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imperfect interface
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Abstract

The goal of this paper is to obtain a macroscopic model for an ε-periodic thermoelastic
composite material formed by two components with imperfect contact at the interface. We
consider that on the interface between the two materials the tractions and the temperature
fluxes are continuous, but both the temperature and the displacement fields have a jump,
proportional to the temperature flux and, respectively, to the normal component of the
stress tensor. Under suitable hypotheses on the order of magnitude with respect to ε of the
elasticity tensors and of the temperature-displacement tensors in the two components of the
medium, we derive, via the periodic unfolding method, the homogenized problem, which
contains new coupling terms between the limits of the displacements and, respectively, the
temperatures from the two components of the composite material.
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1 Introduction

This paper deals with the homogenization of a transmission problem in a two-component
thermoelastic composite material having an ε-periodic structure. More precisely, we assume
that the domain Ω occupied by the thermoelastic composite material is the union of a connected
set Ωε1 and a disconnected one, Ωε2, consisting of ε-periodic connected sets of size ε. The two
components of the composite are separated by a thin layer, modeled here as a surface Γε.
We consider that both the displacements and the temperatures have jumps of order ε on the
interface Γε. The jump of the displacements is proportional to the normal component of the
stress tensor and the jump of the temperature fields is proportional to the temperature flux
across Γε. Moreover, we assume that the tractions and the temperature fluxes are continuous
across Γε. We consider that the elasticity tensors of the two materials are both of the order of
unity, while the temperature-displacement tensor is assumed to be of order one in the connected
component of the composite medium and of order ε in the disconnected one.
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Under suitable hypotheses on the data, we derive, via the periodic unfolding method, the ho-
mogenized problem, which contains new coupling terms between the limits of the displacements
and, respectively, of the temperatures from the two components of the medium.

Similar problems to the one we treat here have been addressed, using various methods, in
the literature. For the general theory of thermoelasticity, we refer to [12]. For a linear thermoe-
lasticity model, obtained using semigroups theory, we refer to Francfort [11]. In [8], Ene and
Paşa study a thermoelasticity model, but without jumps, and they obtain their homogenization
results using asymptotic expansions. For other thermoelasticity models, the interested reader
is referred to [1]. For transmission problems in composites with imperfect interfaces, see [5],
[6], [10], [14] and [15].

As already mentioned, our approach is based on the use of the periodic unfolding method.
This method was introduced by Cioranescu, Damlamian and Griso in [2] for the case of fixed
domains (see [3] for a general presentation) and, later, it was extended to periodically perforated
domains by Cioranescu, Damlamian, Donato, Griso and Zaki in [4]. In [5], Donato et al. use
the periodic unfolding method for a two-component domain similar to the one considered in
this paper and in [7] Donato and Yang introduce a time depending unfolding operator for a
wave equation in domains with isolated holes. Also, in [16], Yang defines two time depending
unfolding operators for a domain with a similar geometry to the one we consider here and uses
them in the homogenization process of a linear hyperbolic problem in a medium with imperfect
interfaces.

The structure of the paper is as follows: in Section 2, we formulate the microscopic problem
and in Section 3 we prove the existence and uniqueness of a weak solution for this problem.
Proper functional spaces are introduced and suitable estimates of the weak solution are obtained.
Using the periodic unfolding method, we prove some convergence results in Section 4 and we
obtain the homogenized problem.

2 The thermoelasticity problem

Let Ω be an open bounded subset of RN (N > 2), with a Lipschitz continuous boundary ∂Ω
and let Y = (0, 1)N be the unit cube in RN . We suppose that Y2 is an open connected subset
of Y such that Ȳ2 ⊂ Y and its boundary Γ is Lipschitz continuous. We set Y1 = Y \ Ȳ2. One
can see that, repeating Y by periodicity, the union of all Ȳ1 is a connected set in RN , which
will be denoted by RN1 . Furthermore, let RN2 = RN \ RN1 .

In what follows, the small parameter ε ∈ (0, 1) represents the characteristic dimension of the
periodicity cell and it takes its values in a sequence of real numbers which, in the homogenizing
process, will tend to zero. For each k ∈ ZN , we define Y k = k + Y and Y kα = k + Yα, where
α ∈ {1, 2}. We also define, for each ε,

Zε =
{
k ∈ ZN : εȲ k2 ⊂ Ω

}
(2.1)

and we set

Ωε2 =
⋃
k∈Zε

(
εY k2

)
, Ωε1 = Ω \ Ω̄ε2. (2.2)

The boundary of Ωε2 will be denoted by Γε and n will be the unit normal on Γε, exterior to Ωε1.
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We introduce now the fourth order tensors A1ε and A2ε which represent the elasticities of
the two components Ωε1 and, respectively, Ωε2. We consider that for α ∈ {1, 2}

Aαε(x) = Aα(x/ε),

where Aα are symmetric and positive definite tensors, of components aαijkh ∈ L∞(Y ). We
assume that aαijkh are real, smooth and Y -periodic functions.

