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imperfect interface
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Abstract

The goal of this paper is to obtain a macroscopic model for an e-periodic thermoelastic
composite material formed by two components with imperfect contact at the interface. We
consider that on the interface between the two materials the tractions and the temperature
fluxes are continuous, but both the temperature and the displacement fields have a jump,
proportional to the temperature flux and, respectively, to the normal component of the
stress tensor. Under suitable hypotheses on the order of magnitude with respect to ¢ of the
elasticity tensors and of the temperature-displacement tensors in the two components of the
medium, we derive, via the periodic unfolding method, the homogenized problem, which
contains new coupling terms between the limits of the displacements and, respectively, the
temperatures from the two components of the composite material.
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1 Introduction

This paper deals with the homogenization of a transmission problem in a two-component
thermoelastic composite material having an e-periodic structure. More precisely, we assume
that the domain €2 occupied by the thermoelastic composite material is the union of a connected
set )f and a disconnected one, €25, consisting of e-periodic connected sets of size €. The two
components of the composite are separated by a thin layer, modeled here as a surface I'..
We consider that both the displacements and the temperatures have jumps of order € on the
interface I'.. The jump of the displacements is proportional to the normal component of the
stress tensor and the jump of the temperature fields is proportional to the temperature flux
across I'.. Moreover, we assume that the tractions and the temperature fluxes are continuous
across I'c. We consider that the elasticity tensors of the two materials are both of the order of
unity, while the temperature-displacement tensor is assumed to be of order one in the connected
component of the composite medium and of order € in the disconnected one.
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Under suitable hypotheses on the data, we derive, via the periodic unfolding method, the ho-
mogenized problem, which contains new coupling terms between the limits of the displacements
and, respectively, of the temperatures from the two components of the medium.

Similar problems to the one we treat here have been addressed, using various methods, in
the literature. For the general theory of thermoelasticity, we refer to [12]. For a linear thermoe-
lasticity model, obtained using semigroups theory, we refer to Francfort [11]. In [8], Ene and
Pasa study a thermoelasticity model, but without jumps, and they obtain their homogenization
results using asymptotic expansions. For other thermoelasticity models, the interested reader
is referred to [1]. For transmission problems in composites with imperfect interfaces, see [5],
[6], [10], [14] and [15].

As already mentioned, our approach is based on the use of the periodic unfolding method.
This method was introduced by Cioranescu, Damlamian and Griso in [2] for the case of fixed
domains (see [3] for a general presentation) and, later, it was extended to periodically perforated
domains by Cioranescu, Damlamian, Donato, Griso and Zaki in [4]. In [5], Donato et al. use
the periodic unfolding method for a two-component domain similar to the one considered in
this paper and in [7] Donato and Yang introduce a time depending unfolding operator for a
wave equation in domains with isolated holes. Also, in [16], Yang defines two time depending
unfolding operators for a domain with a similar geometry to the one we consider here and uses
them in the homogenization process of a linear hyperbolic problem in a medium with imperfect
interfaces.

The structure of the paper is as follows: in Section 2, we formulate the microscopic problem
and in Section 3 we prove the existence and uniqueness of a weak solution for this problem.
Proper functional spaces are introduced and suitable estimates of the weak solution are obtained.
Using the periodic unfolding method, we prove some convergence results in Section 4 and we
obtain the homogenized problem.

2 The thermoelasticity problem

Let Q be an open bounded subset of R (N > 2), with a Lipschitz continuous boundary 9
and let Y = (0,1)" be the unit cube in RY. We suppose that Y3 is an open connected subset
of Y such that Y> C Y and its boundary I' is Lipschitz continuous. We set Y; =Y \ Y. One
can see that, repeating Y by periodicity, the union of all Y; is a connected set in RY, which
will be denoted by RY. Furthermore, let RY = RY \ RY.

In what follows, the small parameter € € (0, 1) represents the characteristic dimension of the
periodicity cell and it takes its values in a sequence of real numbers which, in the homogenizing
process, will tend to zero. For each k € Z", we define Y¥ = k +Y and Y* = k + Y, where
a € {1,2}. We also define, for each ¢,

Z.={kezZ": ¥ C Q} (2.1)
and we set B
5= (e¥9), 9i=9\05 (2.2)
k€Z,

The boundary of Q25 will be denoted by I'. and n will be the unit normal on I'., exterior to Q5.



