V.K. Jain: On the location of zeros of a polynomial, p.337-352

Abstract:

Observing that for the zeros of polynomial $p(z) = z^n +
\sum_{j=0}^{n-1}a_jz^{j}$, Cauchy's bound


\begin{displaymath}
\nonumber
\vert z\vert < 1 + A, \hspace{.5 in} A = \max_{0 \leq j \leq n-1}\vert a_j\vert
\end{displaymath}  

does not reflect the fact that for $A \rightarrow 0$, all zeros approach the origin $z=0$, Boese and Luther suggested the proper bound
\begin{displaymath}
\vert z\vert < R', \nonumber
\end{displaymath}  


\begin{displaymath}
\nonumber
R' = \left\{
\begin{array}{l}
\left\{A ( 1- nA)/(1...
...+ 2((nA -1 )/(n+1))\right\} , A \geq 1/n.
\end{array}
\right.
\end{displaymath}  

We have obtained a generalization of Boese and Luther's bound by considering the polynomial

\begin{displaymath}
\nonumber
z^n + a_pz^{n-p} + a_{p+1}z^{n-p-1} + \hdots + a_n, 1 \leq p < n
\end{displaymath}  

and have also suggested certain related results.

Key Words: Cauchy's bound, angle-independent bound, angle-independent zero free bound.

2000 Mathematics Subject Classification: Primary: 30C15;
Secondary: 30C10.

Download the paper in pdf format here.