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Abstract

LP-Sasakian manifolds are studied. Among others it is proved that
in a non-semisymmetric Ricci-generalized pseudosymmetric LP-Sasakian
manifold, the scalar curvature is constant if and only if the timelike vector
field ¢ is harmonic. LP-Sasakian manifolds admitting certain conditions on
the Ricci tensor are studied and obtained several interesting results. Also
¢-conformally flat LP-Sasakian manifolds are studied.
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1 Introduction

In 1989 K. Matsumoto [4] introduced the notion of LP-Sasakian manifolds. Then
I. Mihai and R. Rosca [5] introduced the same notion independently and obtained
many interesting results. LP-Sasakian manifolds are also studied by U. C. De,
K. Matsumoto and A. A. Shaikh [2], A. A. Shaikh and S. Biswas [6] and others .

The object of the present paper is to study LP-Sasakian manifolds. Section
2 deals with preliminaries and fundamental results along with new examples of
LP-Sasakian manifolds both in odd and even dimensions, and also we obtain that
the Ricci operator () commutes with the structure tensor ¢. The notion of pseu-
dosymmetric Riemannian manifolds were introduced and classified by R. Deszcz
[1]. In section 3, we studied Ricci-generalized pseudosymmetric LP-Sasakian ma-
nifolds and it is proved that such a manifold is either a space of constant curvature
1 or an n-Einstein manifold. Section 4 is devoted to the study of LP-Sasakian
manifolds satisfying some conditions on the Ricci tensor and introduce the notion
that the Ricci tensor of an LP-Sasakian manifold to be 7-recurrent, ¢-parallel and
¢-recurrent which generalizes the notion of n-parallel Ricci tensor. The notion
of Ricci-n-parallelity was first introduced by M. Kon [3] for a Sasakian manifold.
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Then we obtain some necessary and sufficient conditions for the Ricci tensor of
an LP-Sasakian manifold to be n-recurrent and ¢-parallel. In a Sasakian ma-
nifold with n-parallel Ricci tensor, the scalar curvature is always constant, but
in an LP-Sasakian manifold with ¢-parallel Ricci tensor, the scalar curvature is
not constant, in general. However, in such a manifold the scalar curvature is
constant if and only if ¢ = £, where u=Tr.(Q¢) and ¢)=Tr.¢. Also it is proved
that in an LP-Sasakian manifold with n-recurrent or ¢-recurrent Ricci tensor,
L[r— (n—1)] is an eigenvalue of the Ricci tensor corresponding to the eigenvector
¢p, p being the associated vector field of the 1-form given by A(X) = g(X, p).

The notion of ¢-conformally flat K-contact manifold was introduced and
studied by G. Zhen[7]. The last section is concerned with ¢-conformally flat
LP-Sasakian manifold and it is shown that such a manifold is either a space of
constant curvature 1 or the timelike vector field £ is harmonic. The conformally
flat LP-Sasakian manifold has been studied in [2] and the notion of ¢-conformally
flat is much more weaker than that of conformally flat.

2 LP-Sasakian manifolds

An n-dimensional differentiable manifold M is said to be an LP-Sasakian manifold
([2], [4]) if it admits a (1, 1) tensor field ¢, a unit timelike contravariant vector
field &, a 1-form 1 and a Lorentzian metric g which satisfy

n(€) =-1, 9(X,&) =n(X), ¢*X=X+nX)¢ (2.1)
9(9X,9Y) = g(X,Y) +n(X)n(Y), Vx&=9¢X, (2.2)
(Vxo)(Y) = g(X,Y)E+n(Y)X + 2n(X)n(Y)¢, (2.3)

where V denotes the operator of covariant differentiation with respect to the
Lorentzian metric g. It can be easily seen that in an LP-Sasakian manifold, the
following relations hold :

9¢=0, n(¢X)=0, rank p =n—1. (2.4)

Again, if we put
QX,Y) = g(X,4Y)

for any vector fields X, Y, then the tensor field Q(X,Y") is a symmetric (0,2) tensor
field [4]. Also, since the vector field 7 is closed in an LP-Sasakian manifold, we
have ([2], [4])

(Vxn)(Y) = Q(X,Y), X, 8 =0 (2.5)
for any vector fields X and Y.

