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Abstract

We show that a statistical manifold of constant non-zero curvature can be realised
as a level set of Hessian potential on a Hessian cone. We construct a Sasakian structure
on TM × R by a statistical manifold of constant non-zero curvature on M . By a
statistical Lie algebra of constant non-zero Lie algebra we construct a l.c.K. Lie algebra.
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1 Introduction

A flat affine manifold is a differentiable manifold equipped with a flat, torsion-free con-
nection. Equivalently, it is a manifold equipped with an atlas such that all transition maps
between charts are affine transformations (see [18] or [28]). A Hessian manifold is a flat
affine manifold with a Riemannian metric which is locally equivalent to the Hessian of a
function. Equivalently, a Hessian manifold is a flat affine manifold (M,∇) endowed with
a Riemannian metric g such that the tensor ∇g is totally symmetric. Any Kähler metric
can be defined as the complex Hessian of a plurisubharmonic function. Thus, the Hessian
geometry is a real analogue of the Kähler one.

A Kähler structure (I, gr) on TM can be constructed out of a Hessian structure (∇, g)
on M (see [28]). The correspondence

r : {Hessian manifolds} → {Kähler manifolds}

(M,∇, g) → (TM, I, gr)

is called the r-map. In particular, this map associates special Kähler manifolds to special
real manifolds (see [1]). In this case, the r-map describes a correspondence between the
special geometries for supersymmetric theories in dimension 5 and 4. See [15] for details on
the r-map and supersymmetry.

Hessian manifolds have many different application: in supersymmetry ([15], [16], [1]), in
convex programming ([25], [26]), in the Monge-Ampère Equation ([17], [21]), in the WDVV
equations ([29]).

A Riemannian cone is a Riemannian manifold (M × R>0, s2gM + ds2), where t is
the coordinate on R>0 and gM is a Riemannian metric on M . Riemannian cones have
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important applications in supegravity ([2], [4], [12], [13]). The geometry and holonomy of
pseudo-Riemannian cones are studied in [3] and [6].

A Riemannian manifold (M, g) is called Sasakian if there exists a complex structure I on
the cone

(
M × R>0, s2gM + ds2

)
such that

(
M × R>0, s2gM + ds2, I

)
is a Kähler manifold.

Note that our definitions of Sasakian manifolds are not standard but equivalent. See [7] or
[9] for standard definitions and [5] or [27] for equivalence of them.

A radiant manifold (C,∇, ρ) is a flat affine manifold (C,∇) endowed with a vector
field ρ satisfying ∇ρ = Id. Equivalently, it is a manifold equipped with an atlas such that
all transition maps between charts are linear transformations (see e.g. [20]). A Hessian
cone is a Hessian manifold (M ×R>0,∇, g = s2gM +ds2) such that there exists a constant
λ ̸= 0, 1

2 such that (M ×R>0,∇, λs ∂
∂s ) is a radiant manifold. In the case λ = 1

2 , the metric
g satisfies ιξg = 0, i.e. can not be positive definite ([19]).

A statistical manifold (M,D, g) is a manifold M endowed with a torsion-free con-
nection D and a Riemannian metric g such that the tensor Dg is totally symmetric. A
statistical manifold (M,D, g) is said to be of constant curvature c if the curvature ten-
sor ΘD satisfies

ΘD(X,Y )Z = c (g(Y, Z)X − g(X,Z)Y ) ,

for any X,Y, Z ∈ TM (see [28] or [22]). Note that the set of statistical manifolds of constant
curvature zero is exactly the set of Hessian manifolds.

We show that a statistical manifold of constant curvature can be realised as a level set
of a Hessian potential on a Hessian cone. A Sasakian manifold is a level set of the Kähler
potential of a Kähler cone. In this sense, statistical manifolds of constant curvature are real
analogue of Sasakian manifolds.

Theorem 1.1. Let (M, g,∇) be a statistical manifold of constant curvature. Then TM×R
admits a structure of a Sasakian manifold.

This theorem is closely related to the r-map. Namely, we have a diagram

M × R>0 r−−−−→ T (M × R>0)xcon

xcon

M −−−−→ TM × R

,

where vertical arrows associate Riemannian cones to the corresponding Riemannian man-
ifolds. The theorem implies that the Riemannian manifold T (M × R>0) with the metric
constructed by r-map is actually a cone over TM × R.

Then we work with Lie algebras and groups equipped with invariant structures on them.
There are different descriptions of an affine structure on a Lie algebra g: a torsion-free flat
connection on g, an étale affine representation g → aff(Rn), where n is the dimension
of g, or a structure of left symmetric algebra on g, that is, a multiplication on g satisfying

XY − Y X = [X,Y ] and X(Y Z)− (XY )Z = Z(XY )− (ZX)Y

for any X,Y, Z ∈ g (see [10] or [11]).
An almost complex structure I on a Lie algebra g is called integrable if the Nijenhuis

tensor of I equals to zero i.e. for any X,Y ∈ g

NI(X,Y ) = [X,Y ] + I([IX, Y ] + [X, IY ]− [IX, IY ] = 0.
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An almost complex structure on the Lie algebra g of left invariant fields of a Lie group G
sets a left invariant almost complex structure on G. It follows from Newlander–Nirenberg
theorem that the almost complex structure on g is integrable if and only if the left invariant
almost complex structure on G is integrable.

