On a certain ring construction

by Jim Coykendall and Tiberiu Dumitrescu*

Abstract

Let D be an integral domain, K a subset of D and $(P_k)_{k \in K}$ a family of prime ideals of D such that j-k is invertible modulo P_k for all $j, k \in K, j \neq k$. Beginning with this data, we construct an overring E of the polynomial ring D[x] such that every ideal P_k is contained in a principal prime ideal of E.

Key Words: Integral domain, prime ideal. 2000 Mathematics Subject Classification: Primary: 13A15, Secondary 13B22, 13F05.

In [3], the following ring construction has been given. Let A be a domain containing a field L. Assume that the set of maximal ideals of A can be indexed by some subset K of L, say $Max(A) = (M_k)_{k \in K}$. Consider the domain

$$B = A[x, \frac{f}{(x-k)^n}, \ f \in M_k, k \in K, n \ge 1]$$

where x is an indeterminate. In [3], this construction is iterated to produce a domain in which every proper finitely generated ideal I is contained in $\bigcap_{n\geq 1} J^n$ for some proper finitely generated ideal J.

The aim of this paper is to study the construction above in a slightly more general setting. Starting with a domain A and a suitably indexed family of prime ideals \mathcal{P} , we construct an overring $A^{\mathcal{P}}$ of the polynomial ring A[x] such that every member of \mathcal{P} is contained in a principal prime ideal of $A^{\mathcal{P}}$. We obtain a

 $^{^{*}\}mathrm{The}$ second author was partially supported by grant CERES 4-147/2004.

description of the prime ideals of $A^{\mathcal{P}}$. When \mathcal{P} consists of maximal ideals and Ais integrally closed, we show that $A^{\mathcal{P}}$ is integrally closed as well.

As an application, some interesting domains are obtained. For instance, the ring $\mathbb{C}[x,y,(y-a)/(x-a)^n, a \in \mathbb{C}, n > 1]$ where x, y are indeterminates, is a two-dimensional strongly discrete Prüfer domain. On the other hand, the ring $\mathbf{Z}[x,p/(x-p)^n,\ p$ prime number, $n\geq 1$] is a two-dimensional integrally closed domain whose localizations are either strongly discrete valuation domains of rank ≤ 2 or two-dimensional regular local rings. In particular, it is not a Prüfer domain.

Throughout this paper, all rings are commutative and unitary. Undefined terminology and notation is standard, as is [5] or [8]. A local ring is always Noetherian.

Let A be a domain, K a nonempty subset of A and $\mathcal{P} = (P_k)_{k \in K}$ a family of prime ideals of A. Assume that

(
$$\sharp$$
) $P_k + (j-k)A = A$ for all $j, k \in K, j \neq k$.

Note that this condition is satisfied if K is contained in some subfield of A, or if every P_k is a maximal ideal and $j \in P_k$ if and only if j = k. Let x be an indeterminate over A. For every $a \in A$, we denote

$$(x-a)^{-\infty} = \{ \frac{1}{(x-a)^n} | n \ge 0 \}.$$

The aim of this paper is to study the domain

$$(\sharp\sharp) A^{\mathcal{P}} := A[x, P_k(x-k)^{-\infty}, \ k \in K].$$

Recall that a domain D is said to be Archimedean if $\bigcap_{n>1} a^n D = 0$ for each nonunit $a \in D$. It is well-known that a completely integrally closed domain or a domain satisfying the ascending chain condition for the principal ideals is Archimedean. Hence a Noetherian domain is Archimedean. The next result collects some general properties of the construction $A^{\mathcal{P}}$.