Homogenization of a thermoelasticity model 149

We introduce now the fourth order tensors A'® and A%¢ which represent the elasticities of
the two components €25 and, respectively, Q5. We consider that for a € {1,2}

A% (x) = A%(z/e),

where A% are symmetric and positive definite tensors, of components afign € L>®(Y). We
assume that af;,, are real, smooth and Y-periodic functions.
We also introduce the second order temperature-displacement tensors

B(z) = Bl(z/e), B*(x)=eB2(z/e)

and the thermic-conductivity tensors K*¢(z) = K*(z/c), where B* and K* are symmetric,
with the components b%;, kf; € L>(Y') being smooth and Y-periodic functions. Moreover, we
consider that K% are positive definite.

Furthermore, T denotes the reference temperature, p®¢ are the densities of the two me-
dia, defined by p*¢(z) = p*(z/e), and ¢**(x) = c*(x/e) are the specific heats for constant
deformation of each of the two media. We also introduce two jump factors h%(z) = h¥(x/¢)
and hf(x) = hP(x/c) and we assume that the functions p®,c®, h*,h? € L>(Y) are smooth,
Y -periodic and strictly positive.

Finally, for € {1,2} and u®® and 6*¢ defined on QF,, the constitutive laws are given by

ae _ jae ae aepae asy _ 1 [ 9ug”® Quy®
off = agipern(u®®) — beF 0o, where epy (u®®) = 3 ( 92— T 52— ) represent the components of

ij
the deformation tensor.

Let T > 0 be a real number. In what follows, we shall use the notation Qr = (0,7 x Q,
0%, = (0,T) x Q5 and I'T = (0,T) x T.. Our aim is to study the asymptotic behavior of the
solution of the problem

0o fe aQUC."E
_ ) ae A 2 in QF 2.3
Ox; T g =i G, (23)
0 00%¢ Oe;;(u™e) 00%¢ .
— o (ke S ) - Tobgy 2 T —r i Qf,, 2.4
8@(” oz, ) T Ty ¢ g T M (24)
criljenj = o'izjgnj onI'T, (2.5)
6915 8025
1 _ 2 T
kij‘?a—wj i = ki oz, n; onl;, (2.6)
oinj =eh?(uf® —u;°) on r’, (2.7)
le 8916 0(pn2e le T
ki o= ehl(6°° —6°°) onTy, (2.8)
J
u'* =0, 0¥ =0 on (0,T) x 09, (2.9)
u*(0,2) =0, 4*(0,2)=0, 6°°(0,z) =0, (2.10)

where f; are the components of a vector field f € L?(2)", which represents the forces, and
r € L?(Q) is the exterior energy source.
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3 Variational formulation and estimates

We introduce the spaces

Vie={v e C®(0,T;H'(95))), v=00n 02 and v = 0 on {0} x Q},

Voe = {0 € C(0,T; H'(Q3))), v=0o0n {0} x Q}
and
W. = (VY x Va¥) x (Vie x Vae). (3.1)

An element of W, will be denoted by V = (v,w), with v = (v',v?) € V¥ x V¥ and w =
(w17w2) € Vie X Vo

In order to obtain the variational formulation of problem (2.3)-(2.10), we choose V =
(v,w) € W, with v¥(0,z) = 0, Vz € QF, and we multiply the equations (2.3) with (7' —¢)v$* and
the equations (2.4) with (T — t)%: Adding the obtained relations and integrating by parts, we
get the variational formulation of problem (2.3)-(2.10):

Find U® = (u®,6%) € W, such that
LU, V)Y=D.((f,7), V), YV = (v,w) € W, (3.2)

where, for each ¢, L. : W, x W, — R is a bilinear form defined by

Luvy= Y VOT/Q (t = T) ((—agoewn(u®) + b5 0%) €55 (0%)+

a=1,2

1
0

1
b e. - () w® e L o L a v
+ ij ezj(u )'lU + TOC w" + TO 0 1] axj aml

—¢ /oT/rE(t = T)h (uf — up) (07 — ;) —
_Tio /oT/rE(t ~T)hE(6? — 0")(w? — wh),

with U = (u,0) and V = (v,w), and D; : (L*(Q)N x L*(Q)) x W. — R is defined by

D ((f,r),V) = Z/T/Q

a=1,

t o «
L [ e 067 0w ds] - (3.3)

(t—T) ( F02 + Tiorwa). (3.4)

€
a
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First, we observe that, for any V = (v, w) € W, we have

[: 9 Z [// z]khekh el]( a) + paa,[};x,bia_’_

a=1,2

1 L 00% Ow

o a, .« < 3.5
Tt +T0/ o, axlds}jL 3:9)

//Eh“v ol +/T/Fi/h0(w — w')2ds.