Let (g,∇) be a Lie algebra with a flat torsion free connection and ga the abelian Lie
algebra which coincides with g as a vector space. Consider the Lie algebra gn∇ ga that is
the vector space g⊕ g with the commutator

[X1 ⊕ Y1, X2 ⊕ Y2] = [X1, X2]⊕ (∇X1Y2 −∇X2Y1) .

Then the almost complex structure I on gn∇ ga defined by the rule

I (X1 ⊕X2) = −X2 ⊕X1.

is integrable (see [14] or [8]). If θ is an étale affine representation of G then the Lie algebra
of left invariant fields on Gnθ Rn equals gn∇ ga.

A Hessian Lie algebra (g,∇, g) is a Lie algebra g endowed with a flat torsion free
connection ∇ and symmetric bilinear form g such that ∇g is totally linear i.e. for any
X,Y, Z ∈ g we have

g(∇XY, Z) + g(Y,∇XZ) = g(∇Y X,Z) + g(X,∇Y Z).

A Hessian Lie group (G,∇, g) is a Lie group G endowed with a left invariant affine
structure ∇ and a left invariant Hessian metric g. A Lie group admits a Hessian structure
if and only if the corresponding Lie algebra admits a Hessian structure.

We adapt the r-map to the case of Lie algebras and groups. A Kähler Lie algebra is
a Lie algebra endowed with an integrable almost complex structure I and a closed 2-form
ω such that the bilinear form ω(·, I·) is positive definite.

Theorem 1.2. Let (g,∇, g) be an Hessian Lie algebra and π : gn∇ ga → g the projection.
Then (gn∇ ga, I, ω) is a Kähler Lie algebra, where

I(X ⊕ Y ) = −Y ⊕X and ω(X,Y ) = π∗g(IX, Y )− π∗g(X, IY ).

Corollary 1.3. Let G be an n-dimensional simply connected Lie group equipped with a
left invariant affine structure ∇ and θ the linear part of the corresponding affine action of
G. Then there exists a left invariant Kähler metric on Gnθ Rn.

Remark 1.1. Note that a Kähler structure on a the group G nθ∗ (Rn)
∗
is constructed

by an invariant Hessian structure on G in [23]. The corresponding complex structure on
G nθ∗ (Rn)

∗
depends on the Hessian metric on G. In our case, the complex structure on

Gnθ Rn depends only on the affine structure on G.

A locally conformally Kähler (l.c.K.) manifold / Lie algebra is a manifold /
Lie algebra endowed with a complex structure I, closed 1-form θ, and 2-form ω such that
dω = θ∧ω and ω(·, I·) is positive definite. The closed form θ on a l.c.K. manifold is locally
exact i.e. equals to the differential of a locally defined function f . Then the locally defined
form e−fω is Kähler.
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A statistical Lie algebra (g, g,D) is a Lie algebra endowed with a bilinear symmetric
positive-definite form g and torsion-free connection and D such that Dg is a totally sym-
metric tensor. A statistical Lie algebra (g, g,D) is said to be of constant curvature c if
the curvature tensor equals

ΘD(X,Y )Z = c (g(Y, Z)X − g(X,Z)Y ) ,

for any X,Y, Z ∈ g.

A statistical Lie group (of constant curvature c) (G, g,D) is a Lie group endowed
with a left invariant statistical structure (of constant curvature c).

Obviously, there exists a one-to-one correspondence between simply connected statistical
Lie groups (of constant curvature c) and statistical Lie algebras (of constant curvature c).

Theorem 1.4. Let (g, gg, D) be a statistical Lie algebra of constant non-zero curvature c,
ρ a generator of the subalgebra {0}×R ⊂ g×R, ∇ a connection on the Lie algebra defined
by

∇XY = DXY − cg(X,Y )ρ, ∇Xρ = ∇ρX = X, ∇ρρ = ρ

for any X,Y ∈ g × {0} ⊂ g × R, π : (g× R) n∇ (g× R)a → g the projection on the first
factor. Denote ρ1 = ρ⊕ 0, ρ2 = 0⊕ ρ ∈ (g× R)n∇ (g× R)a . Consider an almost complex
structure I and a 2-form ω on (g× R)n∇ (g× R)a defined by

I(X ⊕ Y ) = −Y ⊕X, ω(X,Y ) = π∗g(IX, Y )− π∗g(X, IY ),

for any X,Y ∈ g× R. Then for any t ∈ R>0

(
(g× R)n∇ (g× R)a , I, ωt = ω + tρ1 ∧ ρ2,−(1 + ct)ρ∗1

)
is a l.c.K. Lie algebra. Moreover, if 1 + ct = 0 then this algebra is Kähler.

If 1+ ct = 0 then
(
g,∇, gt = g + t (ρ∗)

2
)
is a Hessian Lie algebra (see [24] or [28]). The

construction of a Kähler Lie algebra from Theorem 1.4 arises from applying Theorem 1.2

to the Hessian Lie algebra
(
g,∇, gt = g + t (ρ∗)

2
)
.