Theorem 1. Let A be a domain, K a nonempty subset of A, $\mathcal{P} = (P_k)_{k \in K}$ a family of prime ideals of A satisfying condition (\sharp) and $A^{\mathcal{P}}$ the ring defined in $(\sharp\sharp)$. Fix an element $k \in K$. Then the following hold

- (a) $A^{\mathcal{P}}/(x-k)A^{\mathcal{P}}$ is canonically isomorphic to A/P_k .
- (b) $A_{(x-k)}^{\mathcal{P}} = A[x, P_k(x-k)^{-\infty}]_{(x-k)}$. (c) $(A^{\mathcal{P}}/P_k(x-k)^{-\infty}A^{\mathcal{P}})_{(x-k)} \simeq F_k[x, 1/(x-j), j \in K \setminus \{k\}], \text{ where } F_k \text{ is}$ the quotient field of A/P_k . (d) $\bigcap_{n>1} (x-k)^n A^p = P_k(x-k)^{-\infty} A^p_{(x-k)} \cap A^p$.

$$(d) \bigcap_{n>1} (x-k)^n A^{\mathcal{P}} = P_k(x-k)^{-\infty} A^{\mathcal{P}}_{(x-k)} \cap A^{\mathcal{P}}.$$

- (e) The domain $A^{\mathcal{P}}$ is not Archimedean. So it is neither Noetherian nor completely integrally closed.
 - (f) The units of $A^{\mathcal{P}}$ are exactly the units of A.

Proof: Without lose of generality, we may assume that $0 \in K$ and k = 0. Set $B = A^{\mathcal{P}}$ and $P = P_0$.

(a). We have to show that the canonical morphism $\alpha:A\to B/xB$ is surjective and its kernel is P. Let $f \in P$ and $n \ge 1$. Since $f/x^n = x(f/x^{n+1})$, the image of f/x^n in B/xB is zero. Now, let $0 \neq j \in K$, $f \in P_j$ and $n \geq 0$ and set $g = f/(x-j)^n$. As $P \subseteq xB$, condition (\sharp) implies that j is invertible modulo xB. So from $(x-j)^n g = f$, we deduce that the image of g in B/xB is $\alpha((-j)^{-n}f)$. It is now clear that α is surjective.

Clearly, $P \subseteq xB \cap A = ker(\alpha)$. Conversely, let $a \in ker(\alpha)$. Then a = xgfor some $g \in B$. Consider the subring E of B, $E = A[x] + P[x^{-1}]$. There exist $j_1, ..., j_t \in K \setminus \{0\}$, not necessarily distinct, and $h \in E$ such that $(x - j_1) \cdots (x - j_t) \cdots ($ $j_t)a = xh$. Equating the degree zero terms we get $j_1 \cdots j_t a \in P$. By condition (\sharp) , the element $j_1 \cdots j_t$ is invertible modulo P, so $a \in P$. Thus $ker(\alpha) = P$.

(b), (c). Set $Q = Px^{-\infty}B$ and let E be as in the proof of (a). Let W be the multiplicative set of B generated by $\{x-j|\ j\in K\setminus\{0\}\}$. By condition (\sharp) , W is disjoint from xB and xE. So $B_{(x)}=(B_W)_{(x)}=E_{(x)}$. Consequently,

$$(B/Q)_{(x)} \simeq (E/Q)_{(x)} \simeq (A/P)[x]_{(x)} = F[x]_{(x)}$$

where F is the quotient field of A/P.

- (d). Set $Q = Px^{-\infty}B$. $\bigcap_{n>1}x^nB$ contains Q and it is the unique prime ideal directly below xB. By (c), it follows that $\cap_{n>1} x^n B = QB_{xB} \cap B$.
 - (e) follows from (d).
- (f). Let W be the multiplicative set of A[x] generated by $\{x-j|\ j\in K\}$. Then $B \subseteq A[x]_W$ and the saturation of W is U(A)W. Since each x-j is a nonunit of B, it follows that U(B) = U(A).

Let W be the multiplicative set of $A^{\mathcal{P}}$ generated by $\{x-k \mid k \in K\}$. The prime ideals of $A^{\mathcal{P}}$ which are disjoint from W are in a one to one correspondence with the prime ideals of $A_W^{\mathcal{P}}$. It is easy to see that $A_W^{\mathcal{P}} = A[x, 1/(x-k), k \in K]$. So we have the following consequence of Theorem 1.

