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Abstract

Let A and B be C*-algebras such that A or B is exact. We describe the largest
ideal in A ® B which has the weak ideal property. For many C*-algebras A and B
as above we characterize when the largest ideal in A ® B which has the weak ideal
property is the tensor product of the largest ideals in A and B which have the weak
ideal property (this is not always true if A or B is exact). Assume that the C*-algebras
A and B have the weak ideal property (and one of them is exact). We characterize
(in an interesting particular case and also in general) when A ® B has the weak ideal
property (these two characterizations are totally different in nature).
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1 Introduction

In this paper we continue our investigation of the weak ideal property, which was introduced
in [8].

Definition 1. (Definition 8.1 of [8]) Let A be a C*-algebra. We say that A has the weak
ideal property if whenever I C J C K ® A are ideals in K @ A such that I # J, then J/I
contains a mon-zero projection.

The weak ideal property is closely related to two other important properties: the ideal
property and the topological dimension zero. A C*-algebra A has the ideal property if any
ideal of A is generated, as an ideal, by its projections. A C*-algebra A has topological
dimension zero if its primitive spectrum Prim(A) has a base for its topology consisting of
compact open sets (Remark 2.5(vi) of [2]). Note that a separable purely infinite C*-algebra
A has real rank zero if and only if A has topological dimension zero and it satisfies a certain
K-theoretical condition (see Theorem 4.2 of [12]).

The weak ideal property and the topological dimension zero have good permanence
properties (see, e.g., [7], [8], [9], and [2]). It is known that the ideal property = the weak
ideal property = the topological dimension zero (the first implication is obvious, the second
one is Theorem 2.8 of [9]). These three properties are not identical (see [9]). However, it
was shown in [9] that, in many interesting cases, these three concepts coincide. A good
understanding of the weak ideal property is important in identifying and studying regular-
ity properties for non-simple C*-algebras, in an attempt to extend Elliott’s Classification
Program beyond the class of simple C*-algebras.

In this paper, we have been motivated by the following question:
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Question 1. (Question 4.12 of [9]) Let A and B be C*-algebras with A exact. If A and B
have the weak ideal property, does A ® B have the weak ideal property?

This question was recently investigated in several papers (see [9], [4], [5], and [6]). This
short note could be seen as a natural continuation of these works.

Let A and B be C*-algebras such that A or B is exact. In Proposition 1 we describe
the largest ideal in A ® B which has the weak ideal property. For many C*-algebras A
and B as above we characterize when the largest ideal in A ® B which has the weak ideal
property is the tensor product of the largest ideals in A and B which have the weak ideal
property (this is not always true if A or B is exact, A # 0, and B # 0, by Remark 1.9
of [5]) (see Theorem 1). Assume that the C*-algebras A and B have the weak ideal property
(and one of them is exact). We prove that A ® B has the weak ideal property if and only
if (A/J) ® (B/L) has the stable quotient property (see Definition 2) for every J <1 A and
every L < B (see Theorem 3). Assume in addition that there is an ideal I < A such that
Prim(A/I) is finite. We prove that in this case A ® B has the weak ideal property if and
only if I ® B has the weak ideal property (see Theorem 2).

Ideals in C*-algebras are assumed to be closed and two sided. If A is a C*-algebra, then
P(A) will denote the set of all projections of A (P(A) := {p € A: p=p* = p?}), Prim(A)
will denote the primitive spectrum of A, and I <t A will denote the fact that I is an ideal of
A. If A and B are C*-algebras, then A ® B denotes the minimal tensor product of A with
B. The C*-algebra of all compact linear bounded operators acting on a separable infinite
dimensional Hilbert space is denoted by K.

2 The results

The following lemma and its proof are contained in the proof of Corollary 1.5 of [10]. We
include a proof here for the sake of completeness.

Lemma 1. Let A be a C*-algebra and let I <A and J < A. If I and J have the weak ideal
property, then I 4+ J has the weak ideal property.

Proof. Consider the following short exact sequence of C*-algebras:
0—I1—I+J—J/INJ)—0

The weak ideal property passes to quotients (Theorem 8.5(5) of [8]), so J/(I N .J) has
the weak ideal property. Extensions of C*-algebras with the weak ideal property have the
weak ideal property (Theorem 8.5(5) of [8]), so I + J has the weak ideal property.

O

Notation 1. (see Notation 1.8 of [5]) Proposition 2.1(14) of [10] and Remark 2.2(1)
of [10] imply that the weak ideal property admits largest ideals, that is, for every C*-
algebra A there is an ideal in A which has the weak ideal property and which contains every
ideal in A which has the weak ideal property (see Definition 1.1 of [10]). For a C*-algebra
A, we denote by 1,(A) the largest ideal in A which has the weak ideal property.

The following result describes the largest ideal in A ® B which has the weak ideal
property, where A and B are C*-algebras such that A or B is exact.
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Proposition 1. Let A and B be C*-algebras such that A or B is exact. Then1,(A® B) is
generated (as an ideal of A® B) by the family of rectangular ideals K ® L of A® B which
have the weak ideal property.