We also introduce the second order temperature-displacement tensors

B1ε(x) = B1(x/ε), B2ε(x) = εB2(x/ε)

and the thermic-conductivity tensors Kαε(x) = Kα(x/ε), where Bα and Kα are symmetric,
with the components bαij , k

α
ij ∈ L∞(Y ) being smooth and Y -periodic functions. Moreover, we

consider that Kα are positive definite.
Furthermore, T0 denotes the reference temperature, ραε are the densities of the two me-

dia, defined by ραε(x) = ρα(x/ε), and cαε(x) = cα(x/ε) are the specific heats for constant
deformation of each of the two media. We also introduce two jump factors huε (x) = hu(x/ε)
and hθε(x) = hθ(x/ε) and we assume that the functions ρα, cα, hu, hθ ∈ L∞(Y ) are smooth,
Y -periodic and strictly positive.

Finally, for α ∈ {1, 2} and uαε and θαε defined on Ωεα, the constitutive laws are given by

σαεij = aαεijkhekh(uαε)− bαεij θαε, where ekh(uαε) = 1
2

(
∂uαεk
∂xh

+
∂uαεh
∂xk

)
represent the components of

the deformation tensor.
Let T > 0 be a real number. In what follows, we shall use the notation ΩT = (0, T ) × Ω,

ΩεTα = (0, T )× Ωεα and ΓTε = (0, T )× Γε. Our aim is to study the asymptotic behavior of the
solution of the problem

−
∂σαεij
∂xj

+ ραε
∂2uαεi
∂t2

= fi in ΩεTα, (2.3)

− ∂

∂xi

(
kαεij

∂θαε

∂xj

)
+ T0b

αε
ij

∂eij(u
αε)

∂t
+ cαε

∂θαε

∂t
= r in ΩεTα, (2.4)

σ1ε
ij nj = σ2ε

ij nj on ΓTε , (2.5)

k1ε
ij

∂θ1ε

∂xj
ni = k2ε

ij

∂θ2ε

∂xj
ni on ΓTε , (2.6)

σ1ε
ij nj = εhuε (u2ε

i − u1ε
i ) on ΓTε , (2.7)

k1ε
ij

∂θ1ε

∂xj
ni = εhθε(θ

2ε − θ1ε) on ΓTε , (2.8)

u1ε = 0, θ1ε = 0 on (0, T )× ∂Ω, (2.9)

uαε(0, x) = 0, u̇αε(0, x) = 0, θαε(0, x) = 0, (2.10)

where fi are the components of a vector field f ∈ L2(Ω)N , which represents the forces, and
r ∈ L2(Ω) is the exterior energy source.
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3 Variational formulation and estimates

We introduce the spaces

V1ε =
{
v ∈ C∞(0, T ;H1(Ωε1))), v = 0 on ∂Ω and v = 0 on {0} × Ω

}
,

V2ε =
{
v ∈ C∞(0, T ;H1(Ωε2))), v = 0 on {0} × Ω

}
and

Wε =
(
V N1ε × V N2ε

)
× (V1ε × V2ε) . (3.1)

An element of Wε will be denoted by V = (v, w), with v = (v1, v2) ∈ V N1ε × V N2ε and w =
(w1, w2) ∈ V1ε × V2ε.

In order to obtain the variational formulation of problem (2.3)-(2.10), we choose V =
(v, w) ∈Wε with vα(0, x) = 0, ∀x ∈ Ωεα and we multiply the equations (2.3) with (T − t)v̇αi and
the equations (2.4) with (T − t)w

α

T0
. Adding the obtained relations and integrating by parts, we

get the variational formulation of problem (2.3)-(2.10):

Find Uε = (uε, θε) ∈Wε such that

Lε(Uε, V ) = Dε ((f, r), V ) , ∀V = (v, w) ∈Wε, (3.2)

where, for each ε, Lε : Wε ×Wε → R is a bilinear form defined by

Lε(U, V ) =
∑
α=1,2

[∫ T

0

∫
Ωεα

(t− T )
((
−aαεijkhekh(uα) + bαεij θ

α
)
eij(v̇

α)+

+ραεu̇αi v̈
α
i + +bαεij eij(u

α)ẇα +
1

T0
cαεθαẇα

)
+ ραεu̇αi v̇

α
i +

+bαεij eij(u
α)wα +

1

T0
cαεθαwα +

1

T0

∫ t

0

kαεij
∂θα

∂xj

∂wα

∂xi
ds

]
−

−ε
∫ T

0

∫
Γε

(t− T )huε (u2
i − u1

i )(v̇
2
i − v̇1

i )−

− ε

T0

∫ T

0

∫
Γε

(t− T )hθε(θ
2 − θ1)(w2 − w1),

(3.3)

with U = (u, θ) and V = (v, w), and Dε :
(
L2(Ω)N × L2(Ω)

