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Abstract

We apply the ,,User’s Guide” on Dynamic programming described re-
cently by the first author to obtain the complete and theoretically justified
solution of a differential game considered first by Breakwell and Bernhard
([4]). The optimal feedback strategies and the corresponding value function
are constructed using a certain refinement of Cauchy’s Method of charac-
teristics for stratified Hamilton-Jacobi equations while the optimality is
proved using a suitable ,,verification theorem” for locally-Lipschitz value
function. In fact, the partial and rather ,,artisanal” solution in Break-
well and Bernhard ([4]) of this problem, is not only obtained by a general
procedure but also ,,justified” in a rigorous theoretical setting of suitable
concepts and results.
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1 Introduction

The aim of this paper is to use in a ,,step by step” manner the ,theoretical
algorithm” in Mirica ([12]), to obtain a rigorous solution of the differential game
considered in Breakwell and Bernhard ([4]) as ,,a simple game with a singular
focal line”.

In fact, the study in [4] (see also [8]) concerns the ,local behavior” (,,study
in the small” in Isaacs’ terminology) of trajectories of a non-smooth (in our
case, ,,stratified”) Hamiltonian system, around points situated on certain types
of ,,discontinuity surfaces”; besides the fact that the Hamiltonian system it is not
rigorously defined on the discontinuity surfaces, one may note also that in this
approach there are neither clear criteria for choosing the ,,optimal trajectories”
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nor suitable ,,verification theorems” proving the optimality of the chosen trajec-
tories, since the use of the theory of viscosity solutions it is not quite justified
in this case (the fact that the value function is a viscosity solution it is proved
only for fixed time-interval non-autonomous differential games in the case of non-
anticipative open loop strategies and moreover, one needs to prove the uniqueness
of the viscosity solution).

In this paper we use the theoretical approach in Miricd ([9]-[11]), summarized
in Miric3 ([12]) in the form of an ,,user’s guide”, to obtain a more complete and
theoretically justified solution of this problem; more precisely, we use first a cer-
tain refinement of Cauchy’s Method of characteristics for stratified Hamiltonian-
Jacobi equations to identify a large set of ,,extremal” (possibly optimal) trajec-
tories; as rigorous criterion for choosing the optimal trajectories we are using
the associated ,,extremal” value functions, from which, only the ,,;maximal” one
proved to be admissible and associated to a certain pair of feedback strategies.

Finally, the optimality of the corresponding pair of feedback strategies is
proved using the verification theorem for locally-Lipschitz value functions.

The paper is organized as follows: after the formulation of the problem and
identification of data in Section 2, in the next sections are computed successively
the Hamiltonian and the set of ,,transversality” terminal points, the generalized
(,,stratified”) Hamiltonian system, the ,partial” Hamiltonian flows ending on
each of the strata and the ,,partial” (smooth) value functions; finally, in the last
sections we show that only the ,,maximal type” value function defines an admis-
sible pair of feedback strategies and its optimality is proved using the verification
theorem for locally-Lipschitz value functions.

2 Statement of the problem and identification of data

The differential game in Breakwell and Bernhard ([4]) in a rather vague formu-
lation, is stated as follows:
Problem 2.1. Given k > 0, find:

11(1f) suplty + k|z(ts)|],
ul) o)

subject to:
{ ' =u(t) + 2v(t)e ¥, 2(0) = 2o
y' = |u®)| -2, y(0) = yo,
u(t) e U :=[-1,1], v(t) € V := [-1,1],
y(t) >0Vite [Outf)a y(tl) = 0.
Therefore, this is a particular example of a ,,standard” autonomous differential

game formulated as follows:
Problem 2.2. (DG s-vague formulation). Find:

inf  sup C(y;u(.),v(.)) Vye€Yy, (2.1)
u(.)EUa y(.)eV,
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subject to
Cly;u(.),v() = g(z(t1)) + Otl fo(z(t),u(®),v(t))dt, y €Yo,  (2.2)
' (t) = f(z(t),u(t),v(t)) a-e. (0,t1), z(0) =y, (2.3)
u(t) € Uz(t)), v(t) € V(@(t) ae. (0,t1), (u(.),v(.) € Pay  (24)
z:= (2(.),%0(.)) € Qa, zo(t) := /0lt fo(2(s),u(s),v(s)), (2.5)
o(t) € Yo, YVt € [0,11), a(ty) € V4, (2.6)

defined, in our case, by the following data:

f(@,u,v) = (u+ 2ve™2, u| = 2), fo(z,u,v) =1,
wuelU(x)=U:=[-1,1],veV(z) =V :=[-1,1], g(§) = k|&]|, (2.7)
Po =P1, Qo =01, Yo:=R x (0,+00), Y1 :=R x {0}

where P; = U x V is the (largest) class of measurable admissible control functions
(u(.),v(.)) and Q; is the corresponding class of absolutely continuous (hence
Lipschitzian, in our case) admissible trajectories.

Since this formulation in the framework of ,,open-loop controls” is rather vague
and without any ,,practical utility”, a more accurate and realistic formulation
may be obtained only in the framework of ,feedback strategies”; in fact the
Algorithm in Mirica ([12]) we are going to apply in what follows, is trying to
solve the following problem:

Problem 2.3. (DG 4-accurate formulation). Given the data of Problem 2.2
find the feedback strategies U(z) C U(z), V(z) C V(z), z € Yo C Y with
the following properties: N

(A) The pair (U(.),V(.)) is admissible in the sense that for any y € Yy the

set Qq(y) of trajectories zy(.) € Qq(y) of the differential inclusion:
2 € f(z,U(z),V(z)), z(0) =y € Yo, (2.8)
that satisfy the constraints:
() €YoVt e 0,h), z,(h) € C Vi, B =hila,()),  (29)

is not empty; moreover, if P, (y), y € Y, are the corresponding sets of control
mappings, (uy(.),vy(.)) € Py that satisfy:

7} () = £y (1), uy (1), 0y (1)), wy (1) € Ty (1)), 2.10)
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then there exists the associated value function defined by:

Wo(y) = Cy; uy (), vy (1) V(uy(), vy () € Pa(y), y € Yo,
9() if y € Y1 :={zy(t1); 2y () € Qa(y),y € Yo},

ie. if Po(y), y € Yy contains more than one element, then C(y;u'(.),v'(.)) =

Clysu(),v2()) ¥ (), 0 () € Paly), j =12
(B) The feedback strategies U(.), V(.) are relatively optimal for the re-
striction DG A|1~,0 to mean that:

Wol(y) = u(lgliin(.)c(y;u(-)ﬁ(-)) Vy €Yo, (2.12)
subject to:
o' (t) = f(a(t), u(t),0(t)), u(t) € U(x(t), D(t) € V(x(t) ae. (0,t1), (2.13)
z(0) =y, z(t) €YoVt €[0,t1), z(t) € 1, (2.14)
and also: . B
Woly) = Eg%c(y;ﬂ(-),v(-)) Vy€Y, (2.15)

subject to (2.14) and to
o' (t) = f(a(t),(t),0(t), u(t) € U(a(t), v(t) € V(2(t)) a.e. (0,t1). (2.16)

(C) Either Yy = Y, (hence DG alg, = DG 4) or the subset Yo C Y, is invariant

with respect to the control system in (2.3)-(2.4) to mean that for any y € ¥;
and for any two controls (u(.),v(.)) € Uy X V4, the corresponding trajectory z(.)
satisfying (2.3) satisfies the state constraints z(t) € Yy V ¢t > 0.