Corollary 1.5. Let G be an n-dimensional simply connected statistical Lie group of con-
stant curvature c and θ the linear part of the corresponding affine representation of G×R>0.
Then there exists an étale affine representation g → aff

(
Rn+1

)
and a left invariant l.c.K.

structure on
(
G× R>0

)
nθ Rn+1. Moreover, if c < 0 then there exists a Kähler structure

on
(
G× R>0

)
nθ Rn+1.

Further, we provide examples of statistical Lie algebras of constant curvature and apply
the construction of l.c.K. Lie algebras to them. First, we consider examples of statistical
Lie algebras of constant curvature called clans. Clans are a certain class of Lie algebras that
can be constructed by homogeneous cones without full straight lines (see [30]). Second, we
consider the Lie algebras so(2) and su(2).
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2 Geometric structures on manifolds

2.1 Hessian and Kähler structures

Definition 2.1. A flat affine manifold is a differentiable manifold equipped with a flat,
torsion-free connection. Equivalently, it is a manifold equipped with an atlas such that all
transition maps between charts are affine transformations (see [18]).

Definition 2.2. A Riemannian metric g on a flat affine manifold (M,∇) is called aHessian
metric if g is locally expressed by the Hessian of a function

g = Hess φ =
∂2φ

∂xi∂xj
dxidxj ,

where x1, . . . , xn are flat local coordinates. Equivalently, g is Hessian if and only if the
3-tensor ∇g is totally symmetric. A Hessian manifold (M,∇, g)) is a flat affine manifold
(M,∇) endowed with a Hessian metric g. (see [28]).

Let U be an open chart on a flat affine manifold M , functions x1, . . . , xn be affine
coordinates on U , and x1, . . . , xn, y1, . . . , yn be the corresponding coordinates on TU . Define
the complex structure I by I( ∂

∂xi ) =
∂

∂yi . The corresponding complex coordinates are given

by zi = xi +
√
−1yi. The complex structure I does not depend on the choice of flat

coordinates on U . Thus, in this way, we get a complex structure on the TM .
Let π : TM → M be the natural projection. Consider a Riemannian metric g on M

given locally by

gijdx
idxj .

Define a bilinear form gr on TM by

gr = π∗gij
(
dxidxj + dyidyj

)
or, equivalently,

gr(X,Y ) = (π∗g) (X,Y ) + (π∗g) (IX, IY ), (1)

for any X,Y ∈ T (TM).

Proposition 2.3 ([28], [1]). Let M be a flat affine manifold, g and gr as above. Then the
following conditions are equivalent:

(i) g is a Hessian metric.

(ii) gr is a Kähler metric.

Moreover, if g = Hessφ locally then gr is equal to a complex Hessian

gr = HessC(4π
∗φ) = ∂∂̄(4π∗φ).

Definition 2.4. The metric gr is called the Kähler metric associated to g. The corre-
spondence which associates the Kähler manifold (TM, gr) to a Hessian manifold (M, g) is
called the (affine) r-map (see [1]).
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2.2 Hessian cones and statistical manifolds of constant non-zero
curvature

Definition 2.5. A radiant manifold (C,∇, ρ) is a flat affine manifold (C,∇) endowed
with a vector field ρ satisfying

∇ρ = Id. (2)

Equivalently, it is a manifold equipped with an atlas such that all transition maps
between charts are linear transformations i.e. can be represented be elements of GL(Rn)
(see e.g. [20]).

Proposition 2.6 ([20]). Let s be the coordinate on R>0 and (M ×R>0,∇, s ∂
∂s ) a radiant

manifold. Consider a natural action of R>0 on M × R>0. Then the connection ∇ is
R>0-invariant.

Definition 2.7. A Hessian cone is a Hessian manifold (M×R>0,∇, g = s2gM+ds2) such
that there exists a constant λ ̸= 0, 1

2 such that (M × R>0,∇, λs ∂
∂s ) is a radiant manifold.

Proposition 2.8 ([19]). Let (C,∇, ρ) be a radiant manifold and g a Hessian metric on M
with respect to ∇. Then

Lρg = g +∇(ιρg).

Proposition 2.9. Let (M × R>0,∇, g = s2gM + ds2) be a Hessian cone. Then we have

g = Hess

(
λs2

4λ− 2

)
. (3)

Proof. Let ρ = λs ∂
∂s be the radiant vector field. Then

ιρg = ιλs ∂
∂s

(
s2gM + ds2

)
= λsds = d

(
λs2

2

)
.

Hence,

Hess

(
λs2

2

)
= ∇d

(
λs2

2

)
= ∇ιρg.

Combining this with Proposition 2.8, we get

Lρg − g = Hess

(
λs2

2

)
.

We have Lρg = Lλr ∂
∂r

(
s2gM + ds2

)
= 2λg. Thus,

g = Hess

(
λs2

4λ− 2

)
.
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Definition 2.10. A statistical manifold (M,D, g) is a manifold M endowed with a
torsion-free connection D and a Riemannian metric g such that the tensor Dg is totally
symmetric. A statistical manifold (M,D, g) is said to be of constant curvature c if the
curvature tensor ΘD satisfies

ΘD(X,Y )Z = c (g(Y, Z)X − g(X,Z)Y ) ,

for any X,Y, Z ∈ TM .