An LP-Sasakian manifold M is said to be n-Einstein if its Ricci tensor S of
type (0,2) is of the form

S(X,Y) = ag(X,Y) + Bn(X)n(Y) (2.6)
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for any vector fields X, Y where a, 8 are smooth functions on M. Let M be an n-
dimensional LP-Sasakian manifold with structure (¢, &,7,g). Then the following
relations hold ([2], [4]) :

9(R(X,Y)Z,§) = n(R(X,Y)Z) = g(Y, Z)n(X) — (X, Z)n(Y), (2.7)
R(§ X)Y = g(X,Y)E —n(Y)X, (2.8)
R(X,Y)§ =n(Y)X —n(X)Y, (2.9)
5(X,€) = (n = n(X), (2.10)
S(¢X,9Y) = S(X,Y) + (n - Dn(X)n(Y), (2.11)

for any vector fields X,Y, Z where R is the Riemannian curvature tensor of the
manifold.

Lemma 2.1. Let M™(¢,&,1,9) be an LP-Sasakian manifold. Then for any
XY, Z on M™, the following relation holds:

R(X,Y)$Z — ¢R(X,Y)Z = g(Y, Z)$X — g(X, Z)pY + g(X,$Z)Y —
—9(Y,02) X + 2{g(X, ¢Z)n(Y)—
—9(Y, 0Z)n(X)}¢ +2{n(Y)pX — n(X)$Y }1(Z).(2.12)

Proof: From (2.3), (2.5) and the Ricci identity, we can easily get (2.12). O

Lemma 2.2. Let (M™,g) be an LP-Sasakian manifold. Then

9(PR($X, Y ) Z, W) =

=g9(R(X,Y)Z, W)+ g(Y, Z)g(X, W) — g(X, Z)g(Y, W)

+9(X, 0Z)g(8Y, W) — g(X, ¢W)g(9Y, Z) + 2{g(Y, Z)n(X)n(W)

+9(X, Wn(¥Y)n(Z) — g(X, Z)n(W)n(Y') — g(Y, W)n(X)n(Z)} (2.13)
for any vector fields X,Y, Z, W on M™.

Proof: Using (2.2), (2.9), (2.12) and 5(¢X) = 0, we can calculate
9(pR(¢X, Y ) Z, W) = g(R(¢X, ¢Y)Z, W) = g(R(Z, W)X, ¢Y')
=g(oR(Z, W)X, ¢Y) + g(X, W){g(Y, Z) + n(Y)n(Z)}

—9(X, Z){g(Y, W) +n(Y)n(W)} + g(X, ¢Z)g(¢Y, W)

—9(oW, X)g(Z,¢Y) + 2[{g(Z,Y) + n(Z)n(Y ) }n(W)

—n(Z){g(Y, W) +n(W)n(Y) HIn(X)

=g9(R(Z,W)X,Y) + {9(X, W)n(Z) — (X, Z)n(W)}n(Y)
+9(X, W)g(Y, Z) — 9(X, Z)g(Y, W) + g(X, W)n(Y)n(Z)
=9(Z, X)m(W)n(Y) + 2[g(Z, Y )n(X)n(W) — g(W,Y)n(Z)n(X)]
+9(¢Z,X)g(W,¢Y) — g(¢W, X)g(Z, ¢Y).

