V.K. Jain: Visser's inequality and its sharp refinement, p.171-175

Abstract:

For a polynomial $p(z) = \sum_{k=0}^{n}c_k z^k$ of degree $n$, with $\max_{\vert z\vert = 1}\vert p(z)\vert = M$, Visser had obtained
\begin{displaymath}
\vert c_0\vert + \vert c_n\vert \leq M. \nonumber
\end{displaymath}  

Using certain integral inequality for a polynomial, we have suggested a different proof of Visser's inequality (in a new but equivalent form)
\begin{displaymath}
\vert\alpha\vert\vert c_0\vert + \vert\beta\vert\vert c_n\vert \leq
M\{\max(\vert\alpha\vert,\vert\beta\vert)\}.\nonumber
\end{displaymath}  

Further for polynomial $p(z)$ having all its zeros, either in $\vert z\vert
\leq 1$ or in $\vert z\vert \geq 1$, a sharp refinement
\begin{displaymath}
\vert\alpha\vert\vert c_0\vert + \vert\beta\vert\vert c_n\vert \leq M\{(\vert\alpha\vert +
\vert\beta\vert)/2\},\nonumber
\end{displaymath}  

of new form of Visser's inequality, has also been obtained.

Key Words: Visser's inequality, polynomial, zeros, refinement.

2000 Mathematics Subject Classification: Primary: 30C10,
Secondary 30A10.
Download the pdf