Lemma 2.11. Let (M × R>0,∇, g = s2gM + ds2) be a Hessian cone and ρ = λs ∂
∂s the

radiant vector field. Then the following condition are satisfied:

(i) (∇Xg) (Y, ρ) = (∇ρg) (X,Y ) = (2λ− 2) g(X,Y ).

(ii) g (∇XY, ρ) = (1− 2λ) g(X,Y )

Proof. (i) Since g is a Hessian metric, the tensor ∇g is totally symmetric. Therefore,

(∇Xg) (Y, ρ) = (∇ρg) (X,Y ) = Lρ (g(X,Y ))− g(∇ρX,Y )− g(X,∇ρY ). (4)

Since X,Y ∈ TM , the value gM (X,Y ) is constant along ρ. Hence,

Lρ (g(X,Y )) = Lρ

(
s2gM (X,Y )

)
= 2λ

(
s2gM (X,Y )

)
= 2λ (g(X,Y )) .

Moreover, ρ commutes with X and Y . Hence, ∇ρX = ∇Xρ = X and ∇ρY = ∇Y ρ = Y .
Combining this with (4), we get (∇Xg) (Y, ρ) = (∇ρg) (X,Y ) = (2λ− 2) g(X,Y ).

(ii) We have

g (∇XY, ρ) = − (∇Xg) (Y, ρ) + LX (g (Y, ρ))− g (Y,∇Xρ) = − (∇Xg) (Y, ρ)− g(Y,X).

Combining this with the item (i), we obtain g (∇XY, ρ) = (1− 2λ) g(X,Y ).

Theorem 2.12. Let (M×R>0,∇, g = s2gM+ds2) be a Hessian cone, ρ = λs ∂
∂s the radiant

vector field, and c = 2λ−1
λ2 . Let us identify M with the submanifold M × 1 ⊂ M × R>0.

Then for any X,Y ∈ TM , we have

∇XY = DXY − cgM (X,Y )ρ, (5)

where D is a torsion-free connection on M . Moreover, (M, gM , D) is a statistical manifold
of curvature c.

Conversely, if (M, gM , D) is a statistical manifold of non-zero constant curvature c ≤
1, λ a solution of the equation 2λ−1

λ2 = c, and ρ = λs ∂
∂s a field of on M × R>0 then

(M × R>0,∇, g = s2gM + ds2) is a Hessian cone, where the connection ∇ is defined by
equation (5) and

∇Xρ = ∇ρX = X, ∇ρρ = ρ, (6)

for any X ∈ TM .



348 Statistical Lie algebras of constant curvature and l.c.K. Lie algebras

Proof. Since ρ is orthogonal to M we have

∇XY = DXY +
g(∇XY, ρ)

g(ρ, ρ)
ρ = DXY +

g(∇XY, ρ)

λ2s2
ρ.

where DXY ∈ TM . Combining this with item (ii) of Lemma 2.11, we get that

∇XY = DXY +
g(∇XY, ρ)

λ2s2
ρ = DXY +

1− 2λ

λ2s2
g(X,Y )ρ.

Combining this with g(X,Y ) = s2gM (X,Y ) we get (5). The term g(∗, ∗)ρ is 2-1 tensor and
∇ is a connection. Therefore, D is a connection.

The connection ∇ is flat hence for any X,Y, Z ∈ TM we have

Θ∇(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z = 0.

Combining this with (5) and ∇ρ = Id we get

Θ∇(X,Y )Z = ∇X∇Y Z−∇Y ∇XZ−∇[X,Y ]Z = ΘD(X,Y )Z−c (gM (Y, Z)X − gM (X,Z)Y )+

− c (LY (gM (X,Z))− LX (gM (Y, Z)) + gM (Y,DXZ)− gM (X,DY Z) + gM ([X,Y ], Z)) ρ.

Since X,Y, Z ∈ TM and Θ∇ = 0, we get that

ΘD(X,Y )Z = c (gM (Y, Z)X − gM (X,Z)Y )

and

LX (gM (Y, Z))− LY (gM (X,Z)) + gM (X,DY Z)− gM (Y,DXZ)− gM ([X,Y ], Z) = 0.

Combining the last equation with the identity [X,Y ] = DXY −DY X and the formula of
covariant derivative of a metric we get that

(DXg) (Y, Z)− (DY g) (X,Z) = 0.

Thus, the tensor Dg is totally symmetric. We proved the first part of the theorem.
Now, let (M, gM , D) be a statistical manifold of curvature c. Then ∇ is flat by the same

calculation as above (in the opposite direction). Thus, it is enough to check that the metric
g is Hessian.

For any X,Y, Z ∈ TM we have

(∇Xg) (Y, Z) = LX (g(Y, Z))− g (∇XY, Z)− g (Y,∇XZ) =

= LX (g(Y, Z))− g (DXY, Z)− g (Y,DXZ) = (DXg) (Y, Z)

Combining this with (DXg) (Y, Z)− (DY g) (X,Z) = 0, we get

(∇Xg) (Y, Z) = (∇Y g) (X,Z).