The relation (2.13) follows from this and g(R(Z, W)X,Y) = g(R(X,Y)Z, W).
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Lemma 2.3. Let (M™,g) be an LP-Sasakian manifold. Then for any X,Y,Z on
M™, the following relation holds:

9(R(9X, Y )9Z, W) = g(R(X,Y)Z, W) + g(X, W)n(Y)n(Z)
—9(X, Z)n(W)n(Y) + g(¥, Z)n(X)n(W)
—g(Y, W)n(X)n(Z2). (2.14)

Proof: Replacing X,Y by ¢X, @Y respectively in (2.12) and taking the inner
product on both sides by ¢W and then using (2.1), (2.2) and (2.4) we get
9(R(9X, Y )9Z, ¢W) = g(¢R(¢X,¢Y) Z, oW) + g(9Y, Z)g(X, W)

—9(¢X, Z2)g(Y,¢W) + 9(X, Z)g(Y, W)

—9(X,W)g(Y, Z) + g(X, Z)n(W)n(Y)

+9(Y, Win(X)n(Z) — g(Y, Z)n(X)n(W)

—g9(X, Wn(Y)n(Z). (2.15)
Using (2.13) in (2.15) we obtain (2.14). a

Lemma 2.4. Let (M™, g) be an LP-Sasakian manifold. If Q) is the Ricci operator,
ie. ,if S(X,Y) =g(QX,Y) for all X,Y on M™, then

Qe = 9Q. (2.16)

Proof: From (2.14), it follows that
PR(¢X,¢Y ¢Z) = R(X,Y)Z + {g(Y, Z)n(X) — 9(X, Z)n(Y)}£
+H{n(YV)X = n(X)Y)}n(2). (2.17)

We now consider the following two cases :

(i) dim M = n= odd =2m + 1,

(i) dim M = n= even=2m + 2.
If n = 2m + 1, let {e;, Pe;, €},i = 1,2,...,m be a local ¢-basis. Then putting
Y =7 =¢; in (2.17) and taking summation over ¢ and using 7n(e;) = 0, we get

m m

Y. €dR(X, pei)pe; = Y e;R(X, e;)e; + mn(X)E, (2.18)

i=1 i=1
where €; = g(e;, €;)-

Again putting Y = Z = ¢; in (2.17) and taking summation over i and using
no¢ =0, (2.1) and (2.2) we have

Y €dR(dX, ei)e; = Y e R(X, de;)pe; +mn(X)E. (2.19)

=1 i=1

Adding (2.18) and (2.19) and using the definition of the Ricci operator we obtain

p(Q9X — R(pX,§)§) = QX — R(X,§)E + 2mn(X)E.
Using (2.9) and ¢£ = 0 in the above relation we have

P(QoX) = QX + 2mn(X)¢.
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Operating both sides by ¢ and using (2.1), @ is symmetric, ¢€ = 0 and (2.10) we
get (2.16).

Next, if n = 2m + 2, let {e;, pe;}, i = 1,2,...,m + 1 be a local ¢-basis such that
each e; is orthogonal to &, i.e., n(e;) = 0 for i=1, 2, ... m + 1. Then putting
Y =7 =¢; in (2.17) and taking summation over i and using n(e;) = 0, we get

m—+1 m+1
__il e:OR(6X, be;)de; = jl eR(X, ei)e; + (m + D(X)E, (2.20)

where ¢; = g(e;, €;).
Again replacing Y and Z by ¢e; in (2.17) and taking summation over 7 and using
n(e;) =0, (2.1) and (2.2), it follows that

S CORGX, e)es = - eR(X, dei)pe; + (m + Ln(X)E. (2.21)
=1 =1

Adding (2.20) and (2.21) and then proceeding similarly as in the privious case
we can easily obtain (2.16).
This proves the lemma. a

The above results will be needed in the next sections.
We now give some new examples of LP-Sasakian manifolds both in odd and even
dimensions.

Example 1. Let us consider a 3-dimensional manifold M = {(z1,%2,z3) €
R3} where z1, %2, 73 are the standard coordinates in R3. In R?® we define
n = dzz — z2dzy, §=3—‘23,
g = (e2*3+x3—1)dzi+e**3dxi — (72— 1)dr; ®dr3— (22— 1)dz3®dT1 —N RN,
$(597) = 797 T By
$(52;) = 525+ $(52;) = 0.
Then it can be easily seen that (¢, £, 7, g) forms an LP-Sasakian structure in R3.