Proof. Let I be the ideal of A ® B generated (as an ideal of A ® B) by the family of
rectangular ideals K ® L of A ® B which have the weak ideal property. We want to prove
that I,(A® B) = 1.

We first prove that if J <1 A® B and J has the weak ideal property, then J C I. Indeed,
a theorem of Kirchberg (see Proposition 2.13 of [3]; see also Theorem 1.3 of [11] and [1])
implies that J is generated (as an ideal of A® B) by the family of rectangular ideals K ® L
contained in J. Since for any such rectangular ideal K ® L we have K ® L C J, J has the
weak ideal property and the weak ideal property passes to ideals (see Theorem 8.5(5) of
[8]), it follows that K ® L < A® B and K ® L has the weak ideal property. Hence J C I.

We now prove that I has the weak ideal property. Let Z be the family of finite sums of
rectangular ideals K ® L of A® B where any such ideal K ® L has the weak ideal property.
By Lemma 1 and a standard mathematical induction argument it follows that any element
of Z is an ideal of A ® B which has the weak ideal property. Then, since Z is directed,

we have that [ = (J mer M = li_r>n M, and since the weak ideal property is preserved by
MET
inductive limits (see Theorem 8.5(4) of [8]), it follows that I has the weak ideal property.

In conclusion, we proved that I,,(A® B) = I.
0

We recall some notations from [5].

Notation 2. (see Notation 2.2 of [5]) Let A and B be non-zero C*-algebras and let [XA®B.
Assume first that I # 0. Denote by I(A) the ideal of A generated by all a € A with the
property that there is b € B such that a ® b is a non-zero element of I. Similarly, denote by
I(B) the ideal of B generated by all b € B with the property that there is a € A such that
a®b is a non-zero element of I. If I =0 is the zero ideal of A® B, denote I1(A) :=0 and
I(B) :=0.

The following result characterizes, in many cases, when 1,,(A ® B) = 1,,(4) ® L, (B).

Theorem 1. Let A and B be C*-algebras such that A or B is exact. Let I :=1,(A® B).
Assume that 1,,(A) # 0 and 1,(B) # 0. Assume that any of the following three conditions
holds:

(a) Prim(A) or Prim(B) is finite.

(b) Prim(A) or Prim(B) is Hausdorff.

(c¢) A and B are separable and A or B has the ideal property.
Then the following are equivalent:

(1) I =1,(A) ®1,(B).

(2) I(A) and I(B) have the weak ideal property.
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(3) T,(A) = I(A) and 1,(B) = I(B).

Proof. We first prove that (2) = (1).

Assume that I(A) and I(B) have the weak ideal property. Using that any of the condi-
tions (a), (b) and (c) holds and results in [9] (see Proposition 4.10 of [9], Proposition 4.11
of [9], and Theorem 4.8 of [9]) we deduce that I,,(A) ® I,,(B) has the weak ideal property

and hence:
L,(A)®1,(B) Cl,(A® B)=1. (2.1)

By Theorem 2.3(2) of [5] we have:
I CI(A)®1(B) (2.2)

Combining (2.1) and (2.2), we get:
1,(A) ®1,(B) C I C I(A)® I(B) (2.3)

Using (2.3), the fact that I,,(A) # 0 and I1,,(B) # 0, and Lemma 1.4 of [5] we deduce
that:
Lo(A) C I(A),1,(B) C I(B) (2.4)

Since I(A) and I(B) have the weak ideal property, (2.4) implies that:
L,(A) = I(A),L,(B) = I(B) (2.5)

(we used the definitions of I,,(A) and I,,(B)).

Finally, combining (2.3) and (2.5) we get I = I,,(A) ® I,(B), which ends the proof of
(2) = (1).

We now prove that (1) = (3).

Assume that I = I,,(4) ® L,(B). It was showed in the above proof of (2) = (1) that
I,(A)®1,(B) C1,(A® B) = I, which implies that I,,(A® B) = I # 0, since I,,(4) # 0
and I,(B) # 0. Finally, since I # 0, Theorem 2.9(2) of [5] implies that I,,(A) = I(A) and
1,(B) = I(B).

The proof of (3) = (2) is obvious.

Remark 1. It is easy to see that the above theorem still holds if in the conditions (a), (b)
and (c) we replace A by 1,(A) and B by L,(B) (it is well-known that the exactness passes
to ideals).

The following theorem characterizes, in an interesting particular case, when A ® B has
the weak ideal property, knowing that both factors have the weak ideal property and one
of them is exact.

Theorem 2. Let A and B be C*-algebras that have the weak ideal property and such that
A or B is exact. Suppose that there exists an ideal I < A such that Prim(A/I) is finite.
Then the following are equivalent:

(1) A® B has the weak ideal property.
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(2) I ® B has the weak ideal property.

Proof. We first prove that (1) = (2).