We have,

(∇ρg) (X,Y ) = Lρ (g(X,Y ))− g (∇ρX,Y )− g (X,∇ρY ) = (2a− 2)g(X,Y )
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and

(∇Xg) (ρ, Y ) = LX (g(ρ, Y ))− g (∇Xρ, Y )− g (ρ,∇XY ) =

= g(X,Y )− 1− 2a

a2
g(ρ, ρ)gM (X,Y ) = (2a− 2)g(X,Y ).

Thus,
(∇ρg) (X,Y ) = (∇Xg) (ρ, Y ).

Finally,
(∇ρg) (ρ,X) = Lρ (g(ρ,X))− g (∇ρρ,X)− g (ρ,∇ρX) = 0

and
(∇Xg) (ρ, ρ) = LX (g(ρ, ρ))− g (∇Xρ, ρ)− g (ρ,∇Xρ) = 0

We checked that the tensor ∇g is totally symmetric. Therefore, the metric g is Hessian.

Corollary 2.13. Any statistical manifold of a non-zero constant curvature can be realised
as a level set of a Hessian potential on a Hessian cone.

Proof. According to Theorem 2.12, a statistical manifold of a non-zero constant curvature
can be realised as a level of the function s on a Hessian cone (M ×R>0,∇, g = s2gM +ds2).
It follows from Proposition 2.9, that the level sets of s coincide with the level sets of a
Hessian potential.

2.3 Statistical manifolds of a non-zero constant curvature and Sasakian
manifolds

Definition 2.14. A Sasakian manifold is a Riemannian manifold (M, gM ) such that the
cone metric s2gM + ds2 on M ×R>0 is Kähler with respect to a dilation invariant complex
structure.

Proposition 2.15 ([27]). Let (M × R>0, g, I) be a Kähler manifold. For any q ∈ R>0

consider the map µq : M × R>0 → M × R>0 defined by µq(m, s) = (m, qs). If µ∗
qg = q2g

then g = s2gM + ds2 and (M, gM ) is a Sasakian manifold.

There exists a decomposition

T (M × R>0) = TM × TR>0 = TM × R× R>0.

If M ×R>0 possesses a Hessian structure then, according to Proposition 2.3, T (M ×R>0)
admits a Kähler structure.

Proposition 2.16. Let (M × R>0,∇, g) be a Hessian cone and gr the metric constructed
by the r-map on T (M × R>0) . Consider T (M × R>0) = (TM × R)× R>0 as a cone over
TM ×R. Then for any q ∈ R>0 we have η∗qg = q2g, where the map ηq : (TM ×R)×R>0 →
(TM × R)× R>0 is defined by µq(m, s, t) = (m, s, qt).
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Proof. We have the commutative diagram

T (M × R>0)
ηq−−−−→ T (M × R>0)yπ

yπ

M × R>0 µq−−−−→ M × R>0

,

where ηq and µq are multiplications of the coordinate on R>0 by q. By the definition of gr

we have
gr(X,Y ) = π∗g(X,Y ) + π∗g(IX, IY ). (7)

Since the diagram is commutative, it follows that

η∗qπ
∗ = π∗µ∗

q . (8)

Moreover, g is a cone metric. Hence,

µ∗
qg = q2g. (9)

It follows from (7), (8), and (9) that

η∗qg
r(X,Y ) = q2gr(X,Y ).

Theorem 2.17. Let (M, gM , D) be a statistical manifold of a non-zero constant curvature.
Then TM × R admits a structure of a Sasakian manifold.

Proof. If the curvature of (M, gM , D) is c > 1 then (M, 1
cgM , D) is a statistical manifold of

curvature 1. Thus, we can assume that the curvature of (M, gM , D) does not exceed 1. By
Theorem 2.12, there exists a Hessian cone (M ×R>0,∇, g = r2gM + dr2). Then the r-map
defines a Kähler structure (gr, I) on T (M × R>0) = TM × R × R>0. By Proposition 2.6,
the connection ∇ is R>0 invariant. Therefore, the complex structure I constructed by ∇ is
R>0-invariant. Let us identify TM × R with TM × R × 1 ⊂ TM × R × R>0. Combining
propositions 2.15 and 2.16, we get that (TM × R, gr|TM×R) is a Sasakian manifold.

3 Geometric structures on Lie groups and algebras

3.1 Flat torsion free connections and complex structure

The group of affine transformations Aff(Rn) is given by the matrices of the form(
A a
0 1

)
∈ GL(Rn+1),

where A ∈ GL(Rn), and a ∈ Rn is a column vector. The corresponding Lie algebra aff(Rn)
is given by matrices of the form (

A a
0 0

)
∈ gl(Rn+1).
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The commutator of aff(Rn) is equal to[(
A a
0 0

)
,

(
B b
0 0

)]
=

(
[A,B] A(b)−B(a)

0 0

)
.

The algebra aff(Rn) is the semidirect product gl(Rn)nRn, where the commutator is given
by

[(A, a), (B, b)] = ([A,B], Ab−Ba).

