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Abstract

Let K be an ultrametric complete and algebraically closed field and let ¢ be an element
of K which is not a root of unity and is such that |g| = 1. In this article, we establish some
inequalities linking the growth of generalized g-wronskians of a finite family of elements of
K[[z]] to the growth of the ordinary g-wronskian of this family of power series.

We then apply these results to study some ¢-difference equations with coefficients in
K[z]. Specifically, we show that the solutions of such equations are rational functions.
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1 Introduction

For every prime number p, we denote by Q, the field of p-adic numbers and by C,, the completion
of an algebraic closure of Q,, (cf. [1] for further details). More generally, in the sequel, K is a
complete ultrametric algebraically closed field.

Given R > 0, we denote by d(0,R™) and d(0,R) the disks: {z € K / |z|] < R} and
{zx € K / |z| < R} respectively. We denote by A(K) the K-algebra of entire functions in K and
by M(K) the field of meromorphic functions in K. In the same way, we denote by A(d(0, R7))
the K-algebra of analytic functions inside the disk d(0, R~) and by M(d(0, R~)) the field of
meromorphic functions in d(0, R™).

For every r €]0, R[ we define a multiplicative norm | |(r) on A(d(0,R™)) by |f|(r) =
SUP,, > |an|r™ for every function f(z) = Y -, anz™ of A(d(0,R™)). We extend this to M
(d(0, R™)) by setting |f|(r) = |g|(r)/|h|(r) for every element f = g/h of M(d(0,R™)), (cf. [5]).

Let ¢ be an element of K which is not a root of unity and is such that |¢| = 1. In this
work, we will first prove some inequalities linking the growth of a generalized ¢-Wronskian to
the growth of the ”ordinary” g-Wronskian.

We then apply this result to study some g-difference equations and show that:

If a linear q-difference equation (E) with coefficients in K[x] has a complete system of solutions
consisting of elements of M(K), then any solution of (E) is a rational function.
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This work has its origins in the articles [3] and [4] where it is established that, in general, a
differential equation with coefficients in K[z] could admit transcendental entire solutions. This
study is continued in [2], where J. P. Bézivin gets rationality criteria for solutions of some p-adic
differential equations. Here, we study some ¢-difference equations and show that several types
of such equations have no solution except rational functions. The method used is based on a
comparison of the growth of ¢-Wronskians and closely follows the one used in [2].

2 g-difference operators and ¢-wronskian.

For n € N*, we set [n] = (¢" —1)/(¢ —1) and [n]! = []"_,[i], (we agree that [0]! = 1). For

) )t/ (K ([ — k). We easily check that: [ "1 1] =

keNsuchthatkSn,weset[k . ] =

[ 2 ﬁ 1t vl Z ]. We finally define the operators o, and D, in K[[z]] by: o4(f)(z) = f(qx)
and D,(f)(z) = (o4 — Id)(f)(z)/(¢ — 1)x. The operator D, is an endomorphism of the K-
vector space K[[z]]. The operator o, is an automorphism of the K-algebra K[[z]] and we have

O'q_l =01 For k € N*, we denote by o¥(f) (resp. DF(f)) the application K times of the

operator o, (resp. D,) to the formal power series f. We agree that 02 = Dg = Id, where Id
is the identity mapping in K[[z]]. Some properties of these operators are summarized in the
following Lemma:

Lemma 1. i) o,=(q—1)xDy+1d, Dy= (1/q)D(1/q) 00y,
i1) D’qcoagquJSOD’;, Vk,l € N,
i) Dgx —xDy =04, and Dyr—qzD, = Id,
w) Dy(fg9) = (Dqf)(0oq9) + f(Dyqg), Vf.g € K[[z]],
v) Dq((f/9)) = (9Dgf = fDqg)/9049, V1,9 € K[[z]],

vi) Dy (fg)(x) = 3ol Z 1Dg(f)og Dy~ (g)(x), Vf,g € K|[z]].

Let f1,---, fs, (s > 1), be elements of K[[z]] and let kq,--- , ks € N.

