(n1, . . . , nd) = (m1, . . . ,md), then

T̃b,h(n) = m, where m = m1m2 · · ·md = m1b
d−1+ · · ·+md−1b+md. On torus of size d, this

holds for integers n ∈ [0, bd− 1] and some of the digits n1, n2, . . . are allowed to be equal to
zero. The case of collapsing levels, where the cluster of zeros from the left of the tuples are
left aside, is discussed in Section 2. In any case, [0] is always a cycle of length 1. But there
are other non-trivial cycles, which by chance are very long, as may happen in fortuitous
arithmetic concurences, such as those in level d = 31 from Table 2, or if 2 is a primitive
root mod d (see the remarks from [17, Section 2] and the levels d = 19, 29 in Table 2).
With these definitions, the details left in the shade in the generation of sequence (1.1) are
shown in Table 1. Accordingly, the numbers from 0 to bd−1 are organized in a well-favored
hierarchy of trees with roots in cycles.

Table 1. The sequence of iterations T̃
(k)
b,h (n) for k ≥ 0, with n = 1001, b = 10, h = 1, and d = 4.

j n digits of n in base b Tb,h(n) T̃b,h(n)

1 1001 (1, 0, 0, 1) (1, 0, 1, 2) 1012
2 1012 (1, 0, 1, 2) (1, 1, 3, 3) 1133
3 1133 (1, 1, 3, 3) (2, 4, 6, 4) 2464
4 2464 (2, 4, 6, 4) (6, 0, 0, 6) 6006
5 6006 (6, 0, 0, 6) (6, 0, 6, 2) 6062
6 6062 (6, 0, 6, 2) (6, 6, 8, 8) 6688
7 6688 (6, 6, 8, 8) (2, 4, 6, 4) 2464

The representation of such a structure for base b = 10, displacement h = 1 and size
d = 2 is shown in Figure 1. In general, the whole system depends on the decomposition
in prime factors of b and d, and, to a considerable degree, on the ‘parity’, more precisely
particularly on the number of factors of 2 they have.

In the case b = 10, h = 1, and d = 4, from which the sequence (1.1) was extracted,
the numbers from 0 to 9999 are arranged as trees rooted into the cycles [0], [4268, 6842],
[2684, 8426] and 30 other cycles of length four each. Together, these disjoint cycles take
1+ 2 · 2+ 30 · 4 = 125 values. We remark that there are no odd digits in the representation
of the numbers in the cycles, but not all numbers with all digits even belong to the cycles.
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The remaining 10000 − 125 = 9875 numbers belong to precycles, which may have lengths
1, 2, 3 or 4.

The shape is quite different on the neighbor torus of size d = 3, and the same b = 10 and
h = 1. In this case, there are three singular cycles [0], [55, 505, 550] and [222, 444, 888, 666],
16 cycles of length six and 33 cycles of length twelve. All together these disjoint cycles take
1+3+4+16 ·6+33 ·12 = 500 values. The other 1000−500 = 500 nonegative integers ≤ 999
belong to precycles of length one each.

We remark that if b = 2 and h = 1, in all tori of size d ≥ 2, the operator Tb,h coincides
with the original Ducci transformation. The reason is that iterating the operation of taking
the absolute value of the difference between neighbor integers placed around a torus in
dimension one decreases the numbers and, eventually, it leads to a tuple of numbers having
at most two distinct components of which one is necessarily zero (see [17]).
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Figure 1. The crown–rooted tree hierarchy of integers n ∈ {0, 1, . . . , 99} generated by the Ducci operator
T̃b,h(n) for b = 10, h = 1, d = 2. There are two cycles [0] and [22, 44, 88, 66], and 95 numbers in the
precycles of length 1 or 2.