Example 2. Let R* be the 4-dimensional real number space with the stan-

dard coordinates z,y, z,t. In R* we define

n=dt —ydz — dx, {z%,

g = e?tdx? + e2tdy? + (e + y?)dz? + ydz @ dz + ydr ® dz — ydz ® dt

—ydt @ dz —n @ n,

W a) = o5 + 25> Hap) = 25

d)(%) = %7 d)(%) =0,
Then it can be easily seen that (¢, £, 7, g) forms an LP-Sasakian structure in R*.
The matrix g can be expressed by
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e2—1 0 0 1

| o e 0 o
9= 0 0 e 0
1 0 0 -1

3 Ricci-generalized pseudosymmetric LP-Sasakian manifolds

Definition 3.1. An LP-Sasakian manifold (M™, g) is said to be Ricci-generalized
pseudosymmetric if and only if the relation

R-R=f(p)Q(S,R) (3.1)
holds on the set A= {x € M : Q(S,R) # 0 at z}, where f € C®(A) forp € A,
R- R and Q(S, R) are respectively defined by

(R(X,Y) - R)(U,V)W = R(X,Y)R(U,V)W — R(R(X,Y)U,V)W
—R(U,R(X,Y)V)W — R(U,V)R(X,Y)W, (3.2)
Q(S,R) = (S(X,Y) - R)(U,V)W = (X As Y) - R)(U, V)W (3.3)

for all X, Y, U, V,W € x(M),x(M) being the Lie algebra of all differentiable
vector fields on M. Here the endomorphism (X AgY) is defined by

XAsY)Z=5(Y,2)X — S(X, 2. (3.4)
It is clear that any semisymmetric as well as any Ricci flat manifold is Ricci-
generalized pseudosymmetric.

Let us consider a Ricci-generalized pseudosymmetric LP-Sasakian manifold.
Then we have the relation (3.1), which can be written by virtue of (3.3)

(R(X,Y) - R)(U, V)W = f(pl(S(X,Y) - R)(U,V)W]
for all X,Y,U,V,W € x(M). From the above relation, it follows that
(R(X,§) - R)(U, V)W = f(p)[(S(X, &) - R)(U,V)W]. (3.5)
By virtue of (2.8) we obtain from (3.2) that
(R(X,Y) - R)(UV)W = n(R(U,V)W)X — R(U,V,W, X)¢
—n(OR(X, V)W + g(X,U)R(E, V)W —n(V)R(U, X)W
+9(X,V)R(U, )W —n(W)R(U, V)X + g(X,W)R(U, V), (3.6)
where R(U,V,W, X) = g(R(U, V)W, X).
Also from the definition we have
(S(X,8) - R)(U, V)W = (X As &) - R)(U, V)W = (X As E)R(U, V)W
+R((X As OU, V)W + R(U, (X As V)W + R(U, V) (X As E)W.
Using (3.4) in the above relation we get
(S(X,8) - R)(U, V)W = (n — D)[n(RU, VW)X +n(U)R(X, V)W
+n(V)R(U, X)W + n(W)R(U,V)X] - S(X,R(U,V)W)¢
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—S(X,U)R( V)W - S(X,V)R(U, )W — S(X,W)R(U,V)¢. (3.7
Applying (3.6) and (3.7) in (3.5) we obtain

n(R(U, VW)X — R(U,V,W, X )¢

—n(OR(X, V)W + g(X,U)R(E, V)W —n(V)R(U, X)W

+9(X,V)R(U, )W —n(W)R(U, V)X + g(X,W)R(U, V)¢

= f{(n - DRU, V)W)X +nU)R(X, V)W

+n(V)R(U, X)W + n(W)R(U,V)X] - S(X,R(U,V)W)¢

—S(X,U)R( V)W - S(X,V)R(U, )W — S(X,W)R(U,V)¢}. (3.8)