Remark 2.4. If condition (C) above is not satisfied, then (U(.), V(.)) cannot
be considered a ,,satisfactory” solution of the problem DG 4 since if Yo C Yo
is not invariant then at least one of the two players may choose strategies that
,,produce” trajectories x(.) leaving the subset Yy and for which the optimality
conditions in statement (B) above are no longer satisfied. In this case one should
use additional arguments to establish the real nature of the ,,restricted problem”
DG 4ls, solved by (U(.), V(.), Wo(.)).

In what follows, we shall apply ,,step by step” the theoretical algorithm pre-
sented in [12] for the Problem 2.3.

3 The Hamiltonian and the set of ,,transversality” terminal points

The ,,pseudo-Hamiltonian” H(z,p,u,v) :=< p, f(z,u,v) > +fo(x,u,v) is given
in our case by:

H(z,p,u,v) = pru+ palu| + 2p1ve™"2 — 2py + 1. (3.1)
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Using the well known fact that: sup[p;.v] = |p1| and the fact that:
veV

04if p2 > |p|

minlpyo + poful] = min{0,py + 2,72 ~ 1} {p2_|p1|zfp2<|p1|,

the Isaacs’ Hamiltonian:

H(z,p) := minmax #(z, p,u,v) = maxmin #(z, p, u, v)

as well as the corresponding ,,extremal value” of the control parameters turn out
to be defined on Z := Yy x R2? by:

2lpile™2 =2p2 + 1, p2 > |;|, (=,p) €Z
H = = 3.2
(=) { [p1|(2e7*> —1) —p + 1, p2 < |p1], (32)

{0} if p2 > |p1
{1} if po < —p1, p1 <0

= _ ) Ui =[0,1if pp=-p

Ulp) = {=1}if p2 <p1, p1 >0
U =[-1,0]if po=m (3.3)
{_171} Zf P2 < 07 P = 05

. {1} if p1 >0

V(z,p) =4 {-1}if p1 <0

Vi=[-1,1]if p =0.

Next, we need to compute the set of terminal ,,transversality” values defined
in the general case by:

Zi ={(&q e Y1 xR?, H({,q) =0, <q,§ >=Dg(EV € € T}

Since g(.) : Y1 — R is stratified by S, = {V;", Y7, Y} where Y& := {¢ =
(€1,0);& € R}, Y := {(0,0)} and the ,stratified” derivative of g(.) is given
by:

_ [ (£k,0)if ¢eVE
Dg(©) ‘{ (0,0) if £ € Y7,

a point (£,q) € Zf is completely characterized by:
1 , ;
q2:|q1|+§7 ql:iklffelflia qlERZfé‘eleoa
hence the set Z; above is the union of the following subsets:

Zik,+ = ((5110)7 (kak + %))7 51 > 0}:
: (5 7(_k7k+ %))7 51 < 0}7 (34)
Zf,o = {((0: ); (q1,Q(q1))); Qlq1) := |Q1| + %, q1 € R}.
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4 The generalized Hamiltonian and characteristic flows

The first main computational operation consists in the ,,backward integration”
(for t < 0), of the Hamiltonian inclusion:

(@',p) € df H(z,p), ((0),p(0)) =z = (& q) € Zf, (4.1)
defined by the generalized Hamiltonian orientor field de (,.):

dﬁH(z‘,p) = {( ap)eT(:cp)Z z' € f

(z,U(z,p),V(z,p)),
<z',p>—-<p,T>=DH(z,p).(T,p) V (T, oD (4.2)

p) € Tup)Z}-

As it is specified in the algorithm in [12], for each ,terminal point” z =
(&,9) € Zf one should identify the maximal solutions: X*(.) := (X(.),P(.)) :
I(z) = (t(2),0] = Z, of the Hamiltonian inclusion in (4.1) that satisfy the
following conditions:

X() = (X1(0. Xa(0) € YoVt € 1(2)i= (0 (2)0
.P(t) =0Vt e I(:) ws)
(t) = F(X(0),ux(),0x (1) ae. o(2), (ux(),vx()) € Py -

€

) 0
U(X*(t), vx(t) € V( ())ae Io(2).

In the case in which there exist more such solutions for the same terminal
point z = (£,q) € Zf, one should parameterize by A € A(z) the set of these
solutions to obtain a generalized Hamiltonian flow: X*(.,.) := (X(,,.), P(.,.)) :
B := {(t,a); t € I(a), a € A} = Z; A := graph(A(.)), a = (2,A). We recall
also the fact that for each (¢,a) € By := {(t,a) € B; t # 0} the Hamiltonian flow
X*(.,.) defines the controls and, respectively, trajectories:

Ut,a(8) = Uq(t + 8), Ve,a(8) :=va(t +5), s € [0, 1] (4.4)
Zt,0(8) := X(t + s,0), )
which are admissible with respect to the initial point y = X (¢,a) € Yp, and for
which the value of the cost functional in (2.2) is given by the function V'(.,.)
defined by:

V(t,a) = g(&) +/0 < P(0,a),X'(0,a) >do, if a= (£,q,\) (4.5)

and which, together with the Hamiltonian flow X*(.,.) defines the generalized
characteristic flow C*(.,.) := (X*(.,.),V(,,.)); using the definition of the Hamil-
tonian H(.,.) and the second condition in (4.3) one has < P(0,&1), X'(0,&1) >=
—fo(X(0,&1),u(X*(0,£1)),v9(X*(0,&))) = —1; it follows from (2.7) that in our
case the function V(.,.) is given by:

V(taa) = klfll -tV (taa) €B,a= (faq;)‘)a §= (61;0)' (4'6)
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First, we remark that the Hamiltonian H(.,.) in (3.2) as well as its domain
Z C R? x R? are C'-stratified by the stratification Sy = {Z{, ZF, Z5, Z0*}
defined by:

(4.7)

If we denote by: Hi(.,.) := H(,.)|,+, j = 1,2, Hf(,,.) = H(, )|z,
J
Hg’i(., )= H(, .)|Z((]),:I:, then from (3.2) it follows:

)
)
,p) = £2pi(2e7%2 — 1) + 1, (z,p) € Z
z,p) =1 - 2p,, (z,p) € Z0F
:L",p) =1 — P2, (map) € Z8,7

df HY (z,p), (v,p) € ZF, j =1,2
dEH(z,p) =4 dLtHF(z,p), (z,p) € Z¢
d% Hy* (z,p), (z,p) € Zg*.

Since the manifolds Zji C Z, 3 = 1,2 are open subsets, the Hamiltonians

orientor fields d¥ H ]i(, ), 7 = 1,2 in (4.2) coincide with classical Hamiltonian
vector fields:

- OH;" OH; +
dSHj (:U,p) = {( Bp (map)a_ﬁ(xap))}a (xap) € Zj y J = 1725 (49)

which are easy to calculate and will be described and studied later, while on
the 3-dimensional singular strata Zg, Zg’i C Z the corresponding Hamiltonian
fields are more difficult to compute.