We introduce now the Hilbert space W,, which is the completion of W, in the norm |||
generated by the scalar product

U V)w. = l// WO + e (u¥)e;; (vY) + 0%w+
0Jos

a=1,2
£ 90 dw™
83:1 Oz;

te /OT/F /Otw? — 0N (w? — wh)ds.

€

T
]—1—6 (u? —u})(v? — v})+ (3.6)
0

Remark 1. According to Iesan [12], using Schwarz inequality and Sobolev’s embedding theorem
[18], one can see that L. can be extended by continuity to the entire space We x W. and D, can
also be extended to (L*(Q)N x L*(Q)) x W..

Using now the coercivity of A% and K® and the positivity of p*, ¢®, h*, hY, it follows
immediately that there exists a constant C' > 0, independent of ¢, such that

V> < CLAV, V). (3.7)

Theorem 1. The problem (3.2) has a unique solution. Moreover, there exists a constant C' > 0,
independent of €, such that:

lui*l L2z ) < C, (3.8)
45 205, ) < O, [IVui€|lL20s,) < C, (3.9)

t
16y < €. | [ w0y <c (310)

’ 0 L1@5,)

t

[uf® — u}®| p2rry < Ce™ V2, ‘ / (6% — ') < CeV2 (3.11)
0 L\(rT)

Proof: Let S : W. — W, be the correspondence that associates to each V € W. the unique
Vo € Wk such that
L(UV)=(USV)w., YUeW.. (3.12)
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The mapping S is bijective from W, to its range R(S) and, since R(S) is dense in W., we can
extend S~! to the entire W,. Thus, S~™! : W. — W. is a bounded operator. One can see that
D. is also bounded in W,. From Riesz-Fréchet theorem, there exists U¢ € W, (which obviously
depends on €, f and r) such that

D, ((f,7),S™HV)) = (U5, )., VU EW..
In particular, for every V € W, as S(V) € W,, we have

D. ((fv T)’ V) = (UE’ S(V))st

and taking into account (3.12), the existence of a solution is proven. Since L. is linear, the
uniqueness can be easily proven by taking U¢ = V = Uf — U5 in (3.2) and using inequality
(3.7).

Now, from (3.12) and (3.2),

IU°)1* = (U=, U")w. = L(U*, 87 (U7)) = D= ((f,7),S7(U7)) <

S CNUE| - [(fsm) 2 @)y x L2 ()
and taking into account the definition of the norm in W;, we can see that the estimates (3.9)-
(3.11) hold true.

It remains to prove (3.8). It is known (see, for example, [9]) that there exists a constant
C > 0, independent of ¢, such that for any v = (v!',v?) € V¥ x V¥, we have

1022005 < C (£IV02llnacag) + =210 llnacr) ) (3.13)
e 2w} L2,y < C (el Vol l2ias) + Vi L2s)) » (3.14)
||7fi1||L2(Q§) < C’\W”}HH(Q;)- (3.15)

From (3.15) and (3.9), we conclude that
HU%E”L%Qle) < CHVU%EHL%Q%J < C. (316)
In a similar manner, from (3.13) and (3.14), we get
w2 (z,) < C (5||vu126”L2(Q€T2) + 2 |uf = w)®|| 2 oy +51/2||U21€”L2(F5T)) <
<C <5||VU$EHL2(QET2) =+ 51/2”“36 - U%E”LQ(FET) =+ €HVU%€||L2(QET1) + ||U?E||L2(QET2)) '
Taking now into account (3.9), (3.11) and (3.16), one can see that

u®)| 2 (s.,) < C.
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4 The homogenization process

In this section, we shall use the notation:
Wy = L0, T; H*(Q) N HY(Q)N nwh>(0,T; H'(Q))N nW?>(0,T; L*(Q))",
Wy = L=(0,T; H*(Q) N H (Q)) NnWh>(0,T; H(Q)),
W= Wy x L®0,T; L*(Q; HL,,.(Y1))N x W22(0,T; L*(Q))N x W,

x L°(0,T; L2(; HY, (Y1) x Wheo(0, T; L2(Q)).

per

For proving our main convergence result, we shall use the unfolding operators 7 and 75
defined in [16]. These two operators transform functions defined on the oscillating domains
[0,T] x Q5 and [0,T] x 5 into functions defined on the fixed domains [0,7] x  x Y; and,
respectively, [0,7] x Q x Y5 and, as a consequence, we can avoid the use of extension operators.