Definition 1. We call q-wronskian (or ordinary q-wronskian) of f = (fi,---,fs) and we
denote by W,(f) the determinant of the matriz (Dg(fi))lgigs’()gjgs,l,

Definition 2. We call generalized q-wronskian of f = (f1,---, fs) relatively to k = (ky,--- , ks)

Remark 1. 1) The ordinary q-wronskian of f = (f1,--, fs) is equal to the generalized q-
wronskian W, (f; k) of f relatively to k, = (0,1,...,5 — 1).

2) More generally, let k; = (0,--- Joree8) = (0, ,j— 1,54+ 1,---,5) for every j €
{0,---,s}. If we consider the usual derivation D = d/dx, we obtain a family of (usual)
generalized wronksians W(f;k;) of f = (f1,---,fs), for 0 < j <s . And we easily check :
DW (f; k) = W (S k(s1))-
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Now, consider the family of generalized q-wronksians Wy(f;k;) of f for 0 < j <s. We
see that, for DgW(f;k,), we do not have an expression as simple as the one above. However,
the following lemma allows us to express DgWo(f; k) as a combination of all the generalized

q-wronksians Wy(f;k;) of f for0<j<s—1.

Lemma 2. With the notations above, we have:

Dy(Wy(f:ky) = 35 0[(a — D] =IW,(f; k;).

Let s > 2 and let f1,---, fs be elements of K K|[[z]], linearly independent over K. Let us
set f=(f1,-+,fs)and k; = (0, - Juoee,8) for 0<j <s. Let usalsosetg: (f1, -+, fs=1),
=0, i, ,5—1) for 0<i<s—landfy, q)=(0,i—Lit+l- s—2s) for
0 <i < s—2. Recall that W,(f;k;) is the generalized g-wronskian of f relatwely to k;, for
0 < j < s. In the same way, W, (g,Ei) is the generalized g-wronskian of g relatively to E for
0 <i<s—1. Finally, W, (g,ﬁ(l s—1)) is the generalized g-wronskian of g relatively to £; ;_),
for 0 < i < s — 2. In the following lemma, the g-derivative of the g-wronskian is given by an
expression which is better suited for the comparison of the growth of g-wronskians.

Lemma 3. With the notations above, we have for s > 2:
Wo(fiky) _ Walgily) Wolfik_1)  Walgil 1))

VW TED = Walgle ) WeTk) ~ Walgh, )0 V0SJSs—2
.. Wq(i7&(571)) _ Wq(g;ﬁ(s,n) DaWq(fik,) 5s—2 . —1—4 Wq(ﬁ?ﬁ(i,s—m)
“) Wq(i?ﬁs) - ‘7qu(2§£(5_1)) Wq(i%Es) + (ZiZO [(q 1);8]5 ’Lquq(g;ﬁ(S_l)))'

Here, we only consider the case |¢| = 1. Indeed the case |q| # 1 is more difficult and will be
treated later. Hence, from now on, we make this assumption: ¢ is an element of K which is not
a root of unity and is such that |¢| = 1.

3 Growth of the ¢-wronskians

In the following result, we give inequalities linking the growth of generalized g-wronskians of a
family of analytic functions to that of the of ordinary g-wronskian of this family of functions.

Theorem 1. Let s be an integer > 1 and let f1,---, fs be s elements of A(d(0,R™)). Let
k1,--- ks be integers > 0. Let k = (k1,--- ,ks),and k, = (0,1,--- ;s — 1). For every p €]0, R],
we have:

i) IWe(fiB)l(p) < W, (f () gt tha

Particularly, for k; = (0,---,7,---,8), j=0,---,s, we have:
i) |Wo(f5k;)|(p) < |Wq(i )\( )/ p*.

s(s—1)
2 .

In order to prove Theorem 1, we will first deal with the case s < 2 and then proceed by
induction. The following lemma is easily shown by using Lemma 1.

Lemma 4. Let R > 0 and let [ be an element of M(d(0,R™)). For every p €]0, R[ and every
s € N, we have: [o3(f)|(p) = |fI(p) and |[D3(f)|(p) < |fI(p)/p*.