)
×Wε → R is defined by

Dε ((f, r), V ) = −
∑
α=1,2

∫ T

0

∫
Ωεα

(t− T )
(
fiv̇

α
i +

1

T0
rwα

)
. (3.4)



Homogenization of a thermoelasticity model 151

First, we observe that, for any V = (v, w) ∈Wε, we have

Lε(V, V ) =
1

2

∑
α=1,2

[∫ T

0

∫
Ωεα

aαεijkhekh(vα)eij(v
α) + ραεv̇αi v̇

α
i +

+
1

T0
cαεwαwα +

2

T0

∫ t

0

kαεij
∂θα

∂xj

∂wα

∂xi
ds

]
+

+
ε

2

∫ T

0

∫
Γε

huε (v2
i − v1

i )2 +
ε

T0

∫ T

0

∫
Γε

∫ t

0

hθε(w
2 − w1)2 ds.

(3.5)

We introduce now the Hilbert space Wε, which is the completion of Wε in the norm ‖·‖
generated by the scalar product

(U, V )Wε
=

∑
α=1,2

[∫ T

0

∫
Ωεα

u̇αi v̇
α
i + eij(u

α)eij(v
α) + θαwα+

+

∫ t

0

∂θα

∂xi

∂wα

∂xi
ds

]
+ ε

∫ T

0

∫
Γε

(u2
i − u1

i )(v
2
i − v1

i )+

+ε

∫ T

0

∫
Γε

∫ t

0

(θ2 − θ1)(w2 − w1) ds.

(3.6)

Remark 1. According to Ieşan [12], using Schwarz inequality and Sobolev’s embedding theorem
[13], one can see that Lε can be extended by continuity to the entire space Wε×Wε and Dε can
also be extended to

(
L2(Ω)N × L2(Ω)

)
×Wε.

Using now the coercivity of Aα and Kα and the positivity of ρα, cα, hu, hθ, it follows
immediately that there exists a constant C > 0, independent of ε, such that

‖V ‖2 6 CLε(V, V ). (3.7)

Theorem 1. The problem (3.2) has a unique solution. Moreover, there exists a constant C > 0,
independent of ε, such that:

‖uεαi ‖L2(ΩεTα) 6 C, (3.8)

‖u̇εαi ‖L2(ΩεTα) 6 C, ‖∇uαεi ‖L2(ΩεTα) 6 C, (3.9)

‖θεα‖L2(ΩεTα) 6 C,

∥∥∥∥∫ t

0

(∇θεα)
2

∥∥∥∥
L1(ΩεTα)

6 C, (3.10)

‖u2ε
i − u1ε

i ‖L2(ΓTε ) 6 Cε−1/2,

∥∥∥∥∫ t

0

(
θ2ε − θ1ε

)2∥∥∥∥
L1(ΓTε )

6 Cε−1/2. (3.11)

Proof: Let S : Wε → Wε be the correspondence that associates to each V ∈ Wε the unique
V0 ∈ Wε such that

Lε(U, V ) = (U, S(V ))Wε
, ∀U ∈ Wε. (3.12)
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The mapping S is bijective from Wε to its range R(S) and, since R(S) is dense in Wε, we can
extend S−1 to the entire Wε. Thus, S−1 :Wε −→Wε is a bounded operator. One can see that
Dε is also bounded inWε. From Riesz-Fréchet theorem, there exists Uε ∈ Wε (which obviously
depends on ε, f and r) such that

Dε
(
(f, r), S−1(Ψ)

)
= (Uε,Ψ)Wε

, ∀Ψ ∈ Wε.

In particular, for every V ∈ Wε, as S(V ) ∈ Wε, we have

Dε ((f, r), V ) = (Uε, S(V ))Wε
,

and taking into account (3.12), the existence of a solution is proven. Since Lε is linear, the
uniqueness can be easily proven by taking Uε = V = Uε1 − Uε2 in (3.2) and using inequality
(3.7).

Now, from (3.12) and (3.2),

‖Uε‖2 = (Uε, Uε)Wε
= Lε(Uε, S−1(Uε)) = Dε

(
(f, r), S−1(Uε)

)
6

6 C‖Uε‖ · ‖(f, r)‖L2(Ω)N×L2(Ω),

and taking into account the definition of the norm in Wε, we can see that the estimates (3.9)-
(3.11) hold true.