Theorem 2. If (u®,0°) € W is the solution of problem (2.3)-(2.10), with u® = (u'®,u*) and
0° = (0'¢,0%), then

W% 5 Yo u® weakly* in L°(0,T; L2(Q))N,
gae X |Y,|0% weakly* in L>=(0,T; L?(Q)),
T (u%e) Foue weakly* in L>(0, T LQ(Q; Hl(Ya)))Nv

TE (en(ut®)) = epn(ul) + e, (@') weakly* in L>=(0,T; L2(Q x V1)),

T3 (epn(u?®)) =0 weakly* in L>°(0,T; L*(Q x Y3)), )
TE(0°F) = 0% weakly* in L>®(0,T; L?(; HY(Y,))),
TE(Voe) 2 vor + Vygl weakly* in L°°(0,T; L?(2 x Y7)),
T£(V6%) 50 weakly* in L=(0,T; L*(Q x Y3)),
where (ul,u', u?, 01,51, 62) € W is the unique solution of the problem
/7 (t =) [adjun (ern () + el @) = 010" (506" + by (@h) )+
oJaxy
+ /T/ (t = T) o + . c6°g° |+
o1 2 J0Jaxy, Ty
1l 1 1
0 [ - PG ) G ) 02

i
8
[ e )%@mM+%@w¢+
0JQxY:
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+/0/Q><F(t_T) [hu(uf _Ull)(@? — 30}) + Ti0h9(92 . 91)((]2 B ql)} _

T
. 1
= // (t— T)(fm? + 77“61“), V(ph @' 0% ¢" QY ¢%) e W.
az12J0/axy, 0
Moreover, for a € {1,2} and for almost all x € ), we have
u®(0,z) =0, a*(0,z)=0, 690,z)=0. (4.3)

Proof: Convergences (4.1)3.467 follow from Yang [16]. It is proven in [7] or [16] that, for
p € [1,00) and ¢ € (1,00], if p. € LU0, T;LP(2)) is such that |||l La(o,r;zr(0z)) < C and
TE(pe) — @ weakly in L9(0,T; LP(Q x Y,)), then

3. — |Yal (B), weakly in L9(0,T; LP(X)).

Therefore, from (4.1)3 6 it follows that, for o € {1,2},

*

@ = Yol (u®)y, weakly* in L>(0,T; L*(Q))",

*

6 XY, (0%)y. weakly* in L°(0,T; L*(9)).

Asu™ and 6 are constant with respect to y, we deduce that convergences (4.1)1 2 hold. Also, ac-
cording to Yang [16], there exist 72 € L>(0,T; L2(Q; H(Y3)))N and 82 € L>(0,T; L*(Q; H' (Y2)))
such that

T (exn(u®) = e, u* weakly* in L>(0,T; L*(Q x Y3)), (4.4)

T35 (Vla) 2 V,0;, weakly* in L®(0,T; L*(€ X Y3)). (4.5)
Using a suggestive notation, the variational problem (3.2) can be written as
S (If“s FI9F IS 4 I9° 4+ IO 4 I0° 4 T° 4 I§“€> —G-I=- Y (If“f + If“;). (4.6)
a=1,2 a=1,2
In order to obtain the limit problem, we choose in (4.6) as test functions
v (t, ) = @i (t, @) + ewi’ (8, 2)Y* (x), (4.7)
with no summation of the repeated index, and
w®(t,x) = ¢*(t, x) +eg®(t, x)p™* (), (4.8)
where g€, wg, ¢, g° € D([0,T] x ) and 4, p* € Hl,, (Ya) and, obviously, 42 (x) = ¥ (x/<)
and p*©(z) = p*(z/e) (a € {1,2}).
First, one can see that ew®y® — 0 strongly in L°°(0,T;L?*(Q))N and eg®p* — 0

strongly in L>°(0,T; L*(Q2)). Therefore, according to Yang [16] or Donato and Yang [7],

TE(ew®h@€) — 0 strongly in L>(0,T; L*(2 x Y)Y, (4.9)
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TE(eg®p™®) — 0 strongly in L>°(0,T; L*(Q x Y,)). (4.10)

Moreover, as e;;(ew®)*®)(z) = eyf (v/e)ei; (W) (2) + wit (z)ef; () (x/¢€), for a € {1,2}, one
can easily see that

75 (eij (ew™™%)) = ey T3 (eij (w®)) + €5 (V) T3 (wit) — €53 (97) (4.11)

strongly in L®°(0,T; L?(Q x Y,)), where ®%(¢,z,y) = w®(t, 2)1¥¢(y) (no summation). With a
similar justification,

T (V(eg®p™)) = ep™ T3 (Vg®) + Vyp T (9%) — Vi (Q) (4.12)

strongly in L>(0,T; L3(Q x Yy,)) where Q*(t,z,y) = g*(t,z)p*(y).