Taking the inner product on both sides of (3.8) by ¢ and then using (2.1),
(2.10) and the property of the curvature tensor, we get

n(R(U,V)W)n(X) + R(U,V, W, X)

—nUn(R(X, V)W) + g(X, U)n(R(E V)W) —n(V)n(R(U, X)W)

+9(X, Vn(RU,OW) — n(W)n(R(U,V)X)

= f({(n = D(RU, V)W)n(X) + nU)n(R(X, V)W)

+n(V)n(R(U, X)W) + n(W)n(R(U,V)X)] + S(X, R(U, V)W)

—S(X, Un(R(&, V)W) — S(X, V)n(R(U,)W). (3.9)

Putting W = £ in (3.9) and noting that n(R(U,V)§) = 0, for all U,V we
obtain

fH{—(n-1n(RU,V)X) + S(X,R(U,V)§)} =0,
from which it follows that

either f(p) =0, or S(X, R(U,V)&) — (n — )n(R(U, V)W) = 0. (3.10)
If f(p) =0, then from (3.5) we have

(R(X,&) - R)(U, V)W =0,
and hence the right hand side of (3.6)is equal to zero, which yields

n(R(U,V)W)n(X) + R(U,V, W, X)

—n(U)n(R(X, V)W) + g(X, U)n(R(E, V)W) —n(V)n(R(U, X)W)

0

\_/\_/

+9(X, VIn(R(U, W) — n(W)n(R(U,V)X) = (3.11)
Using (2.7)-(2.8) in (3.11) we obtain

R(U,V,W,X) = g(X,U)g(V, W) = g(X,V)g(U, W)
and hence

R(U VYW = g(V,W)U — g(U, W)V, (3.12)

which means that the manifold is a space of constant curvature 1.
Again replacing U by £ in (3.10) and applying (2.1) and (2.10) we get
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S(X,V) = (n-1)g(X,V) = 2(n — n(X)n(V). (3.13)
for all X, V. This implies that the manifold is #-Einstein. Hence in view of (3.12)
and (3.13) we can state the following :

Theorem 3.1. A Ricci-generalized pseudosymmetric LP-Sasakian manifold

(M™,g)(n > 3) is either a space of constant curvature 1 or an n-Einstein mani-
fold.

Differentiating (3.13) covariantly along Y and using (2.5)we get
(VyS)(X,V) = 2(1 = n)[QAX, Y)n(V) + Y, V)n(X)]. (3.14)

Taking an orthonormal frame field and contracting (3.14) over Y and V' we obtain

dr(X) = 4(1 — n)yn(X),

where ¢y = T'r.¢ and r is the scalar curvature of the manifold. From the above
relation, it follows that dr(X) = 0 if and only if ¥ = 0, which implies that & is
harmonic.

Thus we can state the following:

Theorem 3.2. Let (M™,g)(n > 3) be a non-semisymmetric Ricci-generalized
pseudosymmetric LP-Sasakian manifold . Then the scalar curvature of the ma-
nifold is constant if and only if the timelike vector field £ is harmonic.

Corollary 3.1. [6] Let (M™,g)(n > 3) be an LP-Sasakian manifold satisfying
the condition S(X,£)-R = 0 Then the scalar curvature of the manifold is constant
if and only if the timelike vector field & is harmonic.

4 LP-Sasakian manifold satisfying some conditions on the Ricci ten-
sor

Definition 4.1. The Ricci tensor of an LP-Sasakian manifold is said to be n-
recurrent if its Ricci tensor satisfies the following :
(VxS) (oY, 92Z) = A(X)S(¢Y, ¢Z) (4.1)

for all X,Y,Z where A(X) = g(X,p), p is the associated vector field of the 1-
form A. In particular, if the 1-form A vanishes then the Ricci tensor of the LP-
Sasakian manifold is said to be n-parallel and this notion for Sasakian manifolds
was first introduced by Kon [3].