Corollary 2. Let A, P and A^{P} be as in Theorem 1.

- (a) The prime ideals of $A^{\mathcal{P}}$ have one of the following two forms:
 - (i) $(Q, x k)A^{\mathcal{P}}$ where Q is a prime ideal of A containing P_k ,
- (ii) $N \cap A^{\mathcal{P}}$ where N is a prime ideal of $A[x, 1/(x-k), k \in K]$. (b) If every ideal P_k is maximal, then a localization of $A^{\mathcal{P}}$ at some maximal ideal is either of the form $A_{(x-k)}^{\mathcal{P}}$ or a localization of $A[x,1/(x-k),\ k\in K]$, so

$$A^{\mathcal{P}} = \bigcap_{k \in K} A^{\mathcal{P}}_{(x-k)} \cap A[x, 1/(x-k), \ k \in K].$$

(c) If every ideal P_k is maximal and A is integrally closed, then $A^{\mathcal{P}}$ is integrally closed.

Proof: (a) was proved in the paragraph before the corollary and (b) follows from (a) and part (a) of Theorem 1.

(c). Since A is integrally closed, $A[x, 1/(x-j), j \in K]$ is integrally closed, because it is a fraction ring of A[x]. By (b), it suffices to show that $A_{(x-k)}^{\mathcal{P}}$ is integrally closed for each $k \in K$. By part (b) of Theorem 1, $A_{(x-k)}^{\mathcal{P}} = A[x, P_k(x-k)]$ $(k)^{-\infty}$]_(x-k). The following lemma applies.

Lemma 3. Let D be an integrally closed domain, P a prime ideal of D and xan indeterminate. Then the domain $D^P := D[x, Px^{-\infty}]$ is integrally closed.

Proof: Since D is integrally closed, so is $D[x, x^{-1}]$. Hence the integral closure of D^P is contained in $D[x, x^{-1}]$. Note that D^P is a graded subring of $D[x, x^{-1}]$. By [10, Theorem 11, page 157], it suffices to see that whenever a monomial ax^{-n} is integral over D^P , where $a \in D$ and n > 0, it follows that $a \in P$. Let $(ax^{-n})^k + f_{k-1}(ax^{-n})^{k-1} + \cdots + f_0 = 0$ be an integral dependence relation of ax^{-n} over D^P . Computing the coefficient of x^{-nk} , we see that $a^k \in P$, so $a \in P$.

In the second part of this paper, we consider some particular cases. Let A be the polynomial ring C[y] and $\mathcal{P} = (P_a)_{a \in C}$ where P_a is the prime ideal (y-a)C[y]. Then

$$\mathbf{C}[y]^{\mathcal{P}} = \mathbf{C}[x, y, (y-a)(x-a)^{-\infty}, \ a \in \mathbf{C}].$$

Recall that D is said to be a Prüfer domain if D_M is a valuation domain for every maximal ideal M of D. A Prüfer domain D is strongly discrete if each nonzero prime ideal of D is not idempotent. For basic facts about Prüfer domains the reader may consult [4] or [5].