We also have:
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Lemma 5. Let f1, f, € A(d(0, R™)) be linearly independent over K. Let us set: f = (f1, f2), k

(0,1), k; = (0,2),and ky = (1,2). Then, for every p €]0,R[, we have: |Wy(f;kq)|(p) 2§:
(Wo(f3k2)[(p)/p? and [Wy(fik1)|(p) < [Wo(f3k2)I(p)/p-

Proof: We apply Lemma 3 with s = 2 and the same notations. As |¢| = 1, we complete the
proof by using Lemma 4. 0

Let y = y(z) € A(d(0,R™)). We define two sequences A, = A, x(z), (k = 0; 1)
of elements of M(d(O,R’)) in the following way: Ai9 = 0, Ago = 1, 411 = 1, A071 =
0, and D}y(x) = Ay n(x)Dey(x) + Aom(z)y(z). We further define Ag and Ay by: DZy(z) =
A1(2) Dyy(a) + Aolz}y(a).

If f1, fo € A(d(0, R™)) are two solutions of the above equation linearly independent over K, we
have: Ag = W (f3k1)/Wo([; ko) and Ay = =Wy (f;ko)/Wo(f5ks).

The following formulas are easily checked.

Lemma 6. We have the following induction relations for every integer n > 0:
i) Al pi1 = A10g AL + 0qAom + DgAi ;s
’LZ) A07n+1 = AOUqu,n + Dquyn.

Proposition 1. Let f1, f2 be two elements of A(d(0,R™)). Let £ = (0,1) and let k = (k1,k2)
be a pair of positive integers. We have, for every p €]0, R|, the inequality: |[Wo(f;k)[(p) <

(W, (£:01(p)/ "7~ = Wy ()|(p)/pFr 1

Proof: Using Lemma 5, we show first that for every n > 0 and every p €0, R[, we have:
|A1.n](p) < 1/p" 1 and |Agn|(p) < 1/p". Then we can write:

<D§1(f1) Dkz(fl))_(fl Dy f1 ) ( Ag 1, Ao,k,,)
Dj2(fa) Dg(f2) ) \ f2 Dgf2 A, Ark )7

Taking the determinant of both sides, we express W (f,k) as a function of the A, ;’s and
W(f), and we deduce the result.
0

We are now able to prove Theorem 1.

Proof: (of Theorem 1)

We proceed by induction. By Lemma 4 and Proposition 1, the inequalities i) and ) are
true for s < 2. Suppose that these inequalities are true up to a rank s > 2.
Now, let fi,---, fs, fey1 € A(d(0,R7)) be linearly independent over K. Let us set f =
(fisooo s fos fsr1), and k; = (0,--- Jiooo,s+1)for 0 < j < s+ 1. Let us also set g =
(fi,-- o fs), £, =0(0,---,i,--,5) for0<i<s and £(; o) = (0,--- i, ,5—1,5+1) for
0<i<s—1.
By Lemma 3, we have:
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Wo(fiky) — Wolgsly) Wo(fik)  Walgilys)

WQ(i;E(s-‘rl)) W (gv .s) (f k 5+1)) 14 (9765)
@) Wolfiks) _ Walgils) DaWo(fiksqn)) N Z _Walg: L sy)
WQ(i1 E(s—i—l)) O-CIWQ(Q; Es) (f k(s+1) i=0 Ogq q(g1 Es)
. |Wq(g;£5) (p) _ |D Wq (f k(s‘+1))| < 1
By Lemma 4, we have: oWa @) — and Wb 0 = 7 Vp €]0, R].

From the hypothesis, we deduce that for every 0 <i < s — 1:

sy oy | Wa(g5Li,0)1(0)
1(a = Dl (0) oot Sy < 1/

It follows, by some calculation, that the inequality #) is true for the rank s+ 1 and is therefore
true for s > 1. This completes the proof of Inequality ii).

Let us now prove inequality 1)

The equation verified by f1,--- , fer1 is: Zjié(fl)]‘Wq(i; k;)Dly = 0.