It remains to prove (3.8). It is known (see, for example, [9]) that there exists a constant
C > 0, independent of ε, such that for any v = (v1, v2) ∈ V N1ε × V N2ε , we have

‖v2
i ‖L2(Ωε2) 6 C

(
ε‖∇v2

i ‖L2(Ωε2) + ε1/2‖v2
i ‖L2(Γε)

)
, (3.13)

ε1/2‖v1
i ‖L2(Γε) 6 C

(
ε‖∇v1

i ‖L2(Ωε1) + ‖v1
i ‖L2(Ωε1)

)
, (3.14)

‖v1
i ‖L2(Ωε1) 6 C‖∇v1

i ‖L2(Ωε1). (3.15)

From (3.15) and (3.9), we conclude that

‖u1ε
i ‖L2(ΩεT1) 6 C‖∇u1ε

i ‖L2(ΩεT1) 6 C. (3.16)

In a similar manner, from (3.13) and (3.14), we get

‖u2ε
i ‖L2(ΩεT2) 6 C

(
ε‖∇u2ε

i ‖L2(ΩεT2) + ε1/2‖u2ε
i − u1ε

i ‖L2(ΓTε ) + ε1/2‖u1ε
i ‖L2(ΓTε )

)
6

6 C
(
ε‖∇u2ε

i ‖L2(ΩεT2) + ε1/2‖u2ε
i − u1ε

i ‖L2(ΓTε ) + ε‖∇u1ε
i ‖L2(ΩεT1) + ‖u2ε

i ‖L2(ΩεT2)

)
.

Taking now into account (3.9), (3.11) and (3.16), one can see that

‖u2ε
i ‖L2(ΩεT2) 6 C.
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4 The homogenization process

In this section, we shall use the notation:

W1 = L∞(0, T ;H2(Ω) ∩H1
0 (Ω))N ∩W 1,∞(0, T ;H1(Ω))N ∩W 2,∞(0, T ;L2(Ω))N ,

W2 = L∞(0, T ;H2(Ω) ∩H1
0 (Ω)) ∩W 1,∞(0, T ;H1(Ω)),

W = W1 × L∞(0, T ;L2(Ω;H1
per(Y1))N ×W 2,∞(0, T ;L2(Ω))N ×W2

×L∞(0, T ;L2(Ω;H1
per(Y1))×W 1,∞(0, T ;L2(Ω)).

For proving our main convergence result, we shall use the unfolding operators T ε1 and T ε2
defined in [16]. These two operators transform functions defined on the oscillating domains
[0, T ] × Ωε1 and [0, T ] × Ωε2 into functions defined on the fixed domains [0, T ] × Ω × Y1 and,
respectively, [0, T ]×Ω×Y2 and, as a consequence, we can avoid the use of extension operators.

Theorem 2. If (uε, θε) ∈ Wε is the solution of problem (2.3)-(2.10), with uε = (u1ε, u2ε) and
θε = (θ1ε, θ2ε), then

ũαε
∗−⇀ |Yα|uα weakly* in L∞(0, T ;L2(Ω))N ,

θ̃αε
∗−⇀ |Yα|θα weakly* in L∞(0, T ;L2(Ω)),

T εα (uαε)
∗−⇀ uα weakly* in L∞(0, T ;L2(Ω;H1(Yα)))N ,

T ε1 (ekh(u1ε))
∗−⇀ ekh(u1) + eykh(û1) weakly* in L∞(0, T ;L2(Ω× Y1)),

T ε2 (ekh(u2ε))
∗−⇀ 0 weakly* in L∞(0, T ;L2(Ω× Y2)),

T εα (θαε)
∗−⇀ θα weakly* in L∞(0, T ;L2(Ω;H1(Yα))),

T ε1 (∇θ1ε)
∗−⇀ ∇θ1 +∇y θ̂1 weakly* in L∞(0, T ;L2(Ω× Y1)),

T ε2 (∇θ2ε)
∗−⇀ 0 weakly* in L∞(0, T ;L2(Ω× Y2)),

(4.1)

where (u1, û1, u2, θ1, θ̂1, θ2) ∈W is the unique solution of the problem∫ T

0

∫
Ω×Y1

(t− T )
[
a1
ijkh

(
ekh(u1) + eykh(û1)

)
− b1ijθ1

] (
ėij(ϕ

1) + ėyij(Φ
1)
)

+

+
∑
α=1,2

∫ T

0

∫
Ω×Yα

(t− T )
[
ραüαi ϕ̇

α
i +

1

T0
cαθ̇αqα

]
+

+
1

T0

∫ T

0

∫
Ω×Y1

(t− T )k1
ij

(∂θ1

∂xj
+
∂θ̂1

∂yj

)(∂q1

∂xi
+
∂Q1

∂yi

)
+ (4.2)