The Hamiltonian system on the singular stratum Zg o+

In order to compute the generalized Hamiltonian field dﬁHS +(.,.), we note
first that, according to certain classical results, the tangent space to the 3-
dimensional manifolds Zg + are given by:

T(m’p)zg,i ={(#,p) € R® x R% p, =0} (4.10)

and DH8’+(x,p).(T, D) = —2P,; therefore a vector (z',p') € dﬁHg”L(m,p) is fully
characterized by the properties:

) € R,2' € f(z,U(z,p),V(z,p)), Ulz,p) = {0}, V(z,p) = [-1,1]
(zh 4+ 2)Py — PiT1L — PT2 =0V T1, %2, D5 € R.

It follows that at each point (z,p) in the singular stratum Zg "+ one has:

% H* (z,p) = {((2ve™"*,-2),(0,0));v € [-1,1]} (4.11)
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and it defines the differential inclusion:

{ z' € E(())zg)e:“, —2, vel-L1l} (@0)p0) =2= (0 €20y g9

which, for each terminal point (£,q) € Z8’+, has an infinite number of solutions

described by the set V of measurable functions v(.) : (—o00,0] — V for which
2;”_'152” =o(t) € [-1,1] a.e. (—o0,0); as we shall see later, the same domain is
covered by ,,the constant control mappings” v(t) = A € [-1,1] V ¢t € (—o0,0]; we
obtain a set of trajectories of the inclusion (4.12) in the form of the maximal flow

Xg”_t(., .) described by the formulas:
{ XoF(6,0) = Ne™@ (e — 1) + &, -2t + &), 2= (§,9) € Z}
P(?7+(t;€7 /\) =q= (QI7Q2)3 A€ [_17 1]
The Hamiltonian system on the singular stratum Zg "

Symmetrically, elementary computations and arguments show that a vector
(z',p) € d#H o~ (z,p) is fully characterized by the properties:

T €R, 2’ € f(ﬂf U(m p),V(z,p)), Ulz,p) = {+1,-1}, V(z,p) = [-1,1]
(x5 + 1)10 — P1T1 — phT2 =0V T1,T2,P, € R.

(4.13)

It follows that at each point (z,p) in the singular stratum Zg " one has:
dgHo’i(:L',p) = {((U + 27}6712) _l)a (an))7u € {_15 1},’0 € [_15 1]} (414)
and it defines the differential inclusion:
{ z' € {({17 _1} + 2ve™ "2, _1)7 v e [_17 1]}
=(0,0), (2(0),p(0)) =2z = (£,9) € Z7.

The set of all the trajectories of this inclusion is described by the set of
measurable mappings u(.) : (—00,0] = {-1,1}, v(.) : (—o0,0] = [—1,1] which
define the differential systems:

{ 2120 207D, GO =0 € 2 (4.16)

(4.15)

whose solutions Xg”f(., .) are given by:

X0 (6,u(),0() = & + [y [u(s +2v< et~ ©]ds (4.17)
X9y (6,6,u(),0()) = —t + &, P (tq) = q, 2 = (£,9) € Zi-

The Hamiltonian system on the singular strata Z(:)t.

In order to compute the generalized Hamiltonian field dﬁHOi(., .), we note
first that, according some classical results, the tangent space to the 3-dimensional
manifolds ZOi for which ps = £+p1, p1 € R are given by:

TwpZs = {(T,P) € R* x R*; p, = 4P }; (4.18)
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on the stratum Zg one has DH{ (z,p).(Z,p) = 2[(e~®2 — 1)p; — p1T2e~2] hence
a vector (z',p') € deO+ (z,p) is fully characterized by the properties:

pL =Dy, [71 + 25 — 2(e7*2 = 1)]py — piT1 — (P — 2p1e7%2)T2 =0V Py, T1, To.
It follows that at each point (z,p) in the stratum Zg one has:
Py =0, py=2pie "2, 2 + 35 =2(e " —1). (4.19)

Using the fact that if (2/,p') € T(s,)Zg then p} = p), while from (4.19) it
follows that pj = 0 = p} = 2p1e~*2 hence p; = 0; this contradicts the fact that
(z,p) € Z§ and therefore d% Hf (z,p) = 0.

Symmetrically, on the singular stratum Z; , using the same type of computa-
tions and arguments as above we obtain:

PL =0, ph = —2p1e™ ", z} —xh =2(1 —e™72); (4.20)

since (z',p') € TupyZy = T(op)Zo one has pj = —ph = 0 = 2p1e™"2, and
therefore, we obtain the same contradiction as above, hence dﬁ H, (z,p) = 0.
Summarizing, the Hamiltonian field in (4.2) is given by the formulas:

AL H (2,p) if (2,p) € ZF, j=1,2
diH(z,p) =< d? HOF(x,p) if (x,p) € Z0F (4.21)
Dif (x,p) € Zy,

where dS#Hg *(.,.) are the Hamiltonian fields in the formulas (4.11), (4.14) and
dﬁHji(., ), j = 1,2 will be described and studied in what follows.

The Hamiltonian system on the stratum Z; .

On the open stratum Z;' in (4.7) for which h(z,p) := ps —p1 > 0, p1 > 0, the
differential inclusion in (4.1) coincides with the ,,smooth Hamiltonian system”:

x' = (2772, -2)
’ 4.22
{ P =(0,2pie ). (4.22)

Standard results from differential equations theory show that the general so-
lution of the system in (4.22) is given by the formulas:

+ — 2t—c _ A —
{ ot (t) = (¥ 2+ ¢, —2t+c2), c; €ER, i=1,4,t<0 (4.23)

pt(t) = (c3, cze? =2 +¢y).

The Hamiltonian system on the stratum Z; .
On the open stratum Z; in (4.7), for which h(z,p) := p2+p1 > 0, p1 <0, the
differential inclusion in (4.1) coincides with the ,;smooth Hamiltonian system”:

' = (—2e%2,-2)
’ 4.24
{ p'=(0,—2p1e™™) (4.24)
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whose general solution is immediately obtained using the fact that if (z*(.), p™(.))
is a solution of the differential system (4.22) then (z~(.),p (.)) defined by:

(4.25)

is a solution of the differential system in (4.24).

The Hamiltonian system on the stratum Z .

On the open stratum Z; in (4.7), for which h(z,p) := ps—p1 <0, p1 > 0, the
differential inclusion in (4.1) coincides with the ,;smooth Hamiltonian system”:

z' = (2e7% -1, —1)
{ P = (0, 2pre*2), (4.26)

whose general solution is given by the formulas:

pHH(t) = (cs, 23" +ca). (4.27)

{ ot ()= (2882 —t+c, —t+c), ;€ER,i=1,4,t<0
The Hamiltonian system on the stratum Z, .
On the open stratum Z; in (4.7), for which h(z,p) := p2+p1 < 0, p1 <0, the
differential inclusion in (4.1) coincides with the ,,smooth Hamiltonian system”:

o' =(1-2e"%,-1)
{ p'=(0,—2p1e™™). (428)

whose general solution is immediately obtained using the fact that if (zt7(.),

ptT(.)) is a solution of the differential system (4.26) then (z7>~(.),p™>(.)) de-
fined by:

z () = =2 (), 2y () =y (1), £<0

Tt

pr () = —p (), py T (t) =p3 (1),

is a solution of the differential system in (4.28).

