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On a certain ring construction

by
JiM COYKENDALL AND TIBERIU DUMITRESCU*

Abstract

Let D be an integral domain, K a subset of D and (Py)rex a family of
prime ideals of D such that j—k is invertible modulo Py, for all j, k € K, j #
k. Beginning with this data, we construct an overring E of the polynomial
ring D[xz] such that every ideal Py is contained in a principal prime ideal of
E.
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In [3], the following ring construction has been given. Let A be a domain
containing a field L. Assume that the set of maximal ideals of A can be indexed
by some subset K of L, say Max(A) = (My)rex - Consider the domain

B = Alz, —, [ € My,ke K,n>1]

_
(z - k)
where z is an indeterminate. In [3], this construction is iterated to produce a
domain in which every proper finitely generated ideal I is contained in N> J"
for some proper finitely generated ideal J.

The aim of this paper is to study the construction above in a slightly more
general setting. Starting with a domain A and a suitably indexed family of prime
ideals P, we construct an overring A" of the polynomial ring A[z] such that
every member of P is contained in a principal prime ideal of A”. We obtain a
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description of the prime ideals of A”. When P consists of maximal ideals and A
is integrally closed, we show that A" is integrally closed as well.

As an application, some interesting domains are obtained. For instance, the
ring Clz,y, (y — a)/(z — a)", a € C,n > 1] where z,y are indeterminates, is a
two-dimensional strongly discrete Priifer domain. On the other hand, the ring
Z[z,p/(z—p)", p prime number,n > 1] is a two-dimensional integrally closed do-
main whose localizations are either strongly discrete valuation domains of rank
< 2 or two-dimensional regular local rings. In particular, it is not a Priifer do-
main.

Throughout this paper, all rings are commutative and unitary. Undefined
terminology and notation is standard, as is [5] or [8]. A local ring is always
Noetherian.

Let A be a domain, K a nonempty subset of A and P = (Py)rex a family of
prime ideals of A. Assume that

(ﬂ) Pk+(J_k)A:A for all ],k€K7.77ék

Note that this condition is satisfied if K is contained in some subfield of A, or
if every Py is a maximal ideal and j € Py if and only if j = k. Let 2 be an
indeterminate over A. For every a € A, we denote

(2 —a) = = {——|n>0}.

(z —a)
The aim of this paper is to study the domain
(84) AP = Alz, Py(z — k)", k € K].

Recall that a domain D is said to be Archimedean if Np>1a™D = 0 for each
nonunit @ € D. It is well-known that a completely integrally closed domain
or a domain satisfying the ascending chain condition for the principal ideals is
Archimedean. Hence a Noetherian domain is Archimedean. The next result
collects some general properties of the construction A% .

Theorem 1. Let A be a domain, K a nonempty subset of A, P = (Pg)rek 6
family of prime ideals of A satisfying condition (§) and AP the ring defined in
(88). Fiz an element k € K. Then the following hold

(a) AP /(x — k)AF is canonically isomorphic to A/P;,.

(b) Aafk) = A[JL‘,Pk(JE — k)—oo](m_k)'

(¢) (AP [Pp(x — k)= AP) i) = Filz,1/(z — j), j € K \ {k}], where Fy, is
the quotient field of A/ Py.

(@) Nz (= ~ K47 = Pula — K) A7, )0 4.
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(e) The domain AP is not Archimedean. So it is neither Noetherian nor
completely integrally closed.
(f) The units of A are exactly the units of A.

Proof: Without lose of generality, we may assume that 0 € K and k = 0. Set
B=A% and P = P,.

(a). We have to show that the canonical morphism « : A — B/zB is surjective
and its kernel is P. Let f € P and n > 1. Since f/z" = z(f/z"*!), the image
of f/2"™ in B/xB is zero. Now, let 0 # j € K, f € P; and n > 0 and set
g=f/(x—j)". As P C zB, condition (f) implies that j is invertible modulo zB.
So from (z — j)"g = f, we deduce that the image of g in B/xzB is a((—j) " f).
It is now clear that « is surjective.

Clearly, P C xBN A = ker(a). Conversely, let a € ker(a). Then a = zg
for some g € B. Consider the subring E of B, E = A[z] + P[z!]. There exist
J1s - Jt € K\ {0}, not necessarily distinct, and h € E such that (z — j1)--- (z —
jt)a = zh. Equating the degree zero terms we get ji --- jra € P. By condition
(), the element j; - - - j; is invertible modulo P, so a € P. Thus ker(a) = P.