For each base b ≥ 2, and size d ≥ 2, the integers 0 ≤ n ≤ bd − 1 are organized by the
Ducci operator in a hierarchy expressed as series of ‘crown-rooted trees’ bond on the cycles.
There are two types in this class of structures, according to whether the level is kept fixed
or it is dropping during the iterations. In addition to Figures 1 and 2, in Section 4, we
present and compare in Figures 3–6 the graphic representations of several relevant examples
of the two types of members of this class.

2 The game with dropping levels

In our original game defined by the interations of the T̃b,h(n) operator, the size is preserved
during the evolution by adding zeros in front of the representations in base b of the numbers
that have fewer digits than the apriori fixed size. In this section we discuss the case where
no more zeros are added. Adapting to context, we will call level instead of size or dimension
the size of the torus at a given moment. Since the level will no longer be fixed, any number
can be part of the game. Thus, if n ≥ 1, the Ducci operator will be applied for the level
d = ⌊logb(n)⌋ + 1 to the tuple of digits (n1, . . . , nd), 0 ≤ nj < b, n1 > 0. By convention,
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if d = 1, at the next step, (n) becomes
(
2n (mod b)

)
, since geometrically, on the one

dimentional torus, n is next only to itself. Also, by definition, the level of n = 0 is 1.
Formally, to define the process, let b ≥ 2 and h ≥ 1 be fixed. Then define Ũb,h : N → N

by the same formula from the Introduction, Ũb,h(n) = T̃b,h(n), where Ũb,h(0) = 0, and if
n ≥ 1 the level is d = d(n) = ⌊logb(n)⌋ + 1 and (n1, . . . , nd) are the digits of n in base b,

with 0 ≤ b1, . . . , bd < b and b1 > 0. Then the sequence of iterations Ũ
(k)
b,h (n) is composed by

pieces of the sequences T̃
(k)
b,h (n) calculated for various fixed levels that are merged together.

The result is a sequence of integers that is not necessarily increasing or decreasing, but the

levels can only be stationary or occasionally drop. Eventually, the sequence Ũ
(k)
b,h (n) for

k ≥ 1 enters into a cycle, also.

For example, if b = 7, h = 1, and k ≥ 0, the sequence Ũ
(k)
b,h (440), is

440 → 721 → 968 → 151 → 175 → 31 → 0 → 0 →, . . .

because on the digits side the Ducci process mod 7 is

(1, 1, 6, 6) → (2, 0, 5, 0) → (2, 5, 5, 2) → (�0, 3, 0, 4) → (3, 4, 0) → (�0, 4, 3) → (�0, 0) →, . . .

For other examples compare the hierarchy generated by the iterations of Ũb,h in Figure 2

with that of the T̃b,h operator in Figure 1 and also see Figure 4.
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Figure 2. The crown-rooted tree hierarchy of integers n ∈ {0, 1, . . . , 99} generated by the Ducci operator
with dropping levels allowed Ũb,h(n) for b = 10 and h = 1. Here are three cycles [0], [2, 4, 8, 6] and
[22, 44, 88, 66], and 90 numbers in the precycles of length 1 or 2.

Notice that on even levels the largest gap between consecutive numbers obtained during

the iterations of Ũ
(k)
b,1 or T̃

(k)
b,1 are produced by the ‘leap-up’ from n with digits (1, b−2, 1, b−

2, . . . ) to bd − 1, and the ‘leap-down’ from n with digits (b− 1, 1, b− 1, 1, . . . ) to 0.

Cycles can be longer than 1, but notice that all its terms are always at the same level.
If b = 3 and h = 1, an example of a cycle of length 6 is [9, 10, 14, 18, 20, 25], whose Ducci
action on the digits side is (1, 0, 0) → (1, 0, 1) → (1, 1, 2) → (2, 0, 0) → (2, 0, 2) → (2, 2, 1).
Into this cycle enters the branch with the leaf 120 in four steps because: (1, 1, 1, 1, 0) →
(2, 2, 2, 1, 1) → (1, 1, 0, 2, 0) → (2, 1, 2, 2, 1) → (�0, �0, 1, 0, 0).

