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Abstract

Suppose that F is a presheaf of sets, F̃ is the associated sheaf and η :
F → F̃ is the canonical morphism of presheaves. We study the relationship
between the surjectivity of ηD for any open set D and the ”gluing” property
(F2).
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1 Introduction

For a presheaf of sets F on a topological space X we denote by F̃ the associated
sheaf and by η : F → F̃ the canonical morphism of presheaves. For basic notion
and terminology regarding presheaves of sets on a topological space we refer to
Godement’s book [2]. For a presheaf of sets F on X and V ⊂ U two open subsets
of X we will denote the restrictions F(U) → F(V ) either by ρUV or by s → s|V .

We say that F has the property (F1) if for every open set U of X and every
s, t ∈ F(U) if there exists an open covering {Ui}i∈I of U such that s|Ui

= t|Ui
for

every i ∈ I, then s = t.
We say that F has the property (F2) if for every family of open sets {Ui}i∈I

of X and every family of sections si ∈ F(Ui) that satisfy si|Ui∩Uj
= sj |Ui∩Uj

for

all i, j ∈ I, there exists s ∈ F(∪i∈IUi) such that s|Ui
= si.

It is a standard fact and easy to prove that F satisfies (F1) if and only if
ηD : F(D) → F̃(D) is injective for every open subset D of X and F satisfies both
(F1) and (F2) if and only if ηD is bijective for every D. The natural question that
one can ask is what is the relation between property (F2) and the surjectivity
of ηD. The surjectivity of ηD can imply (F2) only for very simple topologies as
Example 1 below shows. The other implication is much more subtle. In general
this implication is not true either. We present here two examples. A very simple
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one, which in fact can serve as a motivation for the proof of Theorem 1, and a
more interesting one. Namely we show that if we consider Cn endowed with the
Zariski topology then we can find a presheaf of sets that satisfies (F2) and ηCn

is not surjective.
However, if X is a Hausdorff paracompact space and F satisfies (F2) then ηD

is surjective for every open set D. For basic general topology notions we refer to
[3] or [4]. This result is in fact an important technical ingredient. A proof of it
can be found for example in [1], Chapter 1, Theorem 6.3.

Then the natural question that we can ask is if and how much the hypothesis
that X is Hausdorff and paracompact can be relaxed and it is the purpose of our
paper to explore this problem.

As it is well-known a Hausdorff paracompact space is in fact a normal (or a
T4) space. While working on the above mentioned question we have been led to
a weaker separation axiom. We call it (WS). It turns out that this condition is
necessary as Theorem 1 shows.

2 Examples

For a presheaf of sets F on a topological space X and for a point x ∈ X we denote
by Fx = F̃x the inductive limit of F(U), U open subset of X with x ∈ U . That
is Fx = (

⊔
{F(U) : x ∈ U, U open in X}) / ∼ where the equivalence relation ∼

is defined as follows: if s ∈ F(U) and t ∈ F(V ) then s ∼ t if and only if there
exists W an open subset of X such that x ∈ W , W ⊂ U ∩ V and s|W = t|W . If
U is an open subset of X, x ∈ U and s in F(U) we denote by sx the equivalence
class of s in Fx.

Example 1: Suppose that X is a topological space such that there exist U, V, U1,
U2, V1, V2 proper and non-empty open subsets of X with the following properties:
U ∪ V = X and U ∩ V 6= ∅, U1 ∪ U2 = U , U1 6= U , U2 6= U , V1 ∪ V2 = V and
V1 6= V , V2 6= V .

We define a presheaf of sets F on X as follows: F(W ) = {0, 1} (that means
that we fix a set that has exactly two elements and for simplicity we choose these
two elements to be the integers 0 and 1) if W ⊃ U or W ⊃ V and F(W ) = {0}
otherwise. If W1 ⊃ W2 are two open subsets of X then the restriction map
ρW1

W2
is the identity if F(W1) = F(W2) and the constant map {0, 1} → {0}

otherwise. Note that F(U1) = F(U2) = F(V1) = F(V2) = F(U ∩ V ) = {0} and
F(U) = F(V ) = F(X) = {0, 1}. It follows that Fx = {0} for every x ∈ X and
therefore for every open subset D of X we have that F̃(D) contains only one
element, namely s : D →

⊔
x∈D Fx, s(x) = 0 ∈ Fx. As F(D) 6= ∅ obviously ηD is

surjective for every open subset D of X. On the other hand if we set sU ∈ F(U),
sU = 1, and sV ∈ F(V ), sV = 0 then ρUU∩V (sU ) = 0 = ρUU∩V (sV ) and there is no
σ ∈ F(X) such that ρXU (σ) = sU and ρXV (σ) = sV , hence F does not satisfy (F2).