This equation can be written in the following form:

(3) Dytly = Z;:O A;D}y, where A; = (=1)*"TWq(f;k;)/Wy(f; k(o))

More generally, for every n > 0, let us set:

(4) Dy =350 AinDiy .

where the A;,’s are elements of M(d(0, R™)) satisfying the following relations:

(5) Ajpn=0if j#nand 4;,1if j=n ,for 0 <n <s;

(6) Aj 41 =4, ,for0<j<s;

(7) A07n+1 = DqA()’n + A()O'qum and Aj,n-‘rl = Dqu,n + AjO'qum + Uqu—l,n for 1 < j <s.
Let us now show that, for every j € {0,---,s+ 1} and every p €]0, R[, we have:

(8) [A3ml(p) < 1/p"7, ¥n >0

Inequality (8) is trivial for 0 < n < s because of the formula (5). Using (6) and (2), we see
that Inequality (8) is true for n = s+ 1. Using (7) and Proposition 1, we complete the proof
of Inequality (8) by induction on n.

Now, we have the formula:

s+1

Dkvp e D§S+1f1 fi o Dgh Aoy - Aok

Db foyy o DR Jorr o Difen )\ Aak o Auk,

Taking the determinants of both sides, we have: W,(f;k) = AW,(f;k,), where A is the

determinant of the matrix

Aok, - Aok,
ASJCl T AS,ks+1
1
We complete then the proof of i) by showing that |A|(p) < as in Theorem

p(k1+ Aksg1)— ““2“)
2.1 of [2]
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Remark 2. The property |q| = 1 is used when it is stated that, for a meromorphic function ¢,
we have |oq(p)|(p) = |¢|(p), which is not true in general if |q| # 1. So, generalizing our results
to any |q| is not at all clear and would require a deep change in the method of proof.

Now, we extend the result of Theorem 1 to meromorphic functions.

Corollary 1. Let f1,--- , fs, be elements of M(d(0, R™)) and let ky,- -+ , ks be integers > 0. Let
f=(f1,-- . fs), k=(k1,--- ,ks) and k, = (0,--- ,s — 1). Then, we have for every p €]0, R|[:

| (Wo(f5k.)|(p)
|Wq(iak)|(p) < p(k1+...+ks)—s<%7l> '

Proof: Let p €]0, R[ and let r €]p, R[. Then, there exists a nonzero polynomial P such that:
g1 = Pf1,---, gs = Pfs are elements of A(d(0,r7)). We can easily prove that: W,(f;k,) =

(IT;20 o3 P) "' Wal(g; k,), and then: Wy (f:k,)|(p) = [Wq(g: k)I(p)(IPI(p)~*.
Since the g;’s are analytic functions in d(0,77), by Theorem 1 we have:

_s(s=1)
(Wa(g:01(p) < [Walg: k)l(p)/ptt )=
From this and the property of the ultrametric inequality we get:

) |Wo(gik)|(p) 1 _ Wa(£:E))1(p)
Wal£:B)l(p) < [P1#(p) (kpethg)— 22D p(k1+«~+k5)—75(3271) )
That completes the proof of Corollary 1. 0

The following result gives an algebraic property of the g-wronskians of polynomials or ra-
tional functions. Recall that if P(z), Q(x) are polynomials, then the algebraic degree of the
rational function R(z) = P(x)/Q(z) is deg, R = deg P — deg Q.

Corollary 2. Let L be a field and let q be a nonzero element of L different from any root
of unity. Let Q1, -+ ,Qs, s > 1, be elements of L(x) linearly independent over L. Let @ =
(Q1,,Qs), ky=1(0,---,5—1) and k= (k1,--- , k), where ky,--- , ks are integers > 0. Let
di, do be the algebraic degrees of the rational functions Wq(Q; k) and Wy(Q; k) respectively.
Then we have: - -

dy <dy+ 27 — (kb + - + k).

Proof: We may assume that L is an algebraically closed field equipped with the trivial abso-
lute value | |¢ defined by |0l = 0 and |z|p = 1 if x # 0. Then it is clear that L is a complete
ultrametric field with respect to this absolute value. Moreover the entire functions (resp. mero-
morphic functions) on L are just the polynomials (resp. rational functions) on L. On the one
hand, we have:

(1) [We(Q;k,)|(p) = p™ and [Wo(Q;k)|(p) = p™, for every p > 1.