(4.29)

5 The Hamiltonian flow ending on the stratum Z;

In this section we describe the ,,partial” Hamiltonian flow whose trajectories
have terminal segments on the stratum Z;". Considering the general solution in
(4.23), an admissible trajectory X (.,2) = (X*(.,2),P*(,2)), z € Z{ of the
system (4.22) should satisfy the terminal conditions from the set of transversality
terminal points Z} in (3.4) and also the fact that X} (¢,2) € Z]" V t < 0; we note
first that from the condition P (t,2) > 0V ¢ < 0, it follows that P;(0,2) = ¢ >0
hence only the terminal points z = (§,q) € Z{ , U Zf; are admissible (since for
& < 0onehas g1 = —k < 0). From the terminal condition in (3.4) it follows that

1
C1=£1_1, 62:07 C3:k7 C4:§.
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Therefore, we obtain the solution of the differential system in (4.22) in the
form of a ,,maximal flow” whose components are given by the formulas:

{ X+(t7€1) = (e2t +£1 - ]-7_2t)7 61 > 0

Pr(t,&) = (k, ke® + 3) (5.1)

From the dynamic programming algorithm in [12] it follows that we must
retain only the trajectories X7 (.,2), z = (§,q) € Z7, that satisfy the conditions
in (4.3). We note first that the second condition in (4.3) is ,,automatically”
satisfied since H; (.,.) defined in (4.8) is a first integral of the differential system
(4.22) hence:

hj_(t;é-l) = h+(X—T—(t7£1)) = Pz—’_(t;é.l) - P1+(t7§1) > 07P1+(t7€1) >0

X;(t,6) >0, Hif (X3 (6,6)) =0V ¢ <0. (5.2)
The admissible trajectories must satisfy also the conditions:
X3t &) = (X*(t,&),PH(t,&)) € Z Yt € (rF(&),0) (5.3)
X*(t,&) €Yy :=Rx (0,+0), & >0
on the maximal intervals IT(&) := (77(£),0), & > 0, hence the extremity

71(£) < 0 is defined by:
H(&) == inf{r < O;R(t,&) > 0, P (¢, &) > 0, X5 (t,&) >0V t € (,0)}(5.4)
where the functions h% (.,&1), & > 0 are given by the formula:

Ri(t, &) = k(e* —1) + % (5.5)

We remark that, the second condition in (5.3) is satisfied since X, (¢,&) =
—2t >0Vt < 0and also Pjt(t,&) = k > 0; on the other hand, the expression in
(5.5) allows an explicit formula for the extremity 7t (.):

_ ; 1
(k) =71(&) = { %i?(if_k%f)(,?}% > L (5.6)

one may note here that ,,geometrically” the trajectories X (.,&;), & > 0 are the
curves in Fig. 1, 2 described by the equations:

21 € (& —1,&),k € (0, 3]
1 E(&l_ﬁ7§1)5k> %2 (57)

and ,,cover” the domain Y+ = Y;t UY;", Y; := X+(B™) defined by:

Bt = { (_0070) X [0,+OO), ke (07 %]
=\ Gln(1= £),0) x [0, +00), k > 1
Y+ _ {:E € Yb;ml > _17'7:2 Z _ln(xl + 1)}ak € (0: %] (58)
O T {zeYom > -1z €[-In(z1 +1),—In(1 — )}, k> §
Yt = (0, +00) x {0}.

Ty = CL+(£L'1,§1) = —ln(:vl — 51 + ].), {
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\\\\\\\\\\

Flg L XT(,&),k>1 Fig. 2. X*(,, &),k € (0,3].

Continuation of trajectories on the stratum Z, in the case k > %
The continuation for ¢ < 71 (k) of the trajectories in (5.1) is possible only in
the case k > %; since the point:

(&) = Xp I (),6) = (6 - o~ (L= o)), (E)  (59)

belongs to the stratum Z;" C Z in (4.7) but also to the boundary of the open stra-
tum Z, , the continuation for t < 7% (k), k > % of the trajectories X7 (.,&), & >
0 is possible only on the stratum Z; .

Since LR (X% (1 (k),&)) = 2Pt (1 (k), &)e X3 (TR} &) = gpeln(l-3r) =
2k —1 > 0 (for k > 1), the trajectories in (5.1) may be continuated on the
stratum Zj .

In this case the trajectories in (5.1) may be continuated by the trajectories
X5 4 (56) = (XTH(,&), PYH(,6)), & > 0, which are solutions of the Hamil-
tonian system in (4.26), that satisfy Xt | (r*(k),&) = 27 (&), & >0, k> 3,
and for which, there exist the numbers 75% (k) < 7+(k), k > 3 such that:

XtH(t,6)eYoVie (rh ();T+( ); P++( £1) >0

« " , 5.10
W 6) = (X3 (06) = PEH (b 6) - Pt (hay <o, 10

First, starting from the general solution of the system (4.26) on the stra-
tum Z), given by the formulas in (4.27) and taking the terminal conditions
2t (&), & > 01in (5.9), the components of the Hamiltonian flow X7 ,(.,.), are
given by:

Xf_ +(t7£1) 21k t+ ; ln( Qk) gl + 21k 2
X2+’+(t=§1) —t—3 ln(l 21k) —(t+7(k), & >0 (5.11)
PPt &) =k, te s (k) = (ot k), T (k) k> L '
P2+,+(t7£1) = letv 1-— % - k+ 17
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where the extremity 77 (.) is defined by:
THH (k) = inf{r <7 (k); b}, (t,&) <0, PT(t, &) > OVt € (1,77 (k))}.(5.12)

The function h% , (.,.)in (5.10) is given by the formula:

[ 1 1
By o (t, &) = 2k(e'y /1 — 5 1)+1, te (—oo,7T(k)), k> 3 (5.13)

and elementary arguments show that h% | (t,&1) < 0V t € (—oo, 7t (k)), hence
the extremity 717 (.) of the maximal interval I*>7(.) is given by T+ (k)
as in the other case, ,,geometrically” (see Fig. 5), the trajectories X ™ (., &),
0 are the curves described by the equations:

g1 =atT(22,6) =267 + 2y +In(1 — ) + & + o — 2 (5.14)
a(5122) = a+,+(5122,(]), Ty > —ln(l — %) .

and ,,cover” the domain Y% := Y;b'" defined by:

y0+’+ =XtH(Btt)={z € Yo;21 > —1,23 € (—In(1 — ﬁ),a’l(xl)]} (5.15)
Btt = (—o00,77(k)) x [0, +00). )

Finally, the trajectories X7 (.,£1), & > 0, in (5.1) together with X} |, (.,&1),
& > 01in (5.11) may be ,,concatenated” to obtain a new ,,extended” Hamiltonian
flow, described by the formula:

X—T—(tafl)7 te [T+(k)70)7 61 > 07 k> %

Xg 0t &) :={ XE (), t <R, (5.16)

whose trajectories are illustrated below in Fig. 5.