In view of (2.3), (2.4), (2.10) and (2.11), it can be easily seen that

(Vx8) (Y, ¢2) = (Vx )Y, Z) = S(X,¢Z)n(Y) — S(X, ¢Y)n(2)

+(n = DX, Y)n(Z) + X, Z)n(Y)]. (4.2)
Using (2.11) and (4.2) in (4.1) we obtain

(VxS)(Y, 2) = S(X,¢Z)n(Y) + S(X, ¢Y)n(Z) — (n — DIUX, Y)n(Z)+
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+QX, 2)n(YV)] + AX)[S(Y, Z2) + (n = D)n(Y)n(2)]. (4.3)
Hence we can state the following :

Theorem 4.1. In an LP-Sasakian manifold (M™, g)(n > 3), the Ricci tensor is
n-recurrent if and only if (4.3) holds.

Let {e;;i = 1,2,...,n} be an orthonormal frame field at any point of the
manifold. Then contracting over Y and Z in (4.3) we get

dr(X) = AX)[r — (n—1)]. (4.4)
Again contracting over X and Z in (2.4) we obtain
3dr(X) = [p— (n— YY) + S, p) + (n — 1)n(¥)n(p), (4.5)

where 1 = Tr.(Q¢) = 31, €iS(deise;), v = Tr.p = 31, eig(deire;) and €; =
g(es, ei).
By virtue of (4.4) and (4.5) we get

slr— (= DIAY) = [u— (n = 1)¢In(Y) + S(V, p) + (n = 1)n(Y)n(p). (4.6)
The relation (4.6) yields for Y = ¢

5[r— (n=Dnlp) = [u— (n — Dy (4.6)
In view of (4.6) and (4.7) we obtain
S(Y,p) = 5lr — (n = DH{g(Y, p) + n(¥)n(p)}- (4.7)

This leads to the following:

Theorem 4.2. If the Ricci tensor of an LP-Sasakian manifold (M™,g) (n > 3)
is n-recurrent, then its Ricci tensor along the associated vector field of the 1-form
is given by (4.8).

Substituting ¥ by ¢Y in (4.8) we obtain by virtue of (2.4) that

S(¢Y,p) = 5lr — (n = 1)]g(¢Y, p). (4.9)
By virtue of Lemma 2.4 and the symmetry of ¢ we get from (4.9)

where L = ¢p and a = 3[r — (n — 1)]. From (4.10) we can state the following:

Theorem 4.3. If the Ricci tensor of an LP-Sasakion manifold (M™, g)(n >
3) is n-recurrent, then o = %[r — (n — 1)] is an eigenvalue of the Ricci tensor
corresponding to the eigenvector ¢p defined by g(X,L) = T(X) = g(X, ¢p).

Definition 4.2. The Ricci tensor of an LP-Sasakian manifold is said to be ¢-
parallel if its Ricci tensor satisfies the following :

(VoxS)(Y,9Z) =0 (4.11)
for alliX)Y, Z.



202 A. A. Shaikh and Kanak Kanti Baishya

We note that the condition of ¢-parallelity is more weaker than n-parallelity.
Then proceeding in the same manner as before we can state the following:

Theorem 4.4. The Ricci tensor of an LP-Sasakian manifold (M™,g)(n > 3) is
¢-parallel if and only if the following relation holds:

(VoxS)(Y, Z) = S(X,Y)n(Z) + S(X, Z)n(Y)

—(n = D[g(X,Y)n(Z) + g(X, Z)n(Y)] (4.12)
for all XY, Z.