On the other hand, by Theorem 1, we have:

(2)  [Wo(@:E)l(p) < [We(Q: k) (p)/pFitthe)™
From (1) and (2), we have: 1< pdl*dﬁS(S;l)*(k1+"'+ks).

The required inequality follows immediately. ]

s(s—1)
2 .
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Theorem 2. Let f1,---, fs, s > 1, be elements of A(K), f = (fi,---,fs) and k, = (0,--- ,5—

1).  Suppose that the q-Wronskian W,(f,k,) is a nonzero polynomial. Then fi,---, fs are
polynomials.

Proof: The result is trivial for s = 1. Suppose that s > 2 is such that the result is true for
s — 1. So, by hypothesis, W,(f, k,) is a nonzero polynomial P(z).

Let us first consider the case when P(z) is a constant C. Then, by Theorem 1, we have:
IWof3 1) 1(0) < Wl f3 k)I(p)/p° =0 = [C1/p*3, for j =0, 5 — 1.

The considered functions being entire, this implies that: Wy (f; Ej) =0, forj=0,---,s—1.
The g-difference equation verified by fi,---, fs is then reduced to CDgy = 0, which implies
easily that fi,--- , fs are polynomials.

We then proceed by induction on the degree of the polynomial P(x). Suppose that the
result is true if P(z) is of degree < n and consider the case when P(x) is of the degree n+1. By
Theorem 1, we have: |W,(f;kq)|(p) < |P|(p)/p°. Hence, by Liouville ultrametric Theorem,
we see that Wy(f;kq) is a polynomial of degree < n + 1 — s < n. If this polynomial is
nonzero, then qul, .-+, Dy fs are polynomials by the induction hypothesis and thus fq,---, fs
are polynomials.

If the polynomial Wy( f; k¢) is null, then the system Dy f1,--- , Dqfs is of rank r < s—1. We may
assume that D fi, - - -7,Dq fr are linearly independent. Then every D, f; is a linear combination
of Dyfi,--,Dqfr and thus every f; is a linear combination of fi,---, f, and the constant
function 1. Hence, the K-vector subspace generated by the functions f1,--- , fs (of dimension
s) is included in the K-vector subspace generated by fi,---, fr, 1 (of dimension < r + 1) and
therefore s < r+1. Finally, it follows that = s —1. So we may assume that Dgfi,- -, Dgfs—1
are linearly independent and that D,f, is a linear combination of Dy f1, -, Dgfs—1 with
coefficients in K:  Dyfs = a1Dgf1 + a2Dgfo + -+ + as—1Dgqfs—1. We deduce that f; =
a1 fi+asfo+---+as—1fs—1+b with a nonzero constant b. We can easily see that the g-wronskian
of f1,---, fs is equal (up to sign) to b multiplied by the g-wronskian of Dgf1,---,Dgfs—1.
Hence, this last ¢g-wronskian is a nonzero polynomial, and the induction hypothesis on s shows

that Dy f1, -+, Dqfs—1 are polynomials and then fi,---, fs—1 are polynomials. The formula
fs=a1fi+asfo+---+as_1fs_1+0bthen shows that fs, too, is a polynomial. Thus the proof
of Theorem 2. is completed. |

Remark 3. The previous result does not extend to M(K). Indeed, let g be a non-polynomial
entire function and let h be an entire function such that Dgh = gogg. Let fi = 1/g, and
fao=h/g. We see that f1, fa are non-rational meromorphic functions while the g-wronskian
of f1, fa2 is equal to 1.

Theorem 3. Let Py,---,Ps, s > 1, be elements of KK |x] such that Ps # 0. Suppose that the
equation: (E) PyDjy+---+ PiDgy + Poy = 0 has a complete system of solutions in A(K).
Then every entire solution of (E) is a polynomial.