6 The Hamiltonian flow ending on the stratum 2,

Symmetrically, we shall describe a ,,partial” Hamiltonian flow whose trajectories
are ending on the stratum Z; .

Starting from the general solution in (4.25) of the system (4,24) and formulas
which describe the ,,partial” Hamiltonian flow in (5.1), we infer that the compo-
nents of the ,,partial” Hamiltonian flow X* (.,.) associated with the Hamiltonian
system in (4.24) are given by formulas:

{ Xﬁ(tagl) = ( X+(t _§1) X+(t _51)) = (_e2t +£1 + 15_2t)5 61 <0 (6 1)
P (t,&) = (=P (t,~&), By (t,~&)) = (=K, ke* + 3), t € I'*(k), '

where the maximal interval I~ (.) is of the same form as in (5.4), where the
function 7 (.) is defined in this case as:

7= (&) := inf{r < 0; h* (¢, §1)>0 Pt »Efg<owe( 7,0)} 62)

hZ(t, &) = M(X2(t,&)) = hi (¢, ) = 1)+ 3, & <0.
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From (5.5) and (6.2) it follows that the extremity 77 (.) is given by:

rw=r €=t ={ et

as in the other case, ,,geometrically”, the the trajectories X~ (.,&1), & < 0 are
the curves in Fig. 3, 4 described by the equations:

(6.3)

Ml

I e _ x1€(§17§1+1)7k€(07%]
T2 = a (mlagl) - ln(EI +1 371)5 { x € (61;61 + #),k‘ > % (64)
and ,,cover” the domain Y~ =Y, UY|", Y := X (B") defined by:
g .= | (500,0) x (=00,0] if k € (0, 3]
Tl (3In(1 = 55),0) x (—00,0] if k> 1
{z €Yo; 21 <1, 22> —In(l — 1)} if k € (0, 3] (6.5)

Yo =\ (e €Yoz <1, € [~In(l—2y),~In(l - &) if k> 1
Yy = (~00,0) x {0}.

LI |

Fig. 3. X (., &), k> 3 Fig. 4. X (., &),k € (0, 1].

Continuation of the trajectories on the stratum Z, in the case k > %

Starting from the formulas which describe the ,,partial” Hamiltonian flow
X% +(,.) in (5.11), together with the symmetry in (4.29), it follows the fact that
the Hamiltonian flow X*(.,.) in (6.1) may be continuated for t < 77 (k), k > 3
by the Hamiltonian flow X* _(.,.) which is defined by:

X, (,6) = =X, —51) t e I7 (k) == (—o0,7 (k)
X{"(t,ﬁl):X Tt —&), & <0, k>1 (6.6)
Pr7(t,&) = P (t, &) ‘
PZ_’_(tagl):P;_ +(ta_§1)a

where Xt ,(,,.) = (Xt7*(,.),P™*(,.)) is the Hamiltonian flow defined in
(5.11).
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As in the other case, ,,geometrically”, the trajectories X >~ (., &), & < 0 are
the curves in Fig. 6 described by the equations:

Ty =a " (22,6) = —atF(zy,—&) = —2¢7"2 —zy —In(1 — o)+ (6.7)
+& -3 +2, 32> —In(1—- %) '

and ,,cover” the domain Y7~ := Y~ defined by:

Yo =X (B )={z €Yoz < 1,23 € (~In(1 — &), 0 (—=1)]}
B~ = (—o0,7 (k)) x (—00,0]. k (6.8)

Finally, the trajectories X* (.,£1), & < 0, in (6.1) together with X* _(.,&),
&1 < 0in (6.6) may be ,,concatenated” to obtain a new ,,extended” Hamiltonian
flow, described by the formula:

— Xi(taé-l)a te [Tf(k),O), fl <0, k> %
(t:61) = { X*(t,&), t <7 (k). (6.9)

9

-1 1
Fig. 5. X®®(, &) Fig. 6. X©©(,&1).

7 The Hamiltonian flow ending on the stratum Zg o+

In contrast with the previous cases, on the singular stratum Zg "+, the differential
inclusion in (4.2) coincides with the ,,proper differential inclusion” in (4.12) whose
general solution is given in the form of the maximal flow Xg,’j:(.; .,.) described by
the formulas in (4.13).

On this stratum, the admissible trajectories must satisfy the conditions:

Xg;(;*(t, 2) >0, Pﬁgf(t,z) =0, Pg‘{’gf(t,z) >0Vtelyt(z), (7.1)

on the maximal intervals I3""(2) := (197 (2),0), z = (&,q) € Z;, where the
extremity 79" (z) < 0 is defined in the same way as in (5.4) such that (7.1) is
satisfied.
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From (4.13), (7.1) it follows that, the only possible case that satisfy the con-
ditions in (7.1) is at the point P10,’0+ ) =@ =0, P20, o (t) = ¢2 = 1 (taking into
account the fact that, z = ((0,0),(0,3)) € Zf,) and therefore, the extremity
707 (.) of the maximal interval It is given by the formula:

T§’+ = —00 (7.2)

and the components of the ,,partial” Hamiltonian flow Xg,’j[(., .) on the stratum
Zg "+ are given by the formulas:

X((])7+(t7 )‘) = (/\(€2t - 1)7 _Qt)7 te (_0070)7 A€ [_17 ]-]

BIH(t, ) = (0, 1); 7.4)

moreover, ,,geometrically”, the trajectories X397 (., A), A € [~1,1] are the curves
in Fig. 7 described by the equations:

z1=Xe ¥ —1), za >0, A€ [-1,1] (7.5)
and ,,cover” the domains:

Y;)Ob+ = X8’+(Bg’+) ={r ey z1 €le ™ —-1,1—e 2], 22 >0}

vSF = {(0,0)}, BY* = (—o0,0) x [-1,1]. (7.6)

On the singular stratum Zg’_ for which, p; = 0, ps < 0, it follows that, the
only possible case that satisfy the similar conditions in (7.1) (except the third
condition which must be replaced by: on, » (t,2) <0) is at the point PIO:J =q =
0, Pz?,’o_ =q = % > 0 and therefore, there are no admissible trajectories though
d% Hy'™ (2,p) # 0.