Let us now consider an LP-Sasakian manifold (M™,g)(n > 3), whose Ricci
tensor is ¢-parallel. Then (4.12) holds good. Putting X = ¢X in (4.12) and then
using (2.1) we get

(Vx )Y, Z) + n(X)(VeS)(Y, Z) = S(¢X,Y)n(Z) + S(6X, Z)n(Y')

—(n = D[QX,Y)n(Z) + X, Z)n(Y))]. (4.13)
Taking an orthonormal frame field at any point of the manifold and contracting
over X and Z in (4.13) we obtain

dr(Y) = 2[p— (n = )¢n(Y), (4.14)

where p = Tr.(Q9)
From (4.14) we can state the following;:

Theorem 4.5. Let the Ricci tensor of an LP-Sasakian manifold (M™,g)(n > 3)
be ¢-parallel. Then the scalar curvature of the manifold is constant if and only if

¢ = £, where p = Tr.(Q¢) and ¢ =Tr.($).
Corollary 4.1. Let (M™,g)(n > 3) be an LP-Sasakian manifold with n-parallel
Ricci tensor. Then the scalar curvature of the manifold is constant.

Definition 4.3. The Ricci tensor S of an LP-Sasakian manifold is said to be
o-recurrent if it satisfies

(VoxS)(9Y, 0Z) = A(¢X)S(¢Y, $Z) (4.15)
for all XY, Z.

Let the Ricci tensor of an LP-Sasakian manifold (M™, g)(n > 3) be ¢-recurrent.
Then (4.15) holds. Hence proceeding similarly as before it can be easily seen that

S(X,p) = 5lr — (n = D]g(X, p) + 5lr — 3(n — D]n(Y)n(p). (4.16)
By virtue of (4.16) we can state the following:
Theorem 4.6. Let (M™,g)(n > 3) be an LP-Sasakian manifold with ¢-recurrent
Ricci tensor. Then its Ricci tensor along the associated vector field of the 1-form
is given by (4.16) and also %[r — (n — 1)] is the eigenvalue of the Ricci tensor

corresponding to the eigenvector ¢p, where p is the associated vector field of the
1-form A.
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5 ¢-conformally flat LP-Sasakian manifolds

Definition 5.1. An LP-Sasakian manifold (M™,g)(n > 3) is said to be ¢-
conformally flat if it satisfies

$C($X,$Y)$Z = 0 (5.1)
for any vector fields X,Y,Z in T,M.

The notion of ¢-conformally flat for K-contact manifolds was first introduced
by G. Zhen [T7].

Let us consider an LP-Sasakian manifold (M™, g)(n > 3) which is ¢-conformally
flat. Then (5.1) holds. By virtue of (2.1) and (2.4), (5.1) yields for any W € T, M

9(C(¢X, ¢Y))pZ, ¢W) = 0.
Hence using the definition of conformal curvature tensor, the above relation im-
plies

R($pX,¢Y, ¢Z, W) = -L5[S(9Y, 62)g(¢X, oW)

—S(0X,9Z)g(¢Y, W) + g(8Y, $Z)S(6X, ¢W)

~9(6X, 6Z)S(8Y, oW)] — (=iiag; [9(8Y 62)g(8X, oW)

—9(9X,902)9(¢Y, W), (52)
where R(¢X, ¢Y, $Z, ¢W) g(R (¢X Y )pZ,pW).

Using Lemma 2.3, (2.11) and (2.2) in (5.2) we obtain

R(X,Y, Z,W) + g(Y, Z)n(X)n(W) + g(X, W)n(Y)n(Z)

(X ZmY (W) — (¥, W)n(X)n(2)
= ;5 {SY. 2) + (n = D)n(Y)n(Z)Hg(X, W) +n(X)n
—{8(X,2) + (n = n(X)(Z) Hg(Y, W) + n(Y)n(W)}

(Y, 2) + n(Y)n(Z) HS(X, W) + (n — D)n(X)n(W)}

—{9(X, 2) + n(X)n(Z) H{S (Y, W) + (n — 1)n(Y)n(W)}

— e 19(Y; 2) + n(Y)n(Z) Hg(X, W) + n(X)n(W)}

~H{9(X, 2) + n(X)n(Z)H{g (Y, W) + (Y )n(W)}]. (5.3)

Taking an orthonormal frame field and contracting over X and W in (5.3), it
follows that

S(Y,2) = (55 — D9(Y, 2) + (555 — n)n(Y)n(Z). (5.4)
This leads to the following :

Theorem 5.1. A ¢-conformally flat LP-Sasakian manifold (M™, g)(n > 3) is an
n-FEinstein manifold.