Assume that A ® B has the weak ideal property. Since I ® B <1 A ® B and the weak
ideal property passes to ideals (by Theorem 8.5(5) of [8]), it follows that I ® B has the weak
ideal property.

We now prove that (2) = (1).

Assume that I ® B has the weak ideal property. Since A or B is exact, by Proposition
2.17(2) of [1] and Proposition 2.16(iv) of [1] the sequence:

0—I®B—A®B— (A/ 1)@ B—0

is exact. Since Prim(A/I) is finite and since also A/I has the weak ideal property (because
A has the weak ideal property and the weak ideal property passes to quotients by Theorem
8.5(5) of [8]), we have that (A/I) ® B has the weak ideal property by Proposition 4.10 of
[9]. Since the weak ideal property is preserved by extensions (see Theorem 8.5(5) of [8]),
I ® B has the weak ideal property and (A/I) ® B has the weak ideal property, we deduce,
using also the above exact sequence of C*-algebras, that A® B has the weak ideal property.

O

Corollary 1. Let A and B be C*-algebras that have the weak ideal property and such that
A or B is exact. Suppose that there ezist ideals I < A and J < B such that Prim(A/I) and
Prim(B/J) are finite. The following are equivalent:

(1) A® B has the weak ideal property.
(2) I ® J has the weak ideal property.

Proof. Use twice Theorem 2, the fact that the weak ideal property passes to ideals (Theorem
8.5(5) of [8]), and the well-known fact that exactness passes to ideals.
a

Remark 2. Theorem 2 and Corollary 1 hold, in particular, if I and J are mazimal ideals
of A and B, respectively, since in these cases Prim(A/I) and Prim(B/J) have each only
one element.

Definition 2. We say that a C*-algebra A has the stable quotient property if for every
ideal I < A such that P(I ® K) # {0}, we have that P((I/J) ® K) # {0} for every J < A,
JCI.

Remark 3. (1) Let A be a C*-algebra such that A has the weak ideal property. Then A
has the stable quotient property.

(2) Let A be a non-zero simple C*-algebra, such as those classified in [18], for which
P(A® K) ={0}. Then A has the stable quotient property.

Notation 3. (see Notation 2.1 of [5]; see also Lemma 2.13(i) of [1]) Let A and B be C*-
algebras and let [SA®B. Denote [, :={a € A:a®@B C 1} andIp:={be B: AQbC I}.
When I is a prime ideal of A® B, this notation was introduced in Lemma 2.13(i) of [1].
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The following theorem characterizes when a tensor product of C*-algebras has the weak
ideal property, knowing that both factors have the weak ideal property and one of the
factors is exact.

Theorem 3. Let A and B be two C*-algebras that have the weak ideal property. Assume
that A or B is exact. Then the following are equivalent:

(1) A® B has the weak ideal property.
(2) (A/J)® (B/L) has the stable quotient property for every J < A and every L < B.

Proof. We begin with an observation. Let J << A and L < B be arbitrary ideals. Since A
or B is exact, Proposition 2.17 of [1], Proposition 2.16(ii) of [1] and Lemma 2.12(iii) of [1]
imply that there is a *-isomorphism:

(A®B)/(J®B+A®L)=(A/J)® (B/L) (2.6)

We first prove that (1) = (2).

Assume that A ® B has the weak ideal property. Since the weak ideal property passes
to quotients (see Theorem 8.5(5) of [8]), using also the *-isomorphism from (2.6) we deduce
that (A/J) ® (B/L) has the weak ideal property, and hence (A/J) ® (B/L) has the stable
quotient property.

We now prove that (2) = (1).

Assume that (A4/J) ® (B/L) has the stable quotient property for every J < A and every
L < B. Assume also that 0 # S < (A ® B)/I, where I < A ® B. The obvious inclusion of
ideals of A® B

IAaQB+A®IgCI (2.7)

(see Theorem 2.3(1) of [5] and also [1]) canonicaliy induces a surjective *-homomorphism @
defined on (A® B)/(I4 ® B+ A® Ip) and with values in (A® B)/I. Note that in order to
prove that A ® B has the weak ideal property it is enough to show that P(S ® K) # {0}.
Now let T := &~ 1(S). Then T < (A® B)/(Ia ® B+ A® Ig), ®(T) = S and hence T # 0
(since @ is linear and S # 0). By Corollary 4 of [4] (and Definition 9 of [4]) it follows that:

P(T @ K) # {0} (2.8)
On the other hand S = T/ ker(®|T") and hence:
S@K = (T/ker(®|T)) @K (2.9)

Finally, since (A® B)/(I4 ® B+ A® Ig) has the stable quotient property (use (2.6) and
the fact that (A/I4) ® (B/Ip) has the stable quotient property by our hypothesis), using
also (2.8) and the fact that T/ ker(®|T) # 0 (since T/ ker(®|T") = S # 0), we deduce that
P(T/ker(®|T)) ® K) # 0, which implies that P(S ® K) # {0} (use (2.9)). This ends the
proof of (2) = (1).

0
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