+

∫ T

0

∫
Ω×Y1

(t− T )b1ij

(
ėij(u

1) + ėyij(û
1)
)
q1+
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+

∫ T

0

∫
Ω×Γ

(t− T )
[
hu(u2

i − u1
i )(ϕ̇

2
i − ϕ̇1

i ) +
1

T0
hθ(θ2 − θ1)(q2 − q1)

]
=

=
∑
α=1,2

∫ T

0

∫
Ω×Yα

(t− T )
(
fiϕ̇

α
i +

1

T0
rqα
)
, ∀(ϕ1,Φ1, ϕ2, q1, Q1, q2) ∈W.

Moreover, for α ∈ {1, 2} and for almost all x ∈ Ω, we have

uα(0, x) = 0, u̇α(0, x) = 0, θα(0, x) = 0. (4.3)

Proof: Convergences (4.1)3,4,6,7 follow from Yang [16]. It is proven in [7] or [16] that, for
p ∈ [1,∞) and q ∈ (1,∞], if ϕε ∈ Lq(0, T ;Lp(Ωεα)) is such that ‖ϕε‖Lq(0,T ;Lp(Ωεα)) 6 C and
T εα (ϕε) ⇀ ϕ̂ weakly in Lq(0, T ;Lp(Ω× Yα)), then

ϕ̃ε ⇀ |Yα| 〈ϕ̂〉α weakly in Lq(0, T ;Lp(Ω)).

Therefore, from (4.1)3,6 it follows that, for α ∈ {1, 2},

ũαε
∗−⇀ |Yα| 〈uα〉Yα weakly* in L∞(0, T ;L2(Ω))N ,

θ̃αε
∗−⇀ |Yα| 〈θα〉Yα weakly* in L∞(0, T ;L2(Ω)).

As uα and θα are constant with respect to y, we deduce that convergences (4.1)1,2 hold. Also, ac-

cording to Yang [16], there exist û2 ∈ L∞(0, T ;L2(Ω;H1(Y2)))N and θ̂2 ∈ L∞(0, T ;L2(Ω;H1(Y2)))
such that

T ε2 (ekh(u2ε)
∗−⇀ eykhû

2 weakly* in L∞(0, T ;L2(Ω× Y2)), (4.4)

T ε2 (∇θ2ε)
∗−⇀ ∇y θ̂2 weakly* in L∞(0, T ;L2(Ω× Y2)). (4.5)

Using a suggestive notation, the variational problem (3.2) can be written as∑
α=1,2

(
Iαε1 + Iαε2 + Iαε3 + Iαε4 + Iαε5 + Iαε6 + Iαε7 + Iαε8

)
− Iε9 − Iε10 = −

∑
α=1,2

(
Iαε11 + Iαε12

)
. (4.6)

In order to obtain the limit problem, we choose in (4.6) as test functions

vαi (t, x) = ϕαi (t, x) + εωαi (t, x)ψαεi (x), (4.7)

with no summation of the repeated index, and

wα(t, x) = qα(t, x) + εgα(t, x)pαε(x), (4.8)

where ϕαi , ω
α
i , q

α, gα ∈ D([0, T ]× Ω) and ψαi , p
α ∈ H1

per(Yα) and, obviously, ψαε(x) = ψα(x/ε)
and pαε(x) = pα(x/ε) (α ∈ {1, 2}).

First, one can see that εωαψαε −→ 0 strongly in L∞(0, T ;L2(Ω))N and εgαpαε −→ 0
strongly in L∞(0, T ;L2(Ω)). Therefore, according to Yang [16] or Donato and Yang [7],

T εα (εωαψαε) −→ 0 strongly in L∞(0, T ;L2(Ω× Yα))N , (4.9)
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T εα (εgαpαε) −→ 0 strongly in L∞(0, T ;L2(Ω× Yα)). (4.10)

Moreover, as eij(εω
αψαε)(x) = εψαi (x/ε)eij(ω

α)(x) + ωαi (x)eyij(ψ
α)(x/ε), for α ∈ {1, 2}, one

can easily see that

T εα (eij(εω
αψαε)) = εψαi T εα (eij(ω

α)) + eyij(ψ
α)T εα (ωαi ) −→ eyij(Φ

α) (4.11)

strongly in L∞(0, T ;L2(Ω × Yα)), where Φαi (t, x, y) = ωαi (t, x)ψαi (y) (no summation). With a
similar justification,