(b), (¢). Set Q@ = Pz~ >°B and let E be as in the proof of (a). Let W be the
multiplicative set of B generated by {x — j| j € K \ {0}}. By condition (f), W
is disjoint from B and zE. So B(;) = (Bw)(y) = E(;)- Consequently,

(B/Q)(2) = (E/Q)(2) = (A/P)[2](s) = Flz](s)

where F is the quotient field of A/P.

(d). Set Q = Px~*°B. Ny>12"B contains () and it is the unique prime ideal
directly below zB. By (c), it follows that N,>12"B = QB,p N B.

(e) follows from (d).

(f). Let W be the multiplicative set of A[z] generated by {z — j| j € K}.
Then B C A[z]w and the saturation of W is U(A)W. Since each z — j is a
nonunit of B, it follows that U(B) = U(A). O

Let W be the multiplicative set of A" generated by {z — k| kK € K}. The
prime ideals of A” which are disjoint from W are in a one to one correspondence
with the prime ideals of A},. It is easy to see that A}, = A[z,1/(z—k), k € K].
So we have the following consequence of Theorem 1.

Corollary 2. Let A, P and A" be as in Theorem 1.
(a) The prime ideals of A¥ have one of the following two forms:
(1) (Q,z — k) AP where Q is a prime ideal of A containing Py,
(ii) N N A where N is a prime ideal of Alz,1/(z — k), k € K].
(b) If every ideal Py is maximal, then a localization of AT at some mazimal
ideal is either of the form Aa_k) or a localization of Alz,1/(xz — k), k € K], so

AP = ek Al _jy N Alz,1/(z — k), k € K].
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(¢) If every ideal Py, is maximal and A is integrally closed, then A7 is integrally
closed.

Proof: (a) was proved in the paragraph before the corollary and (b) follows from
(a) and part (a) of Theorem 1.

(c). Since A is integrally closed, A[z,1/(z — j), j € K] is integrally closed,
because it is a fraction ring of A[z]. By (b), it suffices to show that A@_k) is
integrally closed for each k € K. By part (b) of Theorem 1, AZ;_ K = Alz, Py(z—
k)~*](a—k)- The following lemma applies. O

Lemma 3. Let D be an integrally closed domain, P a prime ideal of D and x
an indeterminate. Then the domain DY := D[z, Px~°] is integrally closed.

Proof: Since D is integrally closed, so is D[z,z~!]. Hence the integral closure
of D¥ is contained in D[z,z~']. Note that D¥ is a graded subring of D[z,z1].
By [10, Theorem 11, page 157], it suffices to see that whenever a monomial
ax~" is integral over D, where a € D and n > 0, it follows that a € P. Let
(az™™)* + fr_1(az~™)*"1 + ... + fo = 0 be an integral dependence relation of
ax~" over D¥. Computing the coefficient of =™, we see that a* € P, so a € P.
a

In the second part of this paper, we consider some particular cases. Let A be
the polynomial ring C[y] and P = (P,)scc where P, is the prime ideal (y—a)Cly].
Then

C[y]P = C[m,y, (y - a)(x - a)—oo’ ac€ C]

Recall that D is said to be a Priifer domain if Dy, is a valuation domain for every
maximal ideal M of D. A Priifer domain D is strongly discrete if each nonzero
prime ideal of D is not idempotent. For basic facts about Priifer domains the
reader may consult [4] or [5].

Theorem 4. In the setup above, let a € C. Then
(a) Cly]”/(z —a) = C.
(b) C[y]afa) is a rank two valuation domain.
(©) Clyl”/( — )z - 0)~) = Cla].
(d) The nonzero prime ideals of Cly]” have one of the following three forms,
the mazimal ideals being those in (a) and (c),
(4) (z — b)C[y]* with b € C,
(ii) (y — b)(x — b)~°C[y]” with b € C,
(i4i) fC(z)[y] N Cly]” where f € C(z)[y] \ Cly] is a monic irreducible
polynomial.
(e) If P = fC(z)[y] N Cly]” where f € C(z)[y] \ Cly] is a monic irreducible
polynomial, then Cly]p = C(z)[y](s)-
(f) Cly]? is a two-dimensional strongly discrete Priifer domain.
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Proof: Set B = C[y]”. For (a)-(c) it suffices to settle the case when a = 0. Let
W be the multiplicative set of B generated by {z —b| b € C\ {0}}.