Thus, the Hamiltonian systems in (4.22), (4.24), (4.26),(4.28) generate the ge-
neralized characteristic flows C1.(.,.) = (X1(.,.),V(.,.), C1 +(-,.) = (X% (- .),
V(,.)), C5(.) = (X075 (-),V(.,.)) described explicitly in (4.6), (5.1), (5.11),
(6.1), (6.6), (7.4) and which, according to the well known classical results (e.g.
Mirica ([10])) satisfy the basic differential relation:

DV (t,s).(t,5) =< P*(t,s),DX*(t,s).(,5) > V(%,3) € T(; 5)B*. (7.7)

=1 0 1 i
Fig. 7. Xg't(,\) Fig. 8. Case k € (0,3] Fig. 9. Case k > 1.
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8 Partial value functions and feedback strategies

As indicated in the ,,theoretical algorithm” in Mirica ([12]), the ,,natural candi-
dates” for value functions and optimal strategies in Problem 2.3 are the ,,extreme”
ones, defined by:

Wit(y) = X(ing_ V(t,a), WM(y) := sup V(t,a),
R t,a)=y X (t,a)= y
B (y) :={(t,a) € Bo; X(t,a) =y, V(t,a) = W5"(y)},
Buly) = {(1,a) € Bo; X(t,) = y, V{tra) = W (y)}, (8.1)
Un(y) == UBn®))s V) = V(Bu(w))
Um(y) :== UBu(y)), Vuly) :== V(Bu(y) _
U(t,a) := {ua(t); ua() € U(a)}, V(t,a) :={va(t); va(.) € V(a)},

where U(a) = {u.(.)}, V(a) = {v.(.)} denote the sets of control mappings that
satisfy (4.3); one may note that:

~

U(t,a) CU(X*(t,a)), V(t,a) C V(X*(t,a)) V (t,a) € By,

and also that if X (.,.) is invertible at (¢,a) € By with inverse

Bo(y) := (X ()" W),

then one has:
Wi (y) = Wl (y) = V(Bo(y)), Bi(y) = Bu(y) = Bo(y); (8.2)

moreover, it follows from (7.8) that if, in addition, the function Wy (.) := wir(.) =
WM (.) is differentiable at the point y € Int(Yp), then its derivative is given by:

DWo(y) = P(y) := P(By(y)) (8.3)
and verifies the relations:

QWO( ) f(y,ﬂ v = v v (8.4)
U(y) = Uy, P(y)), V(y) =V (y, P(y))

and U(.), V(.) are the corresponding ,candidates” for optimal feedback strate-
gies; moreover, from (3.2) and (4.3) it follows that in this case W (.) verifies Isaacs’
basic equation:

i vrer%)[DWo( Y¥)-f(y,u,v) + foly,u,v)] = 3

_ D =0.
vren‘?‘()g(;) uén[}& [ WO( ) f(y,u,v) + fo(y,u,v)] 0

Due to these relations, the computations and arguments to follow may be
significantly simplified if the characteristic flow may be ,,split” into a finite col-
lection of the smooth , invertible” characteristic flows C%(.,.), 1 <j <k so that
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the ,,marginal characteristic value functions” in (8.1) may be represented as:

Wit (y) = mlngo( y), Wo'y) = max Wi(y) Vyeto,  (86)

where WJ(.) : Y¥{ C Yy — R are differentiable functions of the form in (8.2)
satisfying relations of the forms in (8.3)-(8.5) and which characterize ,,partial

solutions” (U (), 17]()) of the original problem DG 4; however, they may be con-
sidered ,,complete solutions” to the restrictions DG 4ly; of Problem 2.3 to the

subsets Yy C Yo (see Remark 2.3).

In what follows we shall prove that in the particular case of Problem 2.3 the
,,extreme solutions” in (8.1) may be expressed as in (8.6); the main ,,ingredient”
is the following ,,quasi-elementary” result:

Lemma 8.1. (1) The mapping X*(.,.) : Bt - Y+ defined in (5.1) isa C1—
stratified diffeomorphism whose inverse B¥(.) is described by:

B (z) = (" (2),&' (@), o = (@1,22) €Y
(@) = — Lo, & (@) =01 — e~ + 1. (8.7)

(2) Symmetrically, the mapping X (.,.) : B~ — Y~ defined in (6.1) is a C'—
stratified diffeomorphism whose inverse B~ (.) is described by:

B~(@) = (0.6 (), o= (@1,2) € ¥~
(2) == —Las, & (2) == o + 72 — 1. (88)

(3) If k > % then the mapping XTF(.,.) : BPF — Y;"F defined in (5.11) is a
Cl— diffeomorphism whose inverse BYT(.) is described by:

Bt (z) := ((HH(2),&0 T (2)), 2 = (21,22) € Y0
t0(2) = —[oz + 3 In(1 = 5p)], k> 3 (8.9)
&t (@) =21 — 272 — 2y —In(1— 5) — & +2.

(4) Symmetrically, if k > L then the mapping X >~ (.,.) : B~ = Yy~ defined
in (6.6) is a C'— diffeomorphism whose inverse B (.) is described by:

B (2):= (" (2),6 (@), 2= (21,m) € Y5~

o7 (x) ==z + $In(1— )], k>3 (8.10)
(@) i=a+2e 2+ +In(l— &) + & — 2.

(5) The mapping X3 (.,.) : ByT — Y}E’OJF U Ylo,};r defined in (7.4) is a C'—

diffeomorphism whose inverse §8’+(.) is described by:

B () = (B (@), 3+ (@), @ = (w1, 22) € V5" UV

fg’+(3:) .= —%1'2, ’/{g,+($) = e—:zlfl'

(8.11)
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Proof. (1) If z = (z1,22) € Y™, then it follows from (5.1) that a point
(t,&) € BT for which X +(t &1) = x is characterized by the equations:
+& -

].:ml, _2t:m27

this implies the fact that ¢ := #+(z) = —3z and & = & (z) = 21 —e ™ + 1
therefore, the components +(.), & (.) are stratified functions since Y+ = Yyt u
Y] is a stratified set.

(2) The proof of this symmetric statement is entirely similar so we may omit it;
one may note here that it follows from the relations above that the ,,symmetric”

functions in (8.8) may equivalently be described by:

T (2) =t (~z1,22), & (2) = —& (—21,22), TE Y . (8.12)

In order to prove the other statements, we use the same type of computations
and arguments as above taking into account the following relations:

T (@) =t (—an,m0), & (0) = —& T (~ai,a), TEY, . (8.13)

The results in Lemma 8.1 show that the characteristic flows C%(.,.), C% L (.,.),
03;_’;(., .) described in the Sections 5, 6, 7 are ,,invertible” in the sense of (8.2) and
define the ,,stratified partial proper value functions”, since from (4.6) and (5.1) it
follows that:

Wit (z) = K|EE (2)| — TE(2) = k& () — T (2) = k(£z1 —e 2 + 1)+
+%CL'2, T € YOi
WEE(z) = +keEE(2) — tﬂ( ) = k(£z; — 20 + 1) — 2ke™™2 + 2o+ (8.14)
+(E - B)n( - F) - 1), s e Y;~F
WO (@) =~ () = Loy, o € Yool

which may be naturally extended by W*(¢) :=0V £ € Y5, WOt (¢):=0V ée
Y100+ to the corresponding ,,terminal sets” defined in (5.8), (6.5), (7.6).

Moreover, from (3.3) it follows that the corresponding ,,feedback strategies”
in (8.4) are given by:

ut(x) =0, vF(z):=+1 zeY,

i E(z):=F1, 0BE@) =41 zeYE (8.15)
~g +(:c) =0, Ug’+(m) = /\8’+(:c) = =, TE YEE’O"'.

Corollary 8.2. (1) The functions Wit(.), Woi’i(.), W(;],’(T(.) defined in (8.14)
are stratified solutions of Isaacs’ equation in (8.5) on the corresponding domains
Yoi, Yoi’i, Yb%"'; moreover, each of them is the value function in the sense of
(2.11) of the corresponding feedback strategies in (8.15).