A clear difference from the case of the Ducci game on a fixed level is that in base b = 2
the only possible cycle is [0], a fact that is proved in the next theorem.

Theorem 1. Let b = 2 and h ≥ 1. Then, for any integer n ≥ 0, there exists k0 ≥ 0 such

that Ũ
(k)
b,h (n) = 0 for all k ≥ k0.
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Proof. If n = 1, by the definition, Ũ
(k)
b,h (1) = 0 for all k ≥ 2.

Suppose that n ≥ 2. On the first step the level is d = ⌊logb(n)⌋ + 1 and suppose the
digits of n are (n1, . . . , nd), where n1 = 1 and 0 ≤ n2, . . . , nd ≤ 1. If nh+1 = 1, then

n1 +nh+1 ≡ 0 (mod 2), so that the level of Ũ
(2)
b,h (n) is strictly less than d, being dropped by

at least 1. If nh+1 = 0, then the repeated application of Ũb,h to the successive outcomes,
after at most d− 1 steps, will make the (h+ 1)th component equal to 1 and, consequently,
the level will drop at the next iteration. Then the theorem follows by inverse induction.

As observed before, if b = 2, it may happen that the evolution of the game at level d
may arrive at the integer 2d−1, from which the whole process will end in 0 in just one step,
because Ũb,h(2

d − 1) = 0. In any case, starting from n, the repeated application of Ũb,h

will drop from its level, possibly by skipping some levels, and ending in 0 in a maximum
number of d+ (d− 1) + · · ·+ 1 = d(d+ 1)/2 steps, where d is the level of n.

If b > 2, there are integers n for which
{
Ũ

(k)
b,h (n)

}
k≥0

ends in longer cycles.

Question (L). Given L ≥ 2, does there always exist integers b ≥ 3 and n > 0 for which

the sequence
{
Ũ

(k)
b,h (n)

}
k≥0

ends in a cycle of length L?

Table 2. Long cycles generated by the iterations Ũ
(k)
b,h (n) for k ≥ 0, with b = 9 and h = 1. The initial

leafs are the numbers n = 4, 13, 94, 823, . . . , whose representations in base 9 are 49, 149, 1149, 11149,. . . The
precycles are empty if d = 1, 3, 5, 7, 9, and [13] if d = 2, [823] if d = 4, [66433, 132890, 265939] if d = 6,
[5380843] if d = 8, and [435848053] if d = 10. Here, by periods we mean the lengths of the cycles.

d n digits of n in base b cycle period

1 4 (4) [4, 8, 7, 5, 1, 2] 6
2 13 (1, 4) [50, 10, 20, 40, 80, 70] 6
3 94 (1, 1, 4) [94, 212, 583, 725, 607, 236] 6
4 823 (1, 1, 1, 4) [1670, 3499, 2180,. . . ,3520] 24
5 7384 (1, 1, 1, 1, 4) [7384, 14792, 29743,. . . ,19190] 120
6 66433 (1, 1, 1, 1, 1, 4) [527060, 421210, 492020, 70810, 176660, 105850] 6
7 597874 (1, 1, 1, 1, 1, 1, 4) [597874, 1195772,. . . ,1554464] 546
8 5380843 (1, 1, 1, 1, 1, 1, 1, 4) [10761710, 21523579,. . . ,36051631] 24
9 48427564 (1, 1, 1, 1, 1, 1, 1, 1, 4) [48427564, 96855152,. . . ,125911658] 18
10 435848053 (1, 1, 1, 1, 1, 1, 1, 1, 1, 4) [871696130, 1743392419,. . . ,1874146609] 240

d length of precycle period d length of precycle period

11 0 726 24 3 24
12 3 24 25 0 4 428 600
13 0 78 26 1 78
14 1 1 092 27 0 54
15 0 120 28 1 2184
16 1 240 29 0 416 118 216
17 0 83 640 30 3 240
18 9 18 31 0 102 649 866
19 0 1 121 874 32 1 19680
20 1 240 33 0 726
21 0 546 34 1 669120
22 1 726 35 0 797160
23 0 531 438 36 9 72