Proof: Let f1,---, fs be entire functions in K, making a basis of the K-vector space of solutions
of Equation (E). Then the g-wronskian W = W, (f; k) of f1,--- , fs is a nonzero entire function.
An immediate calculation gives:
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It Y55[(1 - g)a]

2, that fq,---, fs are polynomials. ~We therefore assume in the following that Zf;& [(1-
q)z]* 1P # 0. Let R > 0 be such that all zeros of the polynomials Ps and Zf;g[(l -
q)z]*~17'P; lie in the disk d(0,R). Suppose that the function W,(f;k,) admits a zero «
such that |a| = p > R. Then, by (1), we have D,W,(f;k,)(a) = 0. By Lemma 1,
we have o,W,(f; k) = (¢ — D)aD,W,(f;k,) + W,y(f;k,). Tt follows that W,(f;k,)(qa) =
o Wy(f;ky)(a) = 0. As |g| = 1, an immediate induction then shows that the function W, (f; k)
has infinitely many zeros in the disk d(0, p), which is a contradiction. So W,(f;k,) has all its
zeros in the disk d(0, R). This means that W,(f;k,) has only finitely many zeros and is conse-
quently a polynomial. Theorem 2 then shows that fi,--- , fs are polynomials, which ends the
proof of the theorem. 0

(1) PDWy(fik) + (50 [(1 = @)a) ' P)W,(f3k,) = 0.
s=1=ip, = 0, then W, (f;k,) is a nonzero constant. It follows, by Theorem

We can now generalize the above result to M(K):

Theorem 4. Let Py,--- , Ps, s > 1, be elements of KK |x| such that Ps # 0. Suppose that the
equation: (E) PsDgjy+ -+ PiDgy + Poy = 0 has a complete system of solutions in M(K).
Then every solution of (E) is a rational function.

Proof: Let f1,---, fs be elements of M(K), making a basis of the K-vector space of solutions
of Equation (E). Using the formula o,y = (¢ — 1)zDyy + y we deduce that Equation (E) is
equivalent to:
(B)  Qu@)oy(@) + -+ Qo(@)y(x) = 0,
where Qo, - -+ , Qs are elements of K K[z] such that Qs = P;. We may assume, without loss of
generality, that Qg # 0. Let y be a solution of (E’) in M(K) and let w be a pole of y which is
not a zero of Q. It follows that there exists ¢; > 1 such that ¢“*w is a pole of y. We can not
continue this process indefinitely. So there exists an integer ¢, > 0 such that for every j > 1,
q*“Tw is not a pole of y. It follows, from Equation (E’), that the function Qo(q¢* z)y(¢*x)
has no longer w as a pole. Therefore, ¢“w is a zero of Qo(z). Let R > 0 be such that all zeros
of the polynomial Qp(x) are contained in the disk d(0, R). It follows that all poles of y are in
the disk d(0, R). Consequently, y only has finitely many poles. Applying this to f1, -, fs, we
see that there exists a polynomial H(x), such that ¢1(z) = H(z)f1(z), - ,gs(x) = H(x) fs(x)
are entire functions in K. Moreover, these functions are linearly independent and satisfy a ¢-
difference equation of order s with polynomial coefficients. We conclude by using Theorem
3.

a

References

[1] Y. AMICE, Les nombres p-adiques, P.U.F., 1975.

[2] J.-P. BEzIVIN, Wronskien et équations différentielles p-adiques, Acta Arithmetica 158 no
1 (2013), pp.61-—pp.78



Ultrametric g-difference equations 145

[3] A. BouTABAA, On some p-adic functional equations, Lecture Notes in Pure and Applied
Mathematics no 192 (1997), pp.61-pp.78

[4] A. BOUTABAA, A note on p-adic linear differential equations, J. of Number theory no 87
(2001), pp.301-pp.305

[5] A. Escassut, Analytic elements in p-adic analysis,W.S.P.C. Singapore, 1995.

Received: 10.01.2014
Revised: 26.06.2014
Accepted: 20.07.2014

Laboratoire de Mathématiques Pures et Appliquées,

Université de Mostaganem

B. P. 227, Mostaganem (Algérie).

E-mail: 'belaidi @univ-mosta.dz
?bouabdelli.rabab @gmail.com

Laboratoire de Mathématiques UMR, 6620,
Université Blaise Pascal,
Les Cézeaux, 63171 AUBIERE CEDEX FRANCE.

E-mail: 3boutabaa @math.univ-bpclermont.fr