(a). By part (a) of Theorem 1, B/zB ~ Cly]/(y) ~ C. So zB is a maximal
ideal of B.

(b). Note that By = Clz,yz~ >°]w. Since W is disjoint from =B, we obtain
By = (Bw)(y)- Hence B;p = Clz,yz~%](,). We remark that B;p can be
written as a directed union of rings Un>oC[z,y/2"](z,y/2m)- Note that every
term Clz,y/2"](4,y/2») of this union is isomorphic to C[z,y],y), thus it is a
two-dimensional regular local ring. Let 0 # f € C[z,y](;,,)- Then f can be
written as f = y*(az™ + yg) for some 0 # o € C, g € C[z,y] and k,m > 0.
Then f = y*2™(a + yz~™g) and a + yz~™g is a unit of B,p. Now, it follows
easily that B,p is a rank two valuation domain with nonzero prime ideals zB,p
and yz~*°B,;B.

(c). Set Q@ =yz~>°B. Forbe C\ {0}, B=(y,y —b) C (Q,xz—1b). So W is
disjoint from (), hence

B/Q ~ Bw /QBw ~ Clz,yz™ ]w/(yz~ ) ~ Clz]lw ~ Clz](s).

In particular, @) is a nonmaximal prime ideal. Note that @ = yC(z)[y] N B. By
(b), @ is the unique nonzero prime ideal contained in zB.

(d). Note that the fraction ring of B with respect to the multiplicative V'
set generated by {z —a| a € C} is C(z)[y]. Let P = fC(x)[y] N C[y]” where
f € C(z)[y] \ Cly] is a monic irreducible polynomial. By (a), every element of
V is invertible modulo P. So B/P =~ By /PBy ~ C(x)[y]/(f), hence P is a
maximal ideal. Now, Corollary 2 applies.

(€). Let P = fC(z)[y]NCly]” where f € C(z)[y]\ C[y] is a monic irreducible
polynomial and let V' be as in (d). Then Cly]p = (Cly]y)p = C(2)[y])-

(f)- By (b), (d) and (e), the localizations of B at its maximal ideals are
strongly discrete valuation domains of rank < 2. So B is a strongly discrete
two-dimensional Priifer domain, cf. [4, Proposition 5.3.5]. 0

Recall that a generalized Dedekind domain is a strongly discrete Priifer domain
such that each principal ideal of D has finitely many minimal prime ideals.

Remark 5. The ring B = C[y]” considered above is not a generalized Dedekind
domain. Indeed, let a € C. Then z —y = (z — a) — (y — a) is divisible in B by
x — a. Moreover, (x —y)/(x —a) = 1 —(y — a)/(xz — a) is invertible in B(,_j,
s0 (x — y)B(z—a) = (* — a)B(y_q). Hence (x — a)B is a minimal prime ideal
over (x —y)B. Thus (z — y)B has infinitely many minimal primes, so B is not a
generalized Dedekind domain.

Remark 6. We may consider the proof of part (b) of Theorem 4 from the fol-
lowing point of view. Let (R, M) be a Nagata regular local ring of dimension two
and let (V, N) be a valuation domain that birationally dominates R (that is, V'
is an overring of R and N N R = M). The first local quadratic transform of R
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along V is defined to be Ry = R[M/a]nng[m/q) Where a € M is such MV = aV,
cf. [9, page 141] (see also [6, page 38]). Inductively, the (¢ + 1)th local quadratic
transform of R along V', R;;1, is defined as the first local quadratic transform of
R; along V. A classical result of Zariski and Abhyankar asserts that V = U;>1 R;,
cf. [1, Lemma 12].

In the setup of the proof of part (b) of Theorem 4, let R = C|z,y](,,,) and
V = B;p. Then Clz,y/2"](4,/2~) is exactly the nth local quadratic transform
of R along V. So the representation V' = U,>1Clz,y/2"](4,y/.) is a particular
case of theorem of Zariski and Abhyankar.

We consider another particular case. Let A = Z and P = (pZ)pcy, where Y
is the set of all prime numbers. Then

Z7 = Zz,p(x — p)~>, peY].
The next result collects some properties of this ring.

Theorem 7. Let ZF as above and p a prime number.
(a) The prime ideals of Z” have one of the following two forms
(/L) (.’L' - q)z’P, q€ Y’
(ii) NN Z” where N is a prime ideal of Z[z,1/(x —q),q € Y].

(b) Zz/(m—p):ZP. .