Table 2 includes a list of long cycles in which enters fast the sequence started by the
integers n whose representation in base 9 are (1, 1, . . . , 1, 4). Notice the especial d-digits
numbers with d = 19, 25, 29, 31 that generate cycles longer than one million.
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For some small lengths L the answer to Question L is positive, in abundance, with
some infinite ‘threads’ of cycles. For instance, if b = 3, a thread of cycles of length two
is: [4, 8]; [13, 26]; [40, 80]; [121, 242]; [364, 728]; [1093, 2186];. . . , with the general formula:[
(3k − 1)/2, 3k − 1

]
for k ≥ 2.

If b = 5, a thread composed by cycles of length four is: [6, 12, 24, 18]; [31, 62, 124, 93];
[156, 312, 624, 468];. . . whose general formula is:

[
(5k−1)/4, (5k−1)/2, (5k−1), 3(5k−1)/4

]
for k ≥ 2.

3 Ducci process on fixed levels

The Ducci game works by repeatedly transforming a finite string of numbers arranged
around a one-dimensional torus. These strings are the intermediate steps that account for
the evolution of the process. We express the different Ducci operators as matrices that
are applied on row-numbers written as tuples or vectors. The entries of vectors circulate
around during the process and, while denoted, by convention, with the same bold letters,
depending on the context, they can be thought of and written with the same meaning both
horizontally or vertically.

Consider the near identical d× d matrices

Ad =



0 1 0 . . . 0 0
0 0 1 . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 1
1 0 0 . . . 0 0


and Bd =



0 0 0 . . . 0 1
1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0
0 0 0 . . . 1 0


. (3.1)

Let us note the transformations produced on a matrix X of suitable size by the multiplica-
tion by Ad and Bd:

Remark 1. a. The lines of X are circularly shifted in AdX by one position from bottom to
top and the columns of X are circularly shifted in XAd by one position from left to right.

b. The columns of X are circularly shifted in XBd by one position from right to left and
the lines of X are circularly shifted in BdX by one position from top to bottom.

c. In particular, we see that if d ≥ 1, then Ad
d = Ad and Bd

d = Bd.

Then, the Ducci operations are done by applying on vectors the operators

Md := I +Ad and Nd := I +Bd, (3.2)

where I is the identity matrix. Both Md and Nd or combinations of their powers can be
used to generate Ducci-type processes. Here we stick toMd, which is the closest the original
Ducci game.

Let p be a prime number and let d ≥ 2 be the size (or level) of a discrete torus. The
integer Ducci operation (mod p) is the result of the operator Dd : Zd

p → Zd
p defined by

Dd(x) := (x0 + x1, x1 + x2, . . . , xd−1 + x0)
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for any x = (x0, . . . , xd−1). The Ducci process is the sequence produced by the iterations

D
(k)
d (x), k ≥ 0, applied on the initial positions x ∈ Zd

p. With the elements of Zd
p viewed as

column vectors, we see that

Dd(x) = (I +Ad)x =Mdx . (3.3)

An immediate calculation finds that the characteristic polynomial of Md is

ψd(t) = (t− 1)d − 1. (3.4)

It follows that 1 is not an eigenvalue of the matrix Md, thus there is no nonzero vector v
such that Mdv = v. Therefore, the only cycle of length one is [0], where 0 = (0, . . . , 0).

Example 1. Three examples with small bases b = p and sizes d = pk. Here the vectors
that are steps in the Ducci process are expressed, as in Introduction, by the numbers whose
digits in base b are their components. Note that if p = 3 and 5, then 2 is a primitive root
mod p and the order of 2 mod 9 is 6. Checking the evolution of all integers n ∈ [0.bd − 1],
one finds:

1. If p = 3 and d = 3, then [0] and [13, 26] are the only cycles of length one and two,
respectively, and there are four other cycles of length 6.