Theorem 4. In the setup above, let $a \in \mathbb{C}$. Then

- (a) $\mathbf{C}[y]_{\mathbb{R}}^{\mathcal{P}}/(x-a) \simeq \mathbf{C}$.
- (b) $\mathbf{C}[y]_{(x-a)}^{\mathcal{P}}$ is a rank two valuation domain.
- (c) $\mathbf{C}[y]^{\mathcal{P}}/((y-a)(x-a)^{-\infty}) \simeq \mathbf{C}[x]_{(x)}$. (d) The nonzero prime ideals of $\mathbf{C}[y]^{\mathcal{P}}$ have one of the following three forms, the maximal ideals being those in (a) and (c),
 - (i) $(x-b)\mathbf{C}[y]^{\mathcal{P}}$ with $b \in \mathbf{C}$,
- $\begin{array}{l} (ii) \ (y-b)(x-b)^{-\infty} \mathbf{C}[y]^{\mathcal{P}} \ with \ b \in \mathbf{C}, \\ (iii) \ f\mathbf{C}(x)[y] \cap \mathbf{C}[y]^{\mathcal{P}} \ where \ f \in \mathbf{C}(x)[y] \setminus \mathbf{C}[y] \ is \ a \ monic \ irreducible \end{array}$ polynomial.
- (e) If $P = f\mathbf{C}(x)[\underline{y}] \cap \mathbf{C}[\underline{y}]^{\mathcal{P}}$ where $f \in \mathbf{C}(x)[\underline{y}] \setminus \mathbf{C}[\underline{y}]$ is a monic irreducible polynomial, then $\mathbf{C}[y]_P^{\mathcal{P}} = \mathbf{C}(x)[y]_{(f)}$.
 - (f) $\mathbf{C}[y]^{\mathcal{P}}$ is a two-dimensional strongly discrete Prüfer domain.

Proof: Set $B = \mathbb{C}[y]^{\mathcal{P}}$. For (a)-(c) it suffices to settle the case when a = 0. Let W be the multiplicative set of B generated by $\{x - b | b \in \mathbb{C} \setminus \{0\}\}$.

- (a). By part (a) of Theorem 1, $B/xB \simeq \mathbf{C}[y]/(y) \simeq \mathbf{C}$. So xB is a maximal ideal of B
- (b). Note that $B_W=\mathbf{C}[x,yx^{-\infty}]_W$. Since W is disjoint from xB, we obtain $B_{xB}=(B_W)_{(x)}$. Hence $B_{xB}=\mathbf{C}[x,yx^{-\infty}]_{(x)}$. We remark that B_{xB} can be written as a directed union of rings $\cup_{n\geq 0}\mathbf{C}[x,y/x^n]_{(x,y/x^n)}$. Note that every term $\mathbf{C}[x,y/x^n]_{(x,y/x^n)}$ of this union is isomorphic to $\mathbf{C}[x,y]_{(x,y)}$, thus it is a two-dimensional regular local ring. Let $0\neq f\in\mathbf{C}[x,y]_{(x,y)}$. Then f can be written as $f=y^k(\alpha x^m+yg)$ for some $0\neq \alpha\in\mathbf{C},\ g\in\mathbf{C}[x,y]$ and $k,m\geq 0$. Then $f=y^kx^m(\alpha+yx^{-m}g)$ and $\alpha+yx^{-m}g$ is a unit of B_{xB} . Now, it follows easily that B_{xB} is a rank two valuation domain with nonzero prime ideals xB_{xB} and $yx^{-\infty}B_{xB}$.
- (c). Set $Q = yx^{-\infty}B$. For $b \in \mathbb{C} \setminus \{0\}$, $B = (y, y b) \subseteq (Q, x b)$. So W is disjoint from Q, hence

$$B/Q \simeq B_W/QB_W \simeq \mathbf{C}[x,yx^{-\infty}]_W/(yx^{-\infty}) \simeq \mathbf{C}[x]_W \simeq \mathbf{C}[x]_{(x)}.$$

In particular, Q is a nonmaximal prime ideal. Note that $Q = y\mathbf{C}(x)[y] \cap B$. By (b), Q is the unique nonzero prime ideal contained in xB.