(c) 27 [(p(x — p)™°) = Zp[z,1/(z"~ —1)].

(d) Z@_p) is a rank two valuation domain.

(e) Z” is a two-dimensional integrally closed domain.

() Z7)(z-1)=Q.

(9) szw—l) ~ Q[z](;—1) 15 a discrete valuation domain.

(h) Z7 (3,2 + 1) is a mazimal ideal of Z¥ and Zf; -, ) = Z[z](3,4241). So

Z7 is not a Prifer domain.
(i) Let R = zZ[z,1/(z — q),q € Y] NZ" an let {p1,p2,---} be the sequence
of prime numbers. Then R = Up>1(z(x —p1)~' -+ (z —pn)~!) and Z¥ /R ~ Q.

Proof: (a) follows from Corollary 2. Set B = Z” and let W be the multiplicative
set of B generated by {z —q| ¢ € Y \ {p}}.

(b). By part (a) of Theorem 1, B/(z — p) ~ Z,. So zB is a maximal ideal of
B.

(¢)- Set @ = p(& —p)~>B. For g € Y\ {p}, B = (p,q) € (@, —q). So W is
disjoint from (), hence

B/Q ~ Bw/QBw ~ Z[z,p(z —p)” lw/(p(z —p)~>) ~

~ Zplolw =~ Zplz,1/(z — q),q € Y \ {p}] = Zy[z,1/(zP~! — 1)]

by Dirichlet’s Theorem on primes in an arithmetic progression (see [7, Theorem
1, page 251]). In particular, @) is a nonmaximal prime ideal. By (e), @ is the
unique nonzero prime ideal contained in (z — p)B.



On a certain ring construction 147

(d). Note that By = Z[z,p(z — p)~*]w. Since W is disjoint from (z — p)B,
we get B,_py = (Bw)(z—p)- Hence Bi,_p) = Z[z, p(z — p)~*®](5—p). S0 Bz_p)
can be written as a directed union of rings Un>1Z[z, p(x — p) ™ "](a,p(z—p)-n)- It
can be shown as in the proof of Theorem 4 (b) that B(,_p) is a rank two valuation
domain with nonzero prime ideals (x — p)B(,—p) and p(z — p) *°B(;_p). Note
that every term Z[z,p(x — p)™"](z,p(z—p)-») Of the union above is isomorphic to
Z[z,y](p,z,y)/ (™y — p), thus it is a two-dimensional regular local ring. Note that
Remark 6 also applies here.

(e). By (a), a maximal ideal M of B has the form (z —a)B or N N B where
N is a prime ideal of Z[x,1/(z — q),q € Y]. It follows that By equals B(,_g) or
a localization of Z[z,1/(z — q),q € Y]. Hence B is a two-dimensional integrally
closed domain. Note that we can also apply part (¢) Corollary 2.

(f). Let V be the multiplicative set of B generated by {z — ¢| ¢ € Y}.
Since every element of V is invertible modulo (z — 1)B, we get B/(z — 1) =
(By)/(z —1). Note that By = Z[z]y. So B/(zx —1) ~Z[1/(1—¢q), ¢ € Y] =Q,
by Dirichlet’s Theorem on primes in an arithmetic progression (see [7, Theorem
1, page 251)).

(9)- Let V be as above. Since (z — 1)B is disjoint from V, B_q) =
(Bv)(z—1) = (Z[z]v)(2—1) = (Q[z]v)(2-1)-

(h) can be proved as (f) and (g)-

(i) Let ¢ € Y. In B, x — ¢ divides x and (z — ¢)? does not divide z. Indeed,
z=12—q+q and (z — q)" divides ¢ for each n > 1. Now it easily follows that
R =Up>1(z(z—p1)~" - (z—pn)~'). Let V be asin (f). Note that (Q,z—q) = B
for each ¢ € Y. So

B/R~1Z[z,1/(z —q), ¢ € Y]/(x) ~Z[l/q, ¢ € Y] =Q.

Remark 8. It is easy to see that Z[z,1/(z — ¢),q € Y] is a two-dimensional
regular ring. So the proof of part (e) of Theorem 7 shows that the localizations
of Z¥ at its maximal ideals are either strongly discrete valuation domains of rank
< 2 or two-dimensional regular local rings. So Z” is a locally GCD domain. It
would be interesting to know if Z” is a generalized GCD domain. Recall that D
is a generalized GCD domain if aD N bD is an invertible ideal for each nonzero
a,be D, cf. [2].
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