Again from (5.4), it follows by virtue of (2.5) that
(VxS)(Y, Z) = EXg(Y, Z2) + n(Y)n(2)]
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+(55 — X, Y)n(Z) + X, Z)n(Y)]. (5.5)

n—1

Taking an orthonormal frame field at any point of the manifold and contracting
over X and Z in (5.5) we have

22dr(Y) = dr(En(Y) + [r — n(n — 1)]yn(Y). (5.6)
Replacing Y by £ in (5.6) we get

dr(&) = n_—_Zl[r —n(n —1)]. (5.7)
Using (5.7) in (5.6), it follows that ( since n > 3)

$dr(Y) = L5[r —n(n — 1)]yn(Y). (5.8)

Now, if 7 is constant, then (5.8) implies that either r = n(n — 1) or ¢ = 0. If
r =n(n — 1), then (5.4) takes the form

S(Y,Z)=(n—-1)g9(Y,Z) for all Y, Z. (5.9)
By virtue of (5.9), the relation (5.3) reduces to

R(X,Y,Z,W) = g(Y, 2)9(X, W) — g(X, Z)g(Y, W),

which implies that the manifold is a space of constant curvature 1. Hence we can
state the following;:

Theorem 5.2. Let (M™,g)(n > 3) be a ¢-conformally flat LP-Sasakian mani-
fold. If the scalar curvature of the manifold is constant, then either the manifold
is a space of constant curvature 1 or the timelike vector field & is harmonic.

Corollary 5.1. [2] A conformally flat LP-Sasakian manifold (M™,g)(n > 3) is
a space of constant curvature 1.

Again, if r # n(n — 1), then (5.8) implies that = is constant if and only if ¢ = 0.
Thus we can state the following:

Theorem 5.3. Let M™(4,&,m,9)(n > 3) be a ¢-conformally flat LP-Sasakian
manifold which is not an FEinstein one. Then the scalar curvature of M™ is
constant if and only if the timelike vector field & is harmonic.

References

[1] R. DEszcz: On pseudosymmetric spaces, Bull. Belg. Math. Soc. SerA,
44(1992), 1-34.

[2] U. C. DE, K. MATSUMOTO AND A. A. SHAIKH: On Lorentzian para-
Sasakian manifolds, Rendiconti del Seminario Mat. de Messina, al n.
3(1999), 149-156.

[3] M. KoN: Invariant submanifolds in Sasakian manifolds, Mathematische An-
nalen, 219(1976), 277-290.



Some results on LP-Sasakian manifolds 205

[4] K. MATSUMOTO: On Lorentzian almost paracontact manifolds, Bull. of Ya-
magata Univ. Nat. Sci., 12(1989), 151-156.

[5] I. MiHAI AND R. RoscA: On Lorentzian P-Sasakian manifolds, Classical
Analysis, World Scientific Publi., Singapore, 1992, 155-169.

[6] A. A. SHAIKH AND S. Biswas: On LP-Sasakian manifolds, Bull. Malaysian
Math. Sci. Soc. , 27(2004), 17-26.

[7] G. ZHEN: On Conformal Symmetric K-contact manifolds, Chinese Quart.
J. of Math. , 7(1992), 5-10.

Received: 11.11.2005

Department of Mathematics,
University of Burdwan,
Golapbag, Burdwan-713 104,
West Bengal,

INDIA.

E-mail: aask@epatra.com
E-mail: aask2003@yahoo.co.in