- (d). Note that the fraction ring of B with respect to the multiplicative V set generated by $\{x-a|\ a\in \mathbf{C}\}$ is $\mathbf{C}(x)[y]$. Let $P=f\mathbf{C}(x)[y]\cap \mathbf{C}[y]^{\mathcal{P}}$ where $f\in \mathbf{C}(x)[y]\setminus \mathbf{C}[y]$ is a monic irreducible polynomial. By (a), every element of V is invertible modulo P. So $B/P\simeq B_V/PB_V\simeq \mathbf{C}(x)[y]/(f)$, hence P is a maximal ideal. Now, Corollary 2 applies.
- (e). Let $P = f\mathbf{C}(x)[y] \cap \mathbf{C}[y]^{\mathcal{P}}$ where $f \in \mathbf{C}(x)[y] \setminus \mathbf{C}[y]$ is a monic irreducible polynomial and let V be as in (d). Then $\mathbf{C}[y]_{\mathcal{P}}^{\mathcal{P}} = (\mathbf{C}[y]_{\mathcal{V}}^{\mathcal{P}})_{\mathcal{P}} = \mathbf{C}(x)[y]_{(f)}$.
- (f). By (b), (d) and (e), the localizations of B at its maximal ideals are strongly discrete valuation domains of rank ≤ 2 . So B is a strongly discrete two-dimensional Prüfer domain, cf. [4, Proposition 5.3.5].

Recall that a generalized Dedekind domain is a strongly discrete Prüfer domain such that each principal ideal of D has finitely many minimal prime ideals.

Remark 5. The ring $B = \mathbb{C}[y]^{\mathcal{P}}$ considered above is not a generalized Dedekind domain. Indeed, let $a \in \mathbb{C}$. Then x - y = (x - a) - (y - a) is divisible in B by x - a. Moreover, (x - y)/(x - a) = 1 - (y - a)/(x - a) is invertible in $B_{(x-a)}$, so $(x - y)B_{(x-a)} = (x - a)B_{(x-a)}$. Hence (x - a)B is a minimal prime ideal over (x - y)B. Thus (x - y)B has infinitely many minimal primes, so B is not a generalized Dedekind domain.

Remark 6. We may consider the proof of part (b) of Theorem 4 from the following point of view. Let (R, M) be a Nagata regular local ring of dimension two and let (V, N) be a valuation domain that birationally dominates R (that is, V is an overring of R and $N \cap R = M$). The first local quadratic transform of R

along V is defined to be $R_1 = R[M/a]_{N \cap R[M/a]}$ where $a \in M$ is such MV = aV, cf. [9, page 141] (see also [6, page 38]). Inductively, the (i+1)th local quadratic transform of R along V, R_{i+1} , is defined as the first local quadratic transform of R_i along V. A classical result of Zariski and Abhyankar asserts that $V = \bigcup_{i \geq 1} R_i$, cf. [1, Lemma 12].

In the setup of the proof of part (b) of Theorem 4, let $R = \mathbb{C}[x,y]_{(x,y)}$ and $V = B_{xB}$. Then $\mathbb{C}[x,y/x^n]_{(x,y/x^n)}$ is exactly the nth local quadratic transform of R along V. So the representation $V = \bigcup_{n \geq 1} \mathbb{C}[x,y/x^n]_{(x,y/x^n)}$ is a particular case of theorem of Zariski and Abhyankar.

We consider another particular case. Let $A = \mathbf{Z}$ and $\mathcal{P} = (p\mathbf{Z})_{p \in Y}$, where Y is the set of all prime numbers. Then

$$\mathbf{Z}^{\mathcal{P}} = \mathbf{Z}[x, p(x-p)^{-\infty}, p \in Y].$$

The next result collects some properties of this ring.

Theorem 7. Let $\mathbf{Z}^{\mathcal{P}}$ as above and p a prime number.