The group Aff(Rn) is the semidirect product GL(Rn) n Rn, where multiplication is given
by

(A, a)(B, b) = (AB, a+Ab).

Definition 3.1. An affine representation G → Aff(Rn) is called étale if there exists a point
x ∈ Rn such that the orbit of x is open and the stabilizer of x is discrete. A representation
of a Lie algebra g → aff(Rn) is called étale if the corresponding representation of the simply
connected Lie group is étale.

Theorem 3.2 ([10] or [11]). Let G be an n-dimensional Lie group and g the corresponding
Lie algebra. Choose an identification i : g → Rn. Then there exists a 1-1 correspondence
between left invariant flat torsion-free connections and étale affine representations. More-
over, if θ : G → GL(Rn) is the linear part of the étale affine representation corresponding to
a left invariant flat torsion-free connection ∇ then the differential η : g → gl (Rn) is defined
by X → i ◦ ∇X ◦ i−1.

Let ∇ be a flat connection on a Lie algebra g. Denote by ga the vector space g with the
structure of an abelian Lie algebra. Look on ∇ as a Lie algebras representation ∇ : g →
gl(Rn), X → ∇X . Consider the semidirect product gn∇ ga that is the vector space g⊕ g
with the Lie bracket defined by

[X1 ⊕ Y1, X2 ⊕ Y2] = [X1, X2]⊕ (∇X1
Y2 −∇X2

Y1) . (10)

The flatness of ∇ is equivalent to the Jacobi identity on gn∇ ga. Define an almost complex
structure on gn∇ ga by the rule

I (X1 ⊕X2) = −X2 ⊕X1.

Theorem 3.3 ([14] or [8]). Let ∇ be a flat connection on a Lie algebra g, and I be an
almost complex structure on gn∇ ga. Then the almost complex structure I is integrable if
and only if ∇ is torsion free.

Proposition 3.4. Let ∇ be a flat torsion free connection on a Lie algebra g and θ : G →
GL(Rn) the linear part corresponding to an étale affine representation. Then the Lie algebra
of left invariant fields on Gnθ Rn equals gn∇ ga.

Proof. Choose an identification i : g → Rn. According to Theorem 3.2, the differential of θ
is defined by η(X) = i◦∇X ◦ i−1. Then the corresponding Lie algebra gnηRn is isomorphic
to gn∇ ga.
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Corollary 3.5. Let G be a simply connected Lie group equipped with a left invariant affine
structure, g the corresponding Lie algebra, and θ the linear part of the corresponding affine
action of G. Then there exists a left invariant integrable complex structure on the group
Gnθ Rn.

Proof. The existence of a left invariant integrable complex structure follows from Theorem
3.3 and Proposition 3.4.

3.2 Hessian and Kähler structures

Definition 3.6. A Hessian Lie group (G,∇, g) is a Lie group G endowed with a left
invariant affine structure ∇ and a left invariant Hessian metric g.

Definition 3.7. A Hessian Lie algebra (g,∇, g) is a Lie algebra g endowed with a flat
torsion free connection ∇ and symmetric bilinear form g such that ∇g is totally linear i.e.
for any X,Y, Z ∈ g we have

g(∇XY, Z) + g(Y,∇XZ) = g(∇Y X,Z) + g(X,∇Y Z).

A Lie l.c.K. ts a left invariant Hessian structure if and only if the corresponding Lie
algebra admits a Hessian structure.

Proof of Theorem 1.2. According to Theorem 3.3 the almost complex structure I is inte-
grable. The bilinear form

gr(X,Y ) = ω(X, IY ) = π∗g(X,Y ) + π∗g(IX, IY )

is positive definite. Hence, it is enough to check that the form ω is closed. For any
X1, X2 ∈ g⊕ 0 we have

ω(X1 ⊕ 0, X2 ⊕ 0) = ω(0⊕X1, 0⊕X2) = 0, (11)

Combining this with the formula of the exterior derivative

dω(V1, V2, V3) = −ω([V1, V2], V3) + ω([V1, V3], V2)− ω([V2, V3], V1) (12)

and the definition of the Lie bracket (10)

dω(X ⊕ 0, Y ⊕ 0, Z ⊕ 0) = 0, dω(X ⊕ 0, 0⊕ Y, 0⊕ Z) = 0, dω(0⊕X, 0⊕ Y, 0⊕ Z) = 0.

and

dω(X ⊕ 0, Y ⊕ 0, 0⊕ Z) = −g([X,Y ], Z)− g(Y,∇XZ) + g(X,∇Y Z) =

= −g(∇XY, Z)−g(Y,∇XZ)+g(∇Y X,Z)+g(X,∇Y Z) = − (∇Xg) (Y, Z)+(∇Y g) (X,Z) = 0.

Corollary 1.3 follows from Proposition 3.4 and Theorem 1.2.
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3.3 Statistical structures of a non-zero constant curvature and
l.c.K. structures

Definition 3.8. A statistical Lie algebra (g, g,D) is a Lie algebra endowed with a
bilinear symmetric positive-definite form g and a torsion-free connection and D such that
Dg is a totally symmetric tensor. A statistical Lie algebra (g, g,D) is said to be of constant
curvature c if the curvature tensor equals

ΘD(X,Y )Z = c (g(Y, Z)X − g(X,Z)Y ) ,

for any X,Y, Z ∈ g.