(2) The feedback strategies (*(.),5=(.)), @H=(.),05%()), @y™(),597())
in (8.15) are optimal in the sense of (2.12), (2.15) for the restrictions DGA|Y0i>
DG A|Y0:l:,:t, DG A|Yo°b+’ respectively of the differential game in Problem 2.3.
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Proof. (1) The fact that W5 (.) (respectively; W™ i( )) in (8.14) are stratified
solutions of (8.5) (on their domains, Y (respectlvely, Y, S Y}E’J)) follows from
Lemma 8.1 and the classical theory of smooth Hamﬂtoman Jacobi equations (e.g.
Mirica [10]) using the bas1c differential relations in (7.7); on the other hand, the
fact that the functions Wo, () on the set Y}),0+ has the same property follows by
,,direct inspection”, since from (2.7), (8.5), (8.14), (8.15) one has

min |u|—0

ue[-1

w|>—n

' DWoy' (z)-f (=, u, u,0)] =
L eﬂ[l_afl][ 0.0 (@)-f(@,u,v) + fo(z,u,v)]

(2) The optimality in the sense of Problem 2.3-(B) follows from the verification
Theorem 5.2 in [10] for the stratified value functions, taking into account the
,,technical” result in Lemma 8.1.

We note that the solutions in Corollary 8.2 are ,,unsatisfactory” since from
some initial points there exist other trajectories than the ones generated by the
feedback strategies in (8.15).

9 A Complete Solution in the case k € (0, 1]

In the case k € (0,1] the situation is simpler since only the sets Y and Y&f
are present. Due to results in Section 8 above, the ,,extreme value functions” in
(8.6) are given by:

Wer (z) = min{WE(z), Woyo (2)}, =€ Y5 NYy NYyyh

M Ob (9'1)
W (z) = max{W;"(x )aWO,’o (z)},
on the intersection of the domains Vg, YO%JF; to characterize these functions we
use first the following obvious result:

Proposition 9.1. The functions Wi (.), Wii£(.), W(?,’(f(.) defined in (8.14)
satisfy the relations:

Wit (z) = Wy (x) = 2k, z € Y NYy

Wit (z) > Wy (@) if © € Y5 ﬂYb,xle(Ol) 9.2)
Wit (z) < Wy (z) if s € Yy NYy, @1 € (=1,0) '
We () =Wy (z) if 21 =0,

Wo (z) — Wo%’(;r(ﬂf) =klz1 — (7™ = 1)], z € Yo = Y5 nYgyt
Wy (z) > Wyt () if o1 > e 72 — 1 (9:3)
W,

W (z) — W%’Jr(w) = ko - (1—e™™)), €Yy =Yy nYoy
Wy (x) > Wy () if 21 <1—e %2 (94
Wy (z) = Wg,’(;r(x) if ey =1—e %2,
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and from these inequalities it follows that:

Woh(z) > Wy () > Woo (@) if 21 € (0,1 —e™2), 3 € Yop'
Wy (x) > Wy () > W(?”OJr(x) if 1 € (e7®2 —1,0).

In the case k € (0,1] one has:

T (w) =2kz, €Yyt NY,
“(2) if 31 € (0,1)

T (x) if 1 € (—1,0)
(@)

z)if x1 =0,

N ()

Wit(z) =< W, (z), €Yy \Yoa

N (z)

Wi (z) =S W, (2),
(z)

Moreover, the functions Wg”(), W({VI (.) as well as their natural extensions to
Y : =Yy UY; defined by:

mon . | Wi(z)if z €Y = [ WM@)ifz €Y,
Wr(@) = {00 if:ceY(l)’ WM(“’")'_{OO if:ceYlo, (08)

are C'-stratified and have the following additional regularity properties:

(i) the ,,maximal” value function W™ (.) is locally-Lipschitz;

(ii) the ,,minimal” value function Wm() it is only lower semicontinuous (l.s.c)
with discontinuity points in the subsets:

Y(-)O’+ = {.'EZ (.’El,—ln(1+$1)); T € (07 1)} (9 9)

VY™ = {z = (x1,—In(1 —z1)); 21 € (-1,0)}. '
Proof. (i) The function WM (.) in (9.8) is locally-Lipschitz since the deriva-

tives DW{ (z) remain bounded as  — & € Y= and also as  — y = (0,42) € Y.
On the other hand, the ,,minimal” function W{™(.) in (9.7) is ls.c at each

point but discontinuous at the points in (9.9) since if, for instance, z € Y C
Yot nYyt, then it follows from (9.3) that:

W (z) = lim inf W (y) < Wt (z) = lim sup W (y). (9.10)

y—z y—T
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__ It is also very easy to prove the fact that the , maximal-type” value function
WM(.) in (9.7) defines as in (8.1) the pair (Uas(.), Var(.)) of ,,admissible feedback
strategies” while the ,,minimal” one, Wom() in (9.7) does not have this property.

Proposition 9.2. The feedback strategies in (8.1) defined by the value func-
tions in (9.7) are given by:

DYif z €Yy \ Yoy
D)} if €Yy \ Y (9.11)
(@ (@), 50" (@)} if @ € V',

N {ut ()} if z €Y
Um(z) = {a (2)} if ve 150;
{u*(z),u"(z)} if z€Yy,
N {o+(2)} if xe Vgt (9.12)
Vu(z) = § {v-(2)} ifreYy
{7*(2),v (2)}  if v €Y],

where (W% (.),0%(.), @y (.),097(.) are the mappings in (8.15); moreover, the
pair of ,,maximal-type” feedback strategies ([7' M(),VM()) in (9.12) is admis-
sible in the sense of statement (A) of Problem 2.3 while the ,,minimal type”
(Unm (), Vin () in (9.11) does not have this property.

Proof. As one may see by ,,direct inspection”, for each point y € YOi \YOO’bJr,
the components X*(.,.) of the Hamiltonian flows define as in (4.4) the unique
admissible controls and, respectively, trajectories:

(uy (1), vy (8) = (@ (@ (1)), 0% (@5 (1)) Y ¢ € [0, ~(y)]

TE(t) = XE(E+TE(y), 65 () € Yob \ Yoy,

(9.13)

along which the value of the cost functional in (2.2) is given by:
Clys uy (), vy ()) = W' (y) = Wo' (). (9.14)

Similarly, for any point y € Yb%"‘, the component Xg’+(., .) in (7.4) defines
the unique admissible control and, respectively, trajectories:

(u§ (8), vy (1)) = (@ («5(2)), T * (25(1))),

25(t) = X (t + 10 (1), 20 (v)) (9.15)

for t € [0, —28’+(y)], along which the value of the cost functional in (2.2) is given
by:
~ 1
Cly; uy(),v5(.) = Woul (y) = Wit (y) = %2 (9.16)
Next, it follows from the definitions in (9.12) that for each initial point y €

Vst U Yy the feedback differential inclusion:

2 € f(z,Un(z), Vi (z)), =(0) =y, (9.17)
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has the unique admissible trajectory Z,(.) := £ (.) in (9.13) while for each initial

point y € Y0 = {0} x Ry, the feedback differential inclusion in (9.17) has exactly
two admissible trajectories, z (.), z, (.), for which the relation in (9.14) holds,
hence the pair (Uns(.), Var(.)) in (9.12) is admissible.