Example 2: Suppose that X is a set and U1, U2, V, V1, V2,W are subsets of
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X such that U1 ∪ U2 = X, U1 ∩ U2 = V , V1 ∪ V2 = V , V1 ∩ V2 = W . Let
T = {X,U1, U2, V, V1, V2,W, ∅}. It is clear that T is a topology on X. We
define a presheaf of sets on X (endowed with this topology) as follows: F(X) =
F(U1) = F(U2) = F(V ) = {0, 1} and F(V1) = F(V2) = F(W ) = F(∅) = {0}
and the restrictions ρD1

D2
are the identity if F(D1) = F(D2) and the constant map

otherwise. We note first that F satisfies (F2). Indeed, the only two open subsets
of X that have non-trivial open coverings (non-trivial in the sense that no element
of the covering is equal to the given open set) are X = U1 ∪U2 and V = V1 ∪ V2.
As F(V1) = F(V2) = {0} the gluing property is automatically satisfied. Suppose
that s1 ∈ F(U1) and s2 ∈ F(U2) are such that s1|V = s2|V . Then, because

ρU1

V : {0, 1} → {0, 1} and ρU2

V : {0, 1} → {0, 1} are the identity functions it follows
that s1 = s2 as elements of {0, 1} and then if we define s ∈ F(X), s = s1 = s2
(as elements of {0, 1}) we get that s|U1

= s1 and s|U2
= s2. On the other hand

Fx = {0} for every x ∈ V . Then if we set s1 ∈ F(U1), s1 = 0, and s2 ∈ F(U2),
s2 = 1, s1 and s2 will determine a section s̃ ∈ F̃(X). If s ∈ F(X) is such that
sx = s1x for some x ∈ U1 \ V then s = s1 = 0 as elements of {0, 1}. Similarly if
s ∈ F(X) is such that sx = s2x for some x ∈ U2 \ V then s = s2 = 1 as elements
of {0, 1}. We deduce that there is no s ∈ F(X) with ηX(s) = s̃.

Example 3: Suppose that X = Cn, n ≥ 2, endowed with the Zariski topology.
We pick two distinct points a 6= b ∈ Cn. We define a presheaf of sets F as follows:
if U is Zariski open set in Cn such that there exists an irreducible algebraic variety
Z ⊂ Cn with a, b ∈ Z and U ⊂ Cn \ Z then we set F(U) = {0}, otherwise
F(U) = {0, 1}. In particular if U ∩ {a, b} 6= ∅ then F(U) = {0, 1} and hence
F(Cn \ {a}) = {0, 1}, F(Cn \ {b}) = {0, 1}. If U1 and U2 are two Zariski open
sets such that U1 ⊂ U2 and F(U1) = {0, 1} (and therefore F(U2) = {0, 1}) then
the restriction map ρU2

U1
is the identity, otherwise ρU2

U1
is the constant function.

Obviously this is a presheaf. We will show that F satisfies (F2) and ηX is not
surjective. Suppose that {Ui}i∈I are Zariski open sets and si ∈ F(Ui) are sections
such that si|Ui∩Uj

= sj |Ui∩Uj
for all i, j ∈ I. We would like to show that there

exists s ∈ F(U) such that s|Ui
= si. If si = 0 for every i ∈ I there is nothing

to prove; we simply choose s = 0 ∈ F(U). Suppose now that there exists i0 ∈ I
such that si0 = 1. We need to prove that if i ∈ I is such that F(Ui) = {0, 1}
then si = 1. If this is the case, we set s = 1 ∈ F(U). Choose such an i ∈ I. We
have to consider two cases.
Case 1: F(Ui ∩ Ui0) = {0, 1}. Then si|Ui0

∩Ui
= si0 |Ui0

∩Ui
= 1, hence si = 1.

Case 2: F(Ui ∩ Ui0) = {0}. By definition there exists an irreducible variety, Z,
such that dim(Z) ≥ 1, a, b ∈ Z and Ui0 ∩ Ui ⊂ Cn \ Z. Let Y0 = Cn \ Ui0 and
Y1 = Cn\Ui. Then Y0 and Y1 are algebraic varieties in Cn and Z ⊂ Y0∪Y1. Since
Z is irreducible it follows that Z ⊂ Y0 or Z ⊂ Y1. However this cannot happen
because, according to our assumption, F(Ui0) = {0, 1} and F(Ui) = {0, 1}.

Next we will show that ηX is not onto. Notice that Fa = {0, 1}, Fb = {0, 1}
and, since for each point x ∈ Cn \ {a, b} there exists a positive dimensional
irreducible algebraic variety Z such that x 6∈ Z and {a, b} ⊂ Z, we have that
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Fx = {0} for every point x other than a or b. If s1 ∈ F(Cn \ {a}), s1 = 1, and
s2 ∈ F(Cn \ {b}), s2 = 0 then they determine a section in F̃(Cn) and there is no
s ∈ F(Cn) such that sa = s1a = 1 and sb = s2b = 0.