Definition 3.9. A statistical Lie group (of constant curvature c) (G, g,D) is a Lie
group endowed with a left invariant statistical structure (of constant curvature c).

Obviously, there exists a one-to-one correspondence between simply connected statistical
Lie groups (of constant curvature c) and statistical Lie algebras (of constant curvature c).

Definition 3.10. A locally conformally Kähler (l.c.K.) manifold (Lie algebra) is
a manifold (Lie algebra) endowed with an integrable almost complex structure I, closed
1-form θ, and 2-form ω such that

dω = θ ∧ ω.

Proof of Theorem 1.4. The bilinear form grt = ωt(·, I·) equals gr + t
((

ρ1
)2

+
(
ρ1
)2)

where

gr is defined by
g(X,Y ) = π∗g(X,Y ) + π∗g(IX, IY ).

For t > 0 the form grt is positive definite.
The same computations as in the proof of Theorem 1.2 show that for any X,Y, Z ∈ g

we have

ωt(X⊕0, Y⊕0, Z⊕0) = ωt(X⊕0, Y⊕0, 0⊕Z) = ωt(X⊕0, 0⊕Y, 0⊕Z) = ωt(0⊕X, 0⊕Y, 0⊕Z) = 0.
(13)

Combining the formula of the exterior derivative (12) with (11) and the definition of the
Lie bracket (10) we get that for any X,Y ∈ g

dωt(0⊕X, 0⊕ Y, 0⊕ ρ) = 0, dωt(X ⊕ 0, 0⊕ Y, 0⊕ ρ) = 0,

and

dωt(X ⊕ 0, Y ⊕ 0, 0⊕ ρ) = −ωt([X,Y ]⊕ 0, 0⊕ ρ) +ωt(0⊕X,Y ⊕ 0)−ωt(0⊕ Y,X ⊕ 0) = 0.

Since [X,Y ] ∈ g, we have ω([X,Y ]⊕ 0, 0⊕ ρ) = 0. It follows from the definition of ωt that

ωt(0⊕X,Y ⊕ 0) = g(X,Y ) = ωt(0⊕ Y,X ⊕ 0).

Therefore,
dωt(X ⊕ 0, Y ⊕ 0, 0⊕ ρ) = 0.

Also, using (11), (12), and (10) we get that for any X,Y ∈ g

dωt(X ⊕ 0, Y ⊕ 0, ρ⊕ 0) = 0, dωt(0⊕X, 0⊕ Y, ρ⊕ 0) = 0
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and
g(X ⊕ 0, 0⊕ Y, ρ⊕ 0) = −ωt(0⊕∇XY, ρ⊕ 0)− ωt(X ⊕ 0, 0⊕ Y ).

We have

ωt(0⊕∇XY, ρ⊕ 0) = ωt(0⊕DXY − cg(X,Y ), ρ⊕ 0) = ωt(0⊕−cg(X,Y )ρ, ρ⊕ 0).

Combining this with the identity ωt = ω + tρ1 ∧ ρ2 and the definition of ωt we get

ωt(0⊕∇XY, ρ⊕ 0) = tcg(X,Y ) = −tcωt(X ⊕ 0, 0⊕ Y ).

Thus,
ω(0⊕∇XY, ρ⊕ 0) = −(1 + tc)g(X ⊕ 0, 0⊕ Y ).

As above, using (11), (12), and (10) we get that for any X ∈ g, we have

ωt(X ⊕ 0, ρ⊕ 0, 0⊕ ρ) = 0, ωt(0⊕X, ρ⊕ 0, 0⊕ ρ) = 0.

We checked that
dωt = −(1 + tc)ρ1 ∧ ωt.

If the 1 + tc = 0. Then the form ωt is Kähler.

Corollary 1.5 follows from Proposition 3.4 and Theorem 1.4.

3.4 Examples

3.4.1 Convex regular cones and clans

Definition 3.11. A subset V ⊂ Rn is called regular if V does not contain any straight
full line.

Let V ⊂ Rn be a convex regular domain. We denote the maximal subgroup of GL(Rn)
preserving V by Aut(V ). Note that if V is a regular convex cone then

Aut(V ) = (Aut(V ) ∩ SL(Rn))× R>0.

The following theorem summarized known results.

Theorem 3.12 ([30], [28]). Let V ⊂ Rn be a homogeneous convex cone. Then there exists
a function φ : V → R, a subgroup T ⊂ Aut(V ) satisfying the following conditions.

(i) T acts on V simply transitively.

(ii) The bilinear form gcon = Hess (lnφ) is a T -invariant Hessian metric.

(iii) The group TSL = T ∩ SL(Rn) preserves the hypersurface M = {φ = 1} and acts
simply transitively on it.

(iv) Let π : TV |M → TM be the projection along the radiant vector field and ∇ be
the standard connection on Rn. Then (D, gcon) is a statistical structure of constant
curvature on M , where D is defined by DXY = π (∇XY ).
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Definition 3.13. The function φ and the hypersurface M from Theorem 3.12 are called
the characteristic function and the characteristic hypersurface of the cone.

