A note on perturbations of authomorphisms of type II_1 factors

by Florin Pop

Abstract

We study perturbations of *-homorphisms of type II_1 factors with respect to the norm $\|\cdot\|_{2,\infty}$ introduced by Sinclair and Smith. We show that automorphisms close to the identity in this norm are implemented by unitary operators close to the identity in the Hilbert-Schmidt norm.

Key Words: type II₁ factor, subfactor, *-homomorphism. **2000 Mathematics Subject Classification**: Primary: 46L40.

In [1] Kadison and Ringrose proved the remarkable fact that if an automorphism φ of a von Neumann algebra M satisfies $||\varphi - Id_M|| < 2$, then φ is inner, that is, $\varphi(x) = uxu^*$ for some unitary operator $u \in M$.

In this paper we consider a different metric on Aut(M), the automorphism group of a type II_1 factor M. Our approach is inspired by the work of Popa, Sinclair and Smith on perturbations of subalgebras of type II_1 factors ([2], [3], [4]). This metric, denoted by $||.||_{2,\infty}$, is of Hilbert - Schmidt type and, from the perturbations viewpoint, has proved to be more flexible than the usual Hausdorff distance.

Throughout this paper M denotes a type II_1 factor with trace τ and unitary group $\mathcal{U}(M)$. Aut(M) denotes the group of *-automorphisms of M, the identity automorphism being Id_M . The Hilbert-Schmidt norm on M is given by $||x||_2 = \tau(x^*x)^{1/2}$. If $A \subset M$ is a subalgebra and if f and g are bounded linear maps from A to M, define (following [3])

$$||f-g||_{2,\infty}=\sup\{||f(x)-g(x)||_2,\ x\in A,\ ||x||\le 1\}$$

The main result is the following

Theorem. Let M be a type II_1 factor and let $N \subset M$ be a subfactor with trivial relative commutant. If $\varphi : N \to M$ is a unital *-homomorphism such

190 Florin Pop

that $||\varphi - Id_N||_{2,\infty} < \sqrt{2}$, then φ is implemented by a unitary v in M satisfying $||v - I||_2 \le ||\varphi - Id_N||_{2,\infty}$.

Proof: Denote $||\varphi - Id_N||_{2,\infty} = t < \sqrt{2}$. Then $||\varphi(u)u^* - I||_2 \le t$ $\forall u \in \mathcal{U}(N)$. We have

$$||\varphi(u)u^* - I||_2^2 = \tau((\varphi(u)u^* - I)(u\varphi(u^*) - I)) = 2 - 2Re \ \tau(\varphi(u)u^*) \le t^2$$

It follows that $Re \ \tau(\varphi(u)u^*) \ge \frac{2-t^2}{2} > 0$. If a is the element of smallest 2-norm in the closed, convex hull of $\{\varphi(u)u^*\}$, then $\varphi(u)au^* = a$ and $||a - I||_2 \le t$. Also, by the preceding remark, $Re \ \tau(a) > 0$, so $\tau(a) \ne 0$.

On the other hand, $\varphi(u^*)a = au^* \Rightarrow a^*\varphi(u) = ua^* \Rightarrow a^*\varphi(u)u^* = ua^*u^*$. There is a net of convex combinations of elements of the form $\varphi(u)u^*$ converging ultraweakly to a. By passing, if necessary, to a subnet, we may assume that the corresponding convex combinations of ua^*u^* converge ultraweakly to some d. By applying the trace, we get $a^*a = d \Rightarrow \tau(a^*a) = \tau(d) = \tau(a^*)$. This shows that $\tau(a) = \tau(a^*) = \tau(a^*a) = \lambda > 0$.

For all u in $\mathcal{U}(N)$ we have $\varphi(u)a=au$ and $a^*\varphi(u^*)=u^*a^* \Rightarrow a^*\varphi(u)=ua^*$. It follows that $a^*au=a^*\varphi(u)a=ua^*a$, therefore a^*a commutes with N and, since $N'\cap M$ is trivial, $a^*a=\tau(a^*a)I=\lambda I$. If we define $v=a/\sqrt{\lambda}$, then v is a unitary and satisfies $\varphi(x)=vxv^*$ for all x in N.