2. If p = 3 and d = 32, then [0] and [9841, 19682] are the only cycles of length one and
two, respectively. Also, there are four cycles of length 6 and 1092 cycles of length 18. Two of
the longer ones are [757, 3028, 12112, 1514, 6056, 17411] and [1, 4, 16, 28, 112, 448, 784, 3136,
12301, 2, 8, 23, 56, 224, 644, 1487, 5948, 17222].

We remark that in base 3 the digits of the essential generators of the cycles are: 757 =
(0, 0, 1, 0, 0, 1, 0, 0, 1) and 9841 = (1, 1, 1, 1, 1, 1, 1, 1, 1).

3. If p = 5 and d = 5, then [0] and [781, 1562, 2343, 3124] are the only cycles of length
1 and 4, respectively, and there are other 156 cycles of length 20.

Theorem 2. Let the base b = p be an odd prime and let d = pk, where k ≥ 1, be the size
of the torus. Denote by op = ordp(2) the order of 2 modulo p. Then:

1. Any cycle length of the Ducci operation on Zd
p must be a divisor of dop.

2. The order op is a cycle length and any cycle length greater than 1 is divisible by op.
3. The order op is not the largest cycle length.
4. If d = p, then 1, op and dop are the only possible cycle lengths.
5. Let b, d ≥ 2 be integers. Then, all possible cycle lengths of Ducci games on Zd

b are
also possible lengths of cycles on Ze

b, for any e that is divisible by d.

Proof. 1. Note first that since 1 is not an eigenvalue of Md, the only cycle of length one
is [0]. Then, since

Md
d = (I +Ad)

pk

≡ I +Apk

d ≡ 2I (mod p) , which implies

M
dop
d = (Md

d )
op ≡ (2I)op ≡ I (mod p) ,

(3.5)

it follows that any cycle length must be a divisor of dop.
2. For d = pk, in Zp[t] the characteristic polynomial (3.4) ofMd becomes td−2 = (t−2)d.

Thus 2 is the only eigenvalue of Md. Let v ∈ Zd
p be an eigenvector, that is, Mdv = 2v.
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Then it follows that M
op
d v = 2opv ≡ v (mod p), by the definition of op. This means that v

is in a cycle of length op and also that op is the shortest possible cycle length. Furthermore,
also by the definition of the order op, it follows that any longer cycle lengths are multiples
of op.

3. Let us note that Mλ
d = I if λ is the length of the longest cycle. But M

op
d cannot

be the identity, since, otherwise, Mp−1
d = I, because op divides p − 1. Then this would

imply Mp
d = Md and, recursively, Md

d = Md. But this contradicts (3.5), from which we
know that Md

d ≡ 2I (mod p). Consequently, op is not the largest length of a cycle.
4. This part is the case k = 1 and follows directly from parts 1-3.
5. If x ∈ Zd

b , then denote by x a vector that contains a number of copies of the com-
ponents of x. Then, if x ∈ Zd

b is part of a cycle, it follows that x ∈ Ze
b is also part of

a cycle of the same length, for any e that is divisible by d, since, by the definition of the
Ducci operator, the game evolves mirrored identically on each of the e/d copies of x that
compose x.

Notice that in part 2 of Example 1, p = 3, d = 32, o3 = 2 and the lengths of cycles are
1, 2, 6, 18. These values do not include 3 as a length of a cycle, although 3 divides 9 · 2, in
agreement with the first three parts of Theorem 2.

Remark 2 (Number of Cycles for d = pk). In the proof of Theorem 2, let ν(k) be the
number of eigenvectors of M

op
d corresponding to the eigenvalue 1, so that, 1 ≤ ν(k) ≤ d−1.

Then the number of distinct cycles of length op is (pν(k) − 1)/op and the number of distinct
cycles of length opp is

(
pd − pν(k)

)
/opp.

If 2 is a primitive root modulo p, then Theorem 2 ensures the possibility of the existence
of only the following cycle lengths.