T εα (∇(εgαpαε)) = εpαT εα (∇gα) +∇ypαT εα (gα) −→ ∇y(Qα) (4.12)

strongly in L∞(0, T ;L2(Ω× Yα)) where Qα(t, x, y) = gα(t, x)pα(y).
The limit problem is obtained by applying the the corresponding unfolding operator to each

term of (4.6) and passing to limit with ε→ 0. For integrals over Γε we will use a lemma similar
to Lemma 2.16 in [5]. Thus, we get:∫ T

0

∫
Ω×Y1

(t− T )
[
−a1

ijkh

(
ekh(u1) + eykh(û1)

)
+ b1ijθ

1
](
eij(ϕ̇

1) + eyij(Φ̇
1)
)

+

−
∫ T

0

∫
Ω×Y2

(t− T )a2
ijkhe

y
kh(û2)

(
eij(ϕ̇

2) + eyij(Φ̇
2)
)

+

+
∑
α=1,2

∫ T

0

∫
Ω×Yα

(t− T )ραu̇αi ϕ̈
α
i +

∫ T

0

∫
Ω×Y1

(t− T )b1ij

(
eij(u

1) + eyij(û
1)
)
q̇1+

+
1

T0

∑
α=1,2

∫ T

0

∫
Ω×Yα

(t− T )cαθαq̇α +
∑
α=1,2

∫ T

0

∫
Ω×Yα

ραu̇αi ϕ̇
α
i +

+

∫ T

0

∫
Ω×Y1

b1ij

(
eij(u

1) + eyij(û
1)
)
q1 +

1

T0

∑
α=1,2

∫ T

0

∫
Ω×Yα

cαθαqα+ (4.13)

+
1

T0

∫ T

0

∫
Ω×Y1

∫ t

0

k1
ij

(∂θ1

∂xj
+
∂θ̂1

∂yj

)(∂q1

∂xi
+
∂Q1

∂yi

)
ds+

+
1

T0

∫ T

0

∫
Ω×Y2

∫ t

0

k2
ij

∂θ̂2

∂yj

(∂q2

∂xi
+
∂Q2

∂yi

)
ds−

−
∫ T

0

∫
Ω×Γ

(t− T )hu(u2
i − u1

i )(ϕ̇
2
i − ϕ̇1

i )−
1

T0

∫ T

0

∫
Ω×Γ

(t− T )hθ(θ2 − θ1)(q2 − q1) =

= −
∑
α=1,2

∫ T

0

∫
Ω×Yα

(t− T )
(
fiϕ̇

α
i +

1

T0
rqα
)
.

In order to bring equation (4.13) to the form (4.2), we integrate by parts with respect to t
some terms of (4.13) and after a multiplication by −1, we get:∫ T

0

∫
Ω×Y1

(t− T )
[
a1
ijkh

(
ekh(u1) + eykh(û1)

)
− b1ijθ1

](
eij(ϕ̇

1) + eyij(Φ̇
1)
)

+
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+

∫ T

0

∫
Ω×Y2

(t− T )a2
ijkhe

y
kh(û2)

(
eij(ϕ̇

2) + eyij(Φ̇
2)
)

+
∑
α=1,2

∫ T

0

∫
Ω×Yα

(t− T )ραüαi ϕ̇
α
i +

+

∫ T

0

∫
Ω×Y1

(t− T )b1ij

(
ėij(u

1) + ėyij(û
1)
)
q1 +

1

T0

∑
α=1,2

∫ T

0

∫
Ω×Yα

(t− T )cαθ̇αqα+

+
1

T0

∫ T

0

∫
Ω×Y1

(t− T )k1
ij

(∂θ1

∂xj
+
∂θ̂1

∂yj

)(∂q1

∂xi
+
∂Q1

∂yi

)
+ (4.14)

+
1

T0

∫ T

0

∫
Ω×Y2

(t− T )k2
ij

∂θ̂2

∂yj

(∂q2

∂xi
+
∂Q2

∂yi

)
+

∫ T

0

∫
Ω×Γ

(t− T )hu(u2
i − u1

i )(ϕ̇
2
i − ϕ̇1

i )−
1

T0

∫ T

0

∫
Ω×Γ

(t− T )hθ(θ2 − θ1)(q2 − q1) =

=
∑
α=1,2

∫ T

0

∫
Ω×Yα

(t− T )
(
fiϕ̇

α
i +

1

T0
rqα
)
.

Choosing in (4.14) ϕ1
i = ϕ2

i = Φ1
i = Φ2

i = q1 = q2 = Q1 = 0 and taking into account that
Q2(t, x, y) = g2(t, x)p2(y), with g2 ∈ D((0, T )× Ω) and p2 ∈ H1

per(Y2), we obtain∫
Y2

k2
ij

∂θ̂2

∂yj

∂p2

∂yi
= 0. (4.15)

Since K2 is coercive, if we take p2 = θ̂2 in (4.15), we get

0 =

∫
Y2

K2∇y θ̂2∇y θ̂2 > λ

∫
Y2

∇y θ̂2,

which means that ∇y θ̂2 = 0. In a similar manner, one can prove that eykh(û2) = 0. Thus, using
some density arguments, convergences (4.1)5,10 and problem (4.2) are finally proven.