The limit problem is obtained by applying the the corresponding unfolding operator to each
term of (4.6) and passing to limit with € — 0. For integrals over I'; we will use a lemma similar
to Lemma 2.16 in [5]. Thus, we get:

T .
/0 /M“ = T) [=adjun (exn(ul) + e (@) + b,60" | (ei3(2") + ey (@) )+
[ <a2>(ei-<¢2>+ey<<<b2>)+
OxYs wkh kh ] ij
* )P G+ t-T el- ul) + el (@) )q'+
(X:ZlQ/O/QXY( ,0 v //QXYl J( ) ]( ))
t— aaaqa+ // aua ;1
a=1, 2//(2><Y a21:2 Q><Yp 4
g 1 1 1 1 1 T
T bij(eij(u’) + e (@ + // 0% g+ 4.13
//Y J(exu) @)t + - POy (4.13)
891 a@l ¢t oQ!
2 2
/ / / 50 (00 B >ds—
QxYs 83/] axz Jyi
T
- [ - - b - o) // (L~ T8>~ 6')(* — ") =
0JQxT QxT
T
1
= — t—T l?+7 o)
> /O/Qxya( )(fw Torq)

a=1,2

In order to bring equation (4.13) to the form (4.2), we integrate by parts with respect to ¢
some terms of (4.13) and after a multiplication by —1, we get:

/OT/QxYl(t -7 [a}jkh (ekh(ul) + 6%h(al)) - bgjal} (eia‘(¢1) + ei’j(i’l)) +
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//Qxy2 zykhekh( )(eij(¢2)+6%(¢)2)>+ Z /()T/Qxya( — T)p il S+

a=1,2
+ bll i + _A'_i // t— aeoe ay
/O/Mf 7)ol (63 () + €2y (@) ) o 3 o g
1" o6t 90\ 10¢*  0Q!
= ~ k(7 + 57— 4.14
+TO/0/Q><Y1(t )k“<amj +ay,-)(ax,- + ayl_)+ (4.14)

T , 00° (047 | OQ?

+Ti0//gxy(t_T Uayj (5@ + 8yi)

[ et -ah - [ e-mne o o =
= > /OT/QXYa(t -T) (ficp? + T%rq“).

a=1,2

Choosing in (4.14) ¢} = ¢? = &} = &? = ¢! = ¢* = Q' = 0 and taking into account that
5

Q?(t,z,y) = ¢ (t,z)p*(y), with g> € D((0,T) x Q) and p* € H!, .(Y>), we obtain

per

002 Op?
227 =0. 4.1
/Y2 & 0y; Oy; 0 (4.15)

Since K? is coercive, if we take p? = 6% in (4.15), we get

0= [ K>V,0°V,0°>> ) [ V,0°
Y2 Y2

which means that Vy9 = 0. In a similar manner, one can prove that e?, (a?) = 0. Thus, using
some density arguments, convergences (4.1)5 190 and problem (4.2) are finally proven.

In order to prove that the limits u®, @* and 6 (« € {1,2}) are also zero at t = 0 one can
choose test functions of the form

vt () = % (00" (z) + ewi (8, ©)15 (2), (4.16)

w®(t,x) = ¢*(£)C" () +eg” (t, z)p™* (x), (4.17)
with ¢*,¢* € C*([0,T]) such that ¢*(0) = ¢*(0) = 1 and ¢*(T) = 0, 73, ¢* € D(Q),
w, g% € D([0,T] x Q) and ¥¢, p* € H),,.(Yo) and integrate by parts with respect to ¢, before
passing to the limit, in terms I$° and I$€ + I2¢, respectively. For an example of applying such
a method, we refer the reader to [7].