Definition 3.14. Let V ⊂ Rn be a homogeneous convex cone and a subgroup TSL ⊂ Aut(V )
acts on V simply transitive. The corresponding Lie algebra t is called a clan. There exists
a purely algebraic definition of clans (see [30]).

By Theorem 3.12, a characteristic hypersurface M admits a TSL-invariant statistical
structure of constant curvature. Thus, any clan admits a statistical structure of constant
curvature.

Example 3.15. Let V be the vector space of all real symmetric matrices of rank n and Ω
the set of all positive definite symmetric matrices in V . Then Ω is a regular convex cone and
the group of upper triangular matrix T(Rn) acts simply transitively on Ω by s(x) = sxsT ,
where x ∈ Ω and s ∈ T(Rn). The characteristic function is equal to

φ(x) = (detx)−
n+1
2 φ(e),

where e is the unit matrix (see [28]). The corresponding clan t is the algebra of upper
triangular traceless matrices.

Consider the case n = 3. Here, t is generated by elements

u =

(
1 0
0 −1

)
, v =

(
0 1
0 0

)
.

and the relation [u, v] = 2v. The statistical structure (D, g) of costant curvature −c < 0 is
defined by

Duu = Duv = 0, Dvu = −2v, Dvv = u, gg =
4 (u∗)

2
+ 2 (v∗)

2

c

(see [28]).

Then the corresponding l.c.K. Lie algebra admits generators u1, v1, ρ1, u2, v2, ρ2 and
relations

[u1, u2] = −4ρ2, [v1, v2] = −2ρ, [ρ1, ρ2] = ρ2,

[u1, v1] = 2v1, [v1, u2] = −2v2, [v1, v2] = u2, [ρ1, u2] = u2, [ρ1, v2] = v2.

The complex structure is defined by

I(u1) = u2, I(v1) = v2, I(ρ1) = ρ2.

For any c, t ∈ R>0 we have the following l.c.K. form

ωc,t =
4

c
u1 ∧ u2 +

2

c
v1 ∧ v2 + tρ1 ∧ ρ2.

In particular, the form ω1,1 = 4u1 ∧ u2 + 2v1 ∧ v2 + ρ1 ∧ ρ2 is Kähler.
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3.4.2 so(2) and su(2)

Example 3.16. Consider the group R as the universal covering of U(1) = SO(2). The
identification SO(2)×R>0 ≃ R2\{0} sets a Hessian structure (∇, g) on R×R>0 such that
λ∗
qg = q2g, where λq : R×R>0 → R×R>0, λq (x× s) = x× qs. By the same way as in the

proof of Theorem 1.5, we can define a l.c.K. structure on the group of homothetic motions
of the plane H(2) =

(
R× R>0

)
nR2. The group

(
SO(2)× R>0

)
nR2 is equal to the group

of homothetic motions of the plane H(R2). Thus, we get a l.c.K. structure on the universal

covering H̃(R2).
The corresponding Lie algebra defined by generators v1, ρ1, v2, ρ2 and relations

[v1, v2] = −ρ2, [ρ1, v2] = v2, [ρ1, ρ2] = ρ2.

The complex structure is defined by

I(v1) = v2, I(ρ1) = ρ2.

For any c, t ∈ R>0 we have the following l.c.K. form

ωc,t =
1

c
v1 ∧ v2 + tρ1 ∧ ρ2

In particular the form ω1,1 = v1 ∧ v2 + ρ1 ∧ ρ2 is Kähler.

Example 3.17. There exists an identifications SU(2) ≃ S3 and a homogeneous statistical
structure of curvature 1 on S3. The corresponding l.c.K. Lie group

(
SU(2)× R>0

)
nC2 is

equal to the group of homothetic complex motions H
(
C2

)
.

The algebra su(2) is defined by generators u, v, w and relations

[u, v] = 2w, [v, w] = 2u, [w, u] = 2v.

The statistical structure (g,D) of constant curvature 1 on su(2) is defined by

Duu = Dvv = Dww = 0, Duv = w, Dvw = u, Dwu = v

and
g = (u∗)

2
+ (v∗)

2
+ (w∗)

2
.

The corresponding l.c.K. Lie algebra is defined by generators u1, v1, w1, ρ1, u2, v2, w2, ρ and
relations

[u1, v1] = 2w1, [v1, w1] = 2u1, [w1, u1] = 2v1, [u1, v2] = w2, [v1, w2] = u2, [w1, u2] = v2,

[u1, u2] = [v1, v2] = [w1, w2] = −ρ2, [ρ1, v2] = v2, [ρ1, u2] = u2, [ρ1, v2] = v2, [ρ1, ρ2] = ρ2.

For any c, t ∈ R>0 we have the following l.c.K. form

ωc,t =
1

c

(
u1 ∧ u2 + v1 ∧ v2 + w1 ∧ w2

)
+ tρ1 ∧ ρ2.

In particular, the form ω1,1 = u1 ∧ u2 + v1 ∧ v2 + w1 ∧ w2 + ρ1 ∧ ρ2 is Kähler.
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