Corollary 1. Let p be an odd prime and let d = pk, with k ≥ 1, be the size of the torus.
Suppose 2 is a primitive root mod p. Then the only possible cycle lengths that divide p(p−1)
are 1, p− 1 and p(p− 1).

There is a distinction between the aspect of the trees generated by the Ducci process
on fixed size d ≥ 2, a distinction which is determined by the parity of d (see Breuer [4,
Theorem 3.2]). The remarkable fact is that if p is an odd prime, the base is pk, k ≥ 1,
and the size d is odd, then all precycles are empty, while this never happens if the size d
is even. We can use this fact to see that any vector x can canonically be embeded as x⌈e⌉

into infinity Ducci many processes of sizes e so that x⌈e⌉ is part of some cycle.

Theorem 3. Let d ≥ 1 be odd, let p be an odd prime, and let x = (x1, . . . , xd) ∈ Zd
p.

Then there exist infinitely many sizes e > d such that by embedding x into Ze
p as the vector

x⌈e⌉ = (0, . . . , 0, x1, . . . , xd) ∈ Ze
p, x

⌈e⌉ lies in a cycle of the Ducci process in Ze
p.

Proof. Let e = pkd for some k ≥ 1, and let s = ordd(p) be the order of p mod d, that is,

ps ≡ 1 (mod d). Then Mpk+s

d = (I + Ad)
pk+s

= (I + Ad)
pk

= Mpk

d . Thus, applying Ducci
operation pk times, we see that any vector is in a cycle of period pk(ps − 1).

Note that since e is odd, 0 is not a root of the characteristic polynomial of Me. Thus

DetMe ̸= 0 which implies DetMpk+s

e ̸= 0. So for any v ∈ Ze
p, there is w ∈ Ze

p such that

Mpk+s

e w = v. As Mpk

e w is in a cycle, v is in a cycle.



C. Cobeli, A. Zaharescu 185

To conclude the proof of the theorem, we notice that the embedding of x into x⌈e⌉

makes sense for infinitely many odd e larger than d.

4 Crown-rooted trees generated by Ducci processes

0

1

2

3

4

5

6

7

8

9

10
11

12

13

14

15

16

17

18

19
2021

22

23

24

25

26

0

1

2

34

5

6

7

8
9

10
11

12 13

14

15
16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42
4344

45 46

47

48

0 1

2

3

4

5

6

7

8

9
10

11

12

13 14

15

16

17

18

19

20
21

22

23

24

25

26

27

28

29

30
31

32

33

34

35

36

37
38

39 40

41

42

43

44

45 46

47

48

49

50 51

52

53

54

55

56

5758

59

60

61

62

63

64

65

66

67

6869

70
71

72

73

74

75

76

77

78 79

80

Figure 3. Droping levels. The crown–rooted tree hierarchy of integers n ∈ {0, 1, . . . , bd − 1} generated by
the Ducci operator Ũb,1(n) for b = 3, d = 3 (top); b = 7, d = 2 (middle); b = 9, d = 2 (bottom).

Figure 4. Comparison between dropping level (top) and fixed level (bottom) cases for b = 4 and d = 3.
The tree hierarchy of integers n ∈ {0, 1, . . . , 43 − 1} generated by Ũb,1(n) (top) and T̃b,1(n) (bottom).
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Figure 5. Fixed levels. The crown–rooted tree hierarchy of integers n ∈ {0, 1, . . . , bd − 1} generated by
the Ducci operator T̃b,1(n) for b = 3, d = 4 (top); b = 7, d = 2 (middle up); b = 11, d = 2 (middle down);
b = 5, d = 3 (bottom).

Figure 6. Fixed levels. The crown–rooted tree hierarchy of integers n ∈ {0, 1, . . . , bd − 1} generated by the
Ducci operator T̃b,1(n) for b = 3, d = 6 (top); b = 2, d = 7 (middle up); b = 6, d = 4 (middle down); b = 3,
d = 7 (bottom).
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