In order to prove that the limits uα, u̇α and θα (α ∈ {1, 2}) are also zero at t = 0 one can
choose test functions of the form

vαi (t, x) = ϕα(t)ηαi (x) + εωαi (t, x)ψαεi (x), (4.16)

wα(t, x) = qα(t)ζα(x) + εgα(t, x)pαε(x), (4.17)

with ϕα, qα ∈ C∞([0, T ]) such that ϕα(0) = qα(0) = 1 and ϕα(T ) = 0, ηαi , ζ
α ∈ D(Ω),

ωαi , g
α ∈ D([0, T ]× Ω) and ψαi , p

α ∈ H1
per(Yα) and integrate by parts with respect to t, before

passing to the limit, in terms Iαε5 and Iαε4 + Iαε7 , respectively. For an example of applying such
a method, we refer the reader to [7].

If we assume that problem (4.2) possesses two distinct solutions, it is not difficult to see
that, by linearity, their difference verifies the same equation, but with the right-hand side zero.
Thus, the uniqueness of the solution of the limit problem can be easily proven since A1,K1 are
coercive, ρα, cα, hu, hθ are strictly positive and u1(0, x) = u2(0, x) = 0.
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We are going now to decouple the limit problem (4.2). We choose as test functions ϕ1
i =

ϕ2
i = q1 = q2 = Q1 = 0 and, keeping in mind that Φ1

i (t, x, y) = ω1
i (t, x)ψ1

i (y) (no summation)
with ω1

i ∈ D([0, T ]× Ω) and ψ1
i ∈ H1

per(Y1), we shall get a problem with the unknown û1:∫
Y1

a1
ijkh

∂û1
k

∂yh

∂ψ1
i

∂yj
= −∂u

1
k

∂xh

∫
Y1

a1
ijkh

∂ψ1
i

∂yj
+ θ1

∫
Y1

b1ij
∂ψ1

i

∂yj
. (4.18)

We introduce now the unique solution z1 ∈ H̃1
per(Y1)N , of problem

− ∂

∂yj

(
a1
ijkh

∂z1
k

∂yh
− b1ij

)
= 0 in Y1

(
a1
ijkh

∂z1
k

∂yh
− b1ij

)
nj = 0 on Γ.

(4.19)

and also, for l,m = 1, . . . , N , we introduce the unique solutions wlm1 ∈ H̃1
per(Y1)N of problems

− ∂

∂yj

(
a1
ijlm + a1

ijkh

∂wlm1k
∂yh

)
= 0 in Y1

(
a1
ijlm + a1

ijkh

∂wlm1k
∂yh

)
nj = 0 on Γ.

(4.20)

Therefore, from (4.18), one can see that

û1
k(t, x, y) =

∂u1
l

∂xm
(t, x)wlm1k (y) + θ1(t, x)z1

k(y). (4.21)

Choosing proper test functions, we can find a similar problem for θ̂1:∫
Y1

k1
ij

∂θ̂1

∂yj

∂p1

∂yi
= −∂θ

1

∂xj

∫
Y1

k1
ij

∂p1

∂yi
. (4.22)

Now, for k = 1, . . . , N , let χα ∈ H̃1
per(Yα)N be the solutions of the problems

− ∂

∂yi

(
k1
ik + k1

ij

∂χ1
k

∂yj

)
= 0 in Y1

(
k1
ik + k1

ij

∂χ1
k

∂yj

)
ni = 0 on Γ.

(4.23)

In a similar manner, the linearity of (4.22) implies that

θ̂1
k(t, x, y) =

∂θ1

∂xk
(t, x)χ1

k(y). (4.24)
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We define now the homogenized coefficients

a1∗
ijlm =

∫
Y1

(
a1
ijlm + a1

ijkh

∂wlm1k
∂yh

)
, b1∗lm =

∫
Y1

(
b1lm + b1ij

∂wlm1i
∂yj

)
,

k1∗
ik =

∫
Y1

(
k1
ik + k1

ij

∂χ1
k

∂yj

)
, β1∗

ij =

∫
Y1

(
a1
ijkh

∂z1
k

∂yh
− b1ij

)
,

(4.25)

γ1∗ =

∫
Y1

b1ij
∂z1
i

∂yj
. (4.26)

Let us notice that for any l,m = 1, . . . , N , we have β1∗
lm = −b1∗lm.