On the other hand, it follows from the definitions in (9.11) that for each initial
point y € YV UY)"™ in (9.9) the feedback differential inclusion:

o' € f(2,Un(x),Vin(z)), z(0)=1y, (9.18)

has exactly two admissible trajectories, x;jt(), xg(.), respectively, for which, ac-
cording to the relations in (9.3)-(9.4) one has:

Clyr g ()05 () = Wk (y) > W () = Clyr (), 03()),  (9.19)
hence (Up(.), Vin(.)) in (9.11) is not admissible.

The main result in this section is the following:

Theorem 9.3. The admissible pair of feedback strategies (Unr(.), Var(.)) in
(9.12) with the value function W™ (.) in (9.8) is optimal in the sense of Problem
2.3.

Proof. Taking into account the fact that, the value functions WM (.) in
(9.8) is continuous on Y; and locally-Lipschitz on the its domain ?OM , to prove
the optimality of the admissible pair of feedback strategies (Up(.), Var(.)) in
(9.12) we must use the verification Theorem 5.4 in [10] for locally-Lipschitz value
functions which reduces to the verification some differential inequalities.

According to the Corollary 8.2, the functions Woi() are solutions of class
C"' of the Isaacs’ equation in (8.5) on the their domains Y& O Y& therefore,
the differential inequalities (5.22)-(5.23) in [10] are automatically satisfied on
the domains }N’E)i. It remains only to check these inequalities at the ,,junctions
points” y € }N’})O; to this end, we note first that from the definitions of the extreme
contingent derivatives (e.g. [9], [10],etc.) that at such points it follows:

DM (z;w) = max{DW;" (z).w, DW; (z).w}, w € T, ¥

DEWM (z;w) = min{ DW{ (z).w, DW; (z).w}, (9:20)

hence if u € U, © := 9" (x) = 1 then one has:

max{Dy, D WM (z; f(z,u,9)) + folz,u,7) >
> DW;(JE)f(SU,U,ﬁ) + fo(flf,u,ﬁ) > 0;

while if u € U, v := 0~ (z) = —1, then one has:

max{Dy, D W (z; f(z,u, 7)) + fo(z,u,7) >
> DW(;(.'L').f(IL',U,ﬁ) + fo(.fU,U,v) > 07
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which proves the inequality (5.22) in [10]; the symmetric inequality (5.23) in [10]
follows in the same way using Corollary 8.2 according to which the functions
W (.) satisfy Isaacs’ equation on their corresponding domains Y;F O YE; see
Fig.11.

1))

i

Fig. 10.Case k € (0, 1] Fig. 11. Case k € (0, 1] Fig. 12. Case k > 1.

10 A partial solution in the case k > %

In the case k > 1, as one may see in Fig. 9, the domains 5 Y})i’i, YO%Jr do
not cover any more the set Yy of initial states and, moreover, the extremal value
functions have the more complicated forms:

W (z) = min{ Wi (z), Wit (z), WEE(2)}, ¢ € YiE nYEE ny st
M i 4+ ’ (10.1)
Wo' () = max{WO (z )7W00 (z), Wy ()},

on the intersection of the domains.

As in Proposition 9.2, one may prove that the ,,minimal-type” value function,
W0 (.) is not admissible so we shall concentrate on the ,,maximal” one, W0 ()

From Proposition 9.1 and some additional computations it follows that the
function W4 (.) in (10.1) is given, more explicitely by the formulas:

W(y), y € Y
~ W*(y) =W~ (y), y €Yy
Wol(y) =4 WHE(y),y € ¥y~ (10.2)
W**(y)ZW ~(y), y €Yoy
Wo,o (z), z EY o+

where the sets )N/;)i, f’bi’i, YP, }7;)%0, f’;ﬁ;ﬁ are defined in the formulas of the
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corresponding feedback strategies:

( {a*(y)}, y € Y™ := RL x (0,—In(1 — 5;)]

{u*(y),u" (y)}7~ZiiYo° = {0} x (0, —In(1 — g;)]

Fo) o | {@F* )}y e Yy ™ = {wsfll(i R;“)t},:vz € (= In(1 - ),
Mm\Y) = a 1

(@ (), 5 ()}y € T2 = {0} x (—In(1 — &), +20)

(@t (x)},z € YO%+ = {z;71 € (0,1),2 > a1 (z1)}U

L B {z;71 € (-1,0),22 > a7 1(—z1)} (10.3)

({T=W)}, v € T = By x (0,—In(1 - )]

(57 (0),5 W)}y € 79 = (0} x (0, In(1 - &)

Pure) i {5 )}y e Yy ™ = {x;f%(iR%}ax2 € (=In(1 — ),
M\Y) = a z1

[T+ ),5 ()} € T8 = {0} x (= In(1 - &), +o0)

{UAg"F(a:)},a: € Y;)%Jr = {z;71 € (0,1),22 > a1 (21)}U

\ {z;21 € (=1,0), 22 > &' (—21)}

The admissible trajectories generated by the feedback strategies (U(.), V(.))
are shown in Fig. 12, from which one may see that only on the subset )701
situated below the curve BAC in Fig. 12 the function WM in (10.2) is the
value function associated to these trajectories. Therefore, as in Theorem 9.3, it
follows that (U(.), ‘7(.))|1~,01 is a solution of the restriction DG A|1~,01 which is not a

,,satisfactory” solution for the initial problem since the subset 1701 is obviosely
not invariant with respect to the differential system (2.3), (2.7).

On the other hand, at each point y € Y2 := Y3+ \ Y, the feedback strategies
((7(), YN/()) generate a unique trajetory, &, (.) reaches the point y = A(0,%2), T2 =
—In(1 — 5;) from which one may be continuated by one of the trajectories of the
previous solution. B

Therefore, for each point y € Y (above the curve BAC), there exists a mo-

ment, t(y) > 0 such that the trajectory Z,(.) (generated by (U(.),V(.))) reaches

the point A(0,Z,), at t(y), ie. Z,(t(y)) = ¥ = (0,Z,); therefore, according to
(2.2), (2.7), the cost functional along the trajectory z,(.) is given by:

Wo(y) = Cly; @iy (), 3y (1) = Hy) + W @) (10.4)

which actually defines the value function W()(.), associated to the feedback strate-

gies (U(.), V(.))- -
Direct, though tedious computations show that the function ¢(.) described
above is locally-Lipschitz (and also stratified) which as in Theorem 9.3, reads to

the conclusion that the function Wy(.) defined by:

Wo' () if v €Y

hé /7 -~ - 10.5
Hy) + Wit (y) if y € 72 1= TM\ 74 (105

Wo (y) == {
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is the value function associated to the feedback strategies (U(.),V(.)) in (10.3)
and is optimal for the restriction DG Alf’oM'

However, to be a complete solution, one needs to prove that the domain }N’[)M
described in (10.3) (see Fig. 12) is invariant with respect to the differential system
n (2.3), (2.7); this argument requires some more computations and arguments.

We note that in [4] only the obvious non-complete solution, W (.)|1~,01 has
been pointed aut and not quite rigorously justified.
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