- (a) The prime ideals of $\mathbf{Z}^{\mathcal{P}}$ have one of the following two forms
 - $(i) (x-q)\mathbf{Z}^{\mathcal{P}}, q \in Y,$
 - (ii) $N \cap \mathbf{Z}^{\mathcal{P}}$ where N is a prime ideal of $\mathbf{Z}[x, 1/(x-q), q \in Y]$.
- (b) $\mathbf{Z}^{p}/(x-p) \simeq \mathbf{Z}_{p}$.
- (c) $\mathbf{Z}^{p}/(p(x-p)^{-\infty}) \simeq \mathbf{Z}_{p}[x, 1/(x^{p-1}-1)].$
- (d) $\mathbf{Z}_{(x-p)}^{\mathcal{P}}$ is a rank two valuation domain.
- (e) $\mathbf{Z}^{\mathcal{P}}$ is a two-dimensional integrally closed domain.
- $(f) \mathbf{Z}^{\mathcal{P}}/(x-1) \simeq \mathbf{Q}.$
- (g) $\mathbf{Z}_{(x-1)}^{\mathcal{P}} \simeq \mathbf{Q}[x]_{(x-1)}$ is a discrete valuation domain.
- (h) $\mathbf{Z}^{\mathcal{P}}(3, x^2 + 1)$ is a maximal ideal of $\mathbf{Z}^{\mathcal{P}}$ and $\mathbf{Z}^{\mathcal{P}}_{(3, x^2 + 1)} \simeq \mathbf{Z}[x]_{(3, x^2 + 1)}$. So $\mathbf{Z}^{\mathcal{P}}$ is not a Prüfer domain.
- (i) Let $R = x\mathbf{Z}[x, 1/(x-q), q \in Y] \cap \mathbf{Z}^{\mathcal{P}}$ an let $\{p_1, p_2, \dots\}$ be the sequence of prime numbers. Then $R = \bigcup_{n \geq 1} (x(x-p_1)^{-1} \cdots (x-p_n)^{-1})$ and $\mathbf{Z}^{\mathcal{P}}/R \simeq \mathbf{Q}$.

Proof: (a) follows from Corollary 2. Set $B = \mathbf{Z}^{\mathcal{P}}$ and let W be the multiplicative set of B generated by $\{x - q | q \in Y \setminus \{p\}\}\$.

- (b). By part (a) of Theorem 1, $B/(x-p) \simeq \mathbf{Z}_p$. So xB is a maximal ideal of B.
- (c). Set $Q=p(x-p)^{-\infty}B$. For $q\in Y\setminus\{p\},\, B=(p,q)\subseteq (Q,x-q).$ So W is disjoint from Q, hence

$$B/Q \simeq B_W/QB_W \simeq \mathbf{Z}[x, p(x-p)^{-\infty}]_W/(p(x-p)^{-\infty}) \simeq$$

$$\simeq \mathbf{Z}_p[x]_W \simeq \mathbf{Z}_p[x, 1/(x-q), q \in Y \setminus \{p\}] \simeq \mathbf{Z}_p[x, 1/(x^{p-1}-1)]$$

by Dirichlet's Theorem on primes in an arithmetic progression (see [7, Theorem 1, page 251]). In particular, Q is a nonmaximal prime ideal. By (e), Q is the unique nonzero prime ideal contained in (x-p)B.