Theorem 3. If (uε, θε) ∈ Wε is the solution of (2.3)-(2.10), where uε = (u1ε, u2ε) and θε =
(θ1ε, θ2ε), then, for α ∈ {1, 2}, we have

ũαε
∗−⇀ |Yα|uα weakly* in L∞(0, T ;L2(Ω))N , (4.27)

θ̃αε
∗−⇀ |Yα|θα weakly* in L∞(0, T ;L2(Ω)), (4.28)

where (u, θ), with u = (u1, u2) and θ = (θ1, θ2), is the unique solution of the problem

− ∂

∂xj

(
a1∗
ijkh

∂u1
k

∂xh
− b1∗ij θ1

)
+
〈
ρ1
〉
Y1

∂2u1
i

∂t2
−Hu(u2

i − u1
i ) = |Y1| fi in ΩT , (4.29)

〈
ρ2
〉
Y2

∂2u2
i

∂t2
+Hu(u2

i − u1
i ) = |Y2| fi in ΩT , (4.30)

− ∂

∂xi

(
k1∗
ij

∂θ1

∂xj

)
+ T0b

1∗
ij

∂eij(u
1)

∂t
+
(
T0γ

1∗ +
〈
c1
〉
Y1

)∂θ1

∂t
−

−Hθ(θ2 − θ1) = |Y1| r in ΩT ,

(4.31)

〈
c2
〉
Y2

∂θ2

∂t
+Hθ(θ2 − θ1) = |Y2| r in ΩT , (4.32)

u1 = 0, θ1 = 0 on (0, T )× ∂Ω, (4.33)

uα(0, x) = 0, u̇α(0, x) = 0, θα(0, x) = 0, (4.34)

with Hu =

∫
Γ

hu and Hθ =

∫
Γ

hθ.

Proof: Since the convergences (4.1)1,2 hold, in order to prove (4.27) and (4.28), we only need
to show that the limits uα and θα from Theorem 2 verify the problem (4.29)-(4.32). This can

be easily proven by inserting the expressions of ûα and θ̂α, (4.21) and (4.24), in (4.2) and using
the cell problems (4.23)-(4.19) and the homogenized coefficients formulas (4.25)-(4.26). Thus,
(4.2) becomes ∫ T

0

∫
Ω

(t− T )
(
a1∗
ijkh

∂u1
k

∂xk
− b1∗ij θ1

)∂ϕ̇1
i

∂xj
+
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+
∑
α=1,2

∫ T

0

∫
Ω

(t− T )

[
〈ρα〉Yα ü

α
i ϕ̇

α
i +

1

T0
〈cα〉Yα θ̇

αqα
]

+

+

∫ T

0

∫
Ω

(t− T )

[
1

T0
k1∗
ij

∂θ1

∂xj

∂q1

∂xi
+
(
b1∗ij ėij(u

1) + γ1∗θ̇1
)
q1

]
+ (4.35)

+

∫ T

0

∫
Ω

(t− T )

[
Hu(u2

i − u1
i )(ϕ̇

2
i − ϕ̇1

i ) +
1

T0
Hθ(θ2 − θ1)(q2 − q1)

]
=

=
∑
α=1,2

∫ T

0

∫
Ω

(t− T ) |Yα|
(
fiϕ̇

α
i +

1

T0
rqα
)
,

which holds for any ϕ1
i , q

1 ∈ D(0, T ;H1
0 (Ω)) and ϕ2

i , q
2 ∈ D(0, T ;L2(Ω)). It is not difficult to

see that (4.35) is the variational formulation of (4.29)-(4.32).
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[13] Sobolev S.L., Applications of functional analysis in mathematical physics, Leningrad
(1950). Translated by F. Browder; Providence A.M.S. (1963)

[14] Timofte C., Multiscale analysis of diffusion processes in composite media, Computers
and Mathematics with Applications 9. 66 (2013), pp.1573–pp.1580

[15] Timofte C., Multiscale modeling of heat transfer in composite materials, Romanian Jour-
nal of Physics 9-10. 58 (2013), pp.1418–pp.1427

[16] Yang Z., Homogenization and correctors for the hyperbolic problems with imperfect in-
terfaces via periodic unfloding method, Comunications on Pure and Applied Analysis 1. 13
(2014), pp.249–pp.272

Received: 23.08.2014

Accepted: 07.11.2014

1Institute of Mathematics of the Romanian Academy,
P.O. Box 1-764, RO-70700 Bucharest, Romania

E-mail: horia.ene@imar.ro

2University of Bucharest, Faculty of Physics,
Bucharest-Magurele, P.O. Box MG-11, Romania

E-mail: claudiatimofte@yahoo.com

3Institute of Mathematics of the Romanian Academy,
Bucharest, Romania

E-mail: iuliantentea@yahoo.com