If we assume that problem (4.2) possesses two distinct solutions, it is not difficult to see
that, by linearity, their difference verifies the same equation, but with the right-hand side zero.
Thus, the uniqueness of the solution of the limit problem can be easily proven since A', K are
coercive, p%,c®, h*, hY are strictly positive and u!(0,z) = u%(0,z) = 0. O
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We are going now to decouple the limit problem (4.2). We choose as test functions ¢} =
0? = ¢' = ¢* = Q' = 0 and, keeping in mind that ®}(t,z,y) = w}(t,z)1} (y) (no summation)
with w! € D([0,7] x Q) and 9} € H.,,.(Y1), we shall get a problem with the unknown ':

per

/ , daloyl  oul / Lo / L Oy}
zyk:h - l]kh bl] .
v, Oyn 0y, Oxp, Jy; 0y;

We introduce now the unique solution 2! € H!_ (¥1)N, of problem

per
0 ol 8
- — bl ) in v,
0z}
( ll]kha; b1 )nj:O onI'.
and also, for [,m = 1,..., N, we introduce the unique solutions w!™ € H;ET (YN

0 /4 L owlm
787%( ijlm + azgkh a

):o in Y

ilm

ow
( iiim +a”kh B W1k )nj =0 onl.
Therefore, from (4.18), one can see that
1

S (Tl () + 6" (1,2) 2 0).

Up(t,z,y) =

Choosing proper test functions, we can find a similar problem for oL

/ L 00 opt 00t [, ot
Y Y 6yj ayz al‘j Y Y 8yl

Now, for k=1,...,N, let y* € H}: (Y,)™ be the solutions of the problems

per

aa (kb +k}jaax’“>:o in Y;

(k:zlk —l—klljg )nz =0 onT.

In a similar manner, the linearity of (4.22) implies that
91

gzlc(ta%y) = 9nr

(t, )Xk ().

(4.18)

(4.19)

of problems

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)
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We define now the homogenized coefficients

8wlm 8wl
1x 1k 1% 1 1 14
L] 17lm 7 ) b / (b m bz )
a’L]l’n’L /1( ijl (L ijkh 8 im 1 l J a

Xt 0z}
* 19Xk 1 k 1
kilk = ~/Y1(k +klj ay] )7 iljfk :/Y< z]khay _bij)v
,yl* :/ bl‘az}.
v, Oy;
Let us notice that for any [,m =1,..., N, we have 3.5 = —bl*.

Theorem 3. If (u,0°) € W; is the solution of (2.3)-(2.10), where u® = (u'®,u

(6*¢,6%), then, for a € {1,2}, we have

a5 Yo |u® weakly* in L°°(0,T; L*(Q))N
02 5 |Y,]0% weakly* in L0, T; L*(Q)),
1

where (u, ), with u = (u',u?) and 6 = (01, 0?), is the unique solution of the problem

0 . Oup . o 0?%ul . _
787%(%13‘%57% - b 01) + (P )y, oz 1 (uf —u}) =il fi in Qr,
0?u? _
<P >Y2 o2 +Hu(u — Uy ) |)/2|fz in Qr,
8 1x 90" 001 l*aeij(ul) 1w 1 001!
—H‘9(92 —0Y = |vi|r in Qr,

2y 002 00p2 _ gl ‘
(c >YQE+H (0°—0") =|Ys|r in Qp,

ut=0, ' =0 on (0,T) x 9%,
u®(0,z) =0, a*(0,2) =0, 6%0,z)=0,

with HY :/h“ and H? :/he.
r r

(4.25)

(4.26)

%) and 6° =

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

Proof: Since the convergences (4.1)1 2 hold, in order to prove (4.27) and (4.28), we only need
to show that the limits u* and 6 from Theorem 2 verify the problem (4.29)-(4.32). This can
be easily proven by inserting the expressions of u® and (/9\0‘, (4.21) and (4.24), in (4.2) and using
the cell problems (4.23)-(4.19) and the homogenized coeflicients formulas (4.25)-(4.26). Thus,

(4.2) becomes

T 1
ou} 0p;

o T 1* k _ 1>'k 1 J
AA(t ljkh a ] 0 ) 83’:_7
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a=1,2

T 1 1
_ 1 1. 90" 0q Tx . (1 %41 1
# [ e | b G G+ (et +78)e! + (435)
T 1
+ [ Je-m [H%u? S ) 6 0 —qlﬂ _
0Ja Th

T
- [[u-m |Ya|(fi¢?+;0rqa),

a=1,2

which holds for any ¢}, ¢* € D(0,T; H}(2)) and ¢?,¢? € D(0,T; L?(2)). It is not difficult to
see that (4.35) is the variational formulation of (4.29)-(4.32). d
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