- (d). Note that $B_W = \mathbf{Z}[x, p(x-p)^{-\infty}]_W$. Since W is disjoint from (x-p)B, we get $B_{(x-p)} = (B_W)_{(x-p)}$. Hence $B_{(x-p)} = \mathbf{Z}[x, p(x-p)^{-\infty}]_{(x-p)}$. So $B_{(x-p)}$ can be written as a directed union of rings $\bigcup_{n\geq 1}\mathbf{Z}[x, p(x-p)^{-n}]_{(x,p(x-p)^{-n})}$. It can be shown as in the proof of Theorem 4 (b) that $B_{(x-p)}$ is a rank two valuation domain with nonzero prime ideals $(x-p)B_{(x-p)}$ and $p(x-p)^{-\infty}B_{(x-p)}$. Note that every term $\mathbf{Z}[x, p(x-p)^{-n}]_{(x,p(x-p)^{-n})}$ of the union above is isomorphic to $\mathbf{Z}[x,y]_{(p,x,y)}/(x^ny-p)$, thus it is a two-dimensional regular local ring. Note that Remark 6 also applies here.
- (e). By (a), a maximal ideal M of B has the form (x-a)B or $N \cap B$ where N is a prime ideal of $\mathbf{Z}[x,1/(x-q),q\in Y]$. It follows that B_M equals $B_{(x-a)}$ or a localization of $\mathbf{Z}[x,1/(x-q),q\in Y]$. Hence B is a two-dimensional integrally closed domain. Note that we can also apply part (c) Corollary 2.
- (f). Let V be the multiplicative set of B generated by $\{x-q|\ q\in Y\}$. Since every element of V is invertible modulo (x-1)B, we get $B/(x-1)=(B_V)/(x-1)$. Note that $B_V=\mathbf{Z}[x]_V$. So $B/(x-1)\simeq\mathbf{Z}[1/(1-q),\ q\in Y]=\mathbf{Q}$, by Dirichlet's Theorem on primes in an arithmetic progression (see [7, Theorem 1, page 251]).
- (g). Let V be as above. Since (x-1)B is disjoint from V, $B_{(x-1)} = (B_V)_{(x-1)} = (\mathbf{Z}[x]_V)_{(x-1)} = (\mathbf{Q}[x]_V)_{(x-1)}$.
 - (h) can be proved as (f) and (g).
- (i) Let $q \in Y$. In B, x-q divides x and $(x-q)^2$ does not divide x. Indeed, x = x q + q and $(x-q)^n$ divides q for each $n \ge 1$. Now it easily follows that $R = \bigcup_{n \ge 1} (x(x-p_1)^{-1} \cdots (x-p_n)^{-1})$. Let V be as in (f). Note that (Q, x-q) = B for each $q \in Y$. So

$$B/R \simeq \mathbf{Z}[x, 1/(x-q), \ q \in Y]/(x) \simeq \mathbf{Z}[1/q, \ q \in Y] = \mathbf{Q}.$$

Remark 8. It is easy to see that $\mathbf{Z}[x,1/(x-q),q\in Y]$ is a two-dimensional regular ring. So the proof of part (e) of Theorem 7 shows that the localizations of $\mathbf{Z}^{\mathcal{P}}$ at its maximal ideals are either strongly discrete valuation domains of rank ≤ 2 or two-dimensional regular local rings. So $\mathbf{Z}^{\mathcal{P}}$ is a locally GCD domain. It would be interesting to know if $\mathbf{Z}^{\mathcal{P}}$ is a generalized GCD domain. Recall that D is a generalized GCD domain if $aD \cap bD$ is an invertible ideal for each nonzero $a,b\in D$, cf. [2].

References

- S. ABHYANKAR, On the valuations centered in a local domain. Amer. J. Math. 78 (1956), 321-348.
- [2] D.D. Anderson and D.F. Anderson, Generalized GCD domains. Comment. Math. Univ. St. Pauli 28 (1979), 215-221.

- [3] J. COYKENDALL AND T. DUMITRESCU, Finitely generated fragmented domains. Paper in preparation.
- [4] M. FONTANA, J. HUCKABA AND I. PAPICK, Prüfer domains. Marcel Dekker, New York, 1997.
- [5] R. Gilmer, Multiplicative Ideal Theory. Marcel Dekker, New York, 1972.
- [6] W. Heinzer, C. Rotthaus and S. Wiegand, Approximating discrete valuation rings by regular local rings. Proc. Amer. Math. Soc. **129** (2000), 37-43.
- [7] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory. Springer-Verlag, New York, 1982.
- [8] H. Matsumura, *Commutaive Algebra*. Cambridge University Press, Cambridge, 1986.
- [9] M. NAGATA, Local Rings. John Wiley, New York, 1962.
- [10] O. Zariski and P. Samuel, *Commutative Algebra vol. II.* Van Nostrand, Princeton, NJ, 1960.

Received: 5.12.2005

Department of Mathematics, North Dakota State University Fargo, ND 58105-5075, USA E-mail: Jim.Coykendall@ndsu.nodak.edu

Faculty of Mathematics, University of Bucharest, Str. Academiei 14, Bucharest, RO-010014, Romania E-mail: tiberiu@al.math.unibuc.ro