To see how close v is to I, note that

$$||v - I||_2^2 = \tau((v - I)(v^* - I)) = \tau(2I - v - v^*) = 2 - \frac{1}{\sqrt{\lambda}}(\tau(a) + \tau(a^*))$$
$$= 2 - \frac{2\tau(a)}{\sqrt{\lambda}} = 2 - 2\sqrt{\lambda} = \frac{2(1 - \lambda)}{1 + \sqrt{\lambda}} \le 2(1 - \lambda)$$

On the other hand,

$$\lambda = \tau(a) = Re \ \tau(a) \geq \frac{2-t^2}{2} \Rightarrow \ 2(1-\lambda) \leq 2(1-\frac{2-t^2}{2}) = t^2$$
 which implies $||v-I||_2^2 \leq t^2 \Rightarrow ||v-I||_2 \leq ||\varphi-Id_N||_{2,\infty}$.

Corollary. (i) Let $\varphi: M \to M$ be a unital *-homomorphism. If

$$||\varphi - Id_M||_{2,\infty} < \sqrt{2},$$

then φ is implemented by a unitary v in $\mathcal{U}(M)$ satisfying

$$||v - I||_2 \le ||\varphi - Id_M||_{2,\infty}.$$

In particular, φ is an automorphism.

(ii) If φ and ψ are automorphisms of M such that $||\varphi - \psi||_{2,\infty} < \sqrt{2}$, then φ and ψ are conjugate via a unitary v in U(M) satisfying $||v - I||_2 \le ||\varphi - \psi||_{2,\infty}$.

Remark. In the theorem we cannot drop the condition $N' \cap M = \mathbf{C}I$. Take $M = N \otimes M_n$ and let φ be an outer automorphism of N. Let \overline{N} consist of diagonal operators $x \oplus x \oplus ... \oplus x$ and define $\theta : \overline{N} \to N \otimes M_n$ by $\theta(x \oplus x \oplus ... \oplus x) = x \oplus x \oplus ... \oplus x \oplus \varphi(x)$. For all $x \in N$ with $||x|| \leq 1$ we have

$$||\theta(x\oplus\ldots\oplus x)-(x\oplus\ldots\oplus x)||_2^2=\frac{1}{n}||\varphi(x)-x||_2^2\leq\frac{4}{n}\Rightarrow||\theta-Id_{\overline{N}}||_{2,\infty}\leq\frac{2}{\sqrt{n}}$$

We will show that θ is not implemented by any unitary in M. To get a contradiction, suppose there exists a unitary $U = (a_{ij})$ in M satisfying

$$U\theta(x\oplus\ldots\oplus x)=(x\oplus\ldots\oplus x)U$$

Then, for all $1 \leq i, j \leq n-1$, $a_{ij}x = xa_{ij}$, hence a_{ij} are scalar multiples of the identity of N. Denote $a_{in} = b_i$. Since $UU^* = I_M$, it is easily seen that $b_ib_i^* = t_i^2I$ for all $1 \leq i \leq n-1$ and for some $t_i \geq 0$. If $t_i \neq 0$, then $w_i = b_i/t_i$ is unitary and $w_i\varphi(x) = xw_i$, which is impossible, since φ is outer. This shows that $b_i = 0$ for all $1 \leq i \leq n-1$, which forces $w = a_{nn}$ to be a unitary in N such that $w\varphi(x) = xw$, contradiction. \square

References

- [1] R. V. Kadison and J. R. Ringrose, Derivations and automorphisms of operator algebras, Comm. Math. Phys., 4(1967), 32-63.
- [2] S. Popa, A. Sinclair and R. R. Smith, Perturbations of subalgebras of type II₁ factors, J. Funct. Anal., 213(2004), 346-379.
- [3] A. SINCLAIR AND R. R. SMITH, Strongly singular mass in type II₁ factors, Geom. Funct. Anal. (GAFA), 12(2002), 199-216.
- [4] A. Sinclair and R. R. Smith, The laplacian masa in a free group factor, Trans. Amer. Math. Soc., 355(2003), 465-475.

Received: 05.01.2005

Department of Mathematics and Computer Science, Wagner College, Staten Island, New York 10301, U. S. A. E-mail: fpop@wagner.edu