3 Results

According to the definition of F̃ , the surjectivity of ηD, where D is an open subset
of X, means the following: if {Ui}i∈I is an open covering of D and si ∈ F(Ui)
are sections such that for every i, j ∈ I and six = sjx for every x ∈ Ui ∩ Uj then
there exists s ∈ F(D) such that sx = six for every x ∈ Ui. With Zorn’s lemma
we introduce the following:

Definition 1. Let X be a topological space.
a) If D is an open subset of X, we say that F satisfies property (O1)(D) if for
every two open sets U1 and U2 such that U1 ∪ U2 = D and every two sections
s1 ∈ F(U1), s2 ∈ F(U2) such that s1x = s2x for every x ∈ U1 ∩ U2 there exists
s ∈ F(D) such that sx = s1x ∀x ∈ U1 and sx = s2x ∀x ∈ U2.
b) If D is an open subset of X, we say that F satisfies property (O2)(D) if for
every totally ordered set (I,<), every family of open subsets of D, {Ui}i∈I , such
that Ui ⊂ Uj for every i < j ∈ I and ∪i∈IUi = D, and every family of sections
si ∈ F(Ui) such that six = sjx for all i < j ∈ I and x ∈ Ui, there exists s ∈ F(D)
such that sx = six for all i ∈ I and x ∈ Ui.

Proposition 1. Suppose that F is a presheaf of sets on the topological space X
such that F satisfies (O1)(D) and (O2)(D) for every open subset D of X. Then
ηD : F(D) → F̃(D) is surjective for every open subset D of X.

Proof: Let Ω be an open subset of X and let {Ui}i∈I be an open covering of Ω
and let si ∈ F(Ui) be such that six = sjx for every i, j ∈ I and every x ∈ Ui∩Uj .
We define the following subset of the power set of I:

A = {J : J ⊂ I and there exist σ ∈ F(∪j∈JUj), σx = sjx∀j ∈ J}

On A we consider the order given by the inclusion. Since F satisfies (O2)(D)
for every open set D, A is directed and hence by Zorn’s lemma it has a maximal
element, call it J0. If we show that J0 is actually equal to I the Proposition is
proved. Suppose that J0 6= I and let k ∈ I \ J0 and σ ∈ F(∪j∈J0

Uj), σx =
sjx∀j ∈ J0. Obviously σx = skx for all x ∈ Uk ∩ (∪j∈J0

Uj). As F satisfies
(O1)(∪i∈J0∪{k}Ui), there exists σ′ ∈ F(∪i∈J0∪{k}Ui) such that σ′

x = σx for x ∈
∪j∈J0

Uj and σ′
x = skx for x ∈ Uk. It follows that σ′

x = six for all i ∈ J0 ∪ {k}
and x ∈ Ui. This implies that J0 ∪ {k} ∈ A, which contradicts the maximality of
J0.
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Definition 2. a) Let X be a topological space and F1 and F2 two disjoint closed
subsets of X. We say that F1 and F2 have the property (WS) if for every {Ωi}i∈I ,
an open covering of X \ (F1 ∪ F2), there exist A1 and A2 open coverings for F1

and F2 respectively such that for every U1 ∈ A1 and U2 ∈ A2 there exists i ∈ I
such that U1 ∩ U2 ⊂ Ωi.
b) We say that X is a (WN)-space if every two closed disjoint subsets of X have
the property (WS).

Theorem 1. If X is a topological space such that every presheaf of sets F on X
that has the property (F2) has also the property (O1)(X) then every two disjoint
closed subsets of X, F1 and F2, have the property (WS).

Proof: Suppose that there exists two disjoint closed subsets of X, F1 and F2,
that do not have the property (WS). We will produce a presheaf of sets F on X
that has the property (F2) and does not have the property (O1)(X).

Let {Ωi}i∈I be an open covering of X \ (F1 ∪ F2) such that for every A1 and
A2 open coverings for F1 and F2, respectively, there exist U1 ∈ A1 and U2 ∈ A2

such that U1 ∩ U2 6⊂ Ωi for every i ∈ I.
Suppose that D is an open subset of X and U is an open covering of D. A

function α : U → {0, 1} is called consistent (with {Ωs}) if the following two
conditions are satisfied:
- for all U ∈ U , if there exists i ∈ I such that U ⊂ Ωi then α(U) = 0
- for all U, V ∈ U , if there is no i ∈ I such that U ∩ V ⊂ Ωi then α(U) = α(V )

Suppose that D1 ⊂ D are open subsets of X, U is an open covering of D and
α : U → {0, 1} is consistent. Then we set U|D1

:= U ∩D1 = {U ∩D1 : U ∈ U} and
α|D1

: U|D1
→ {0, 1}, where, for every U ∈ U , α|D1

(U ∩D1) = α(U) if there is no
i ∈ I such that U∩D1 ⊂ Ωi and α|D1

(U∩D1) = 0 otherwise. It is easy to see that
α|D1

is also consistent. Note that if U ∈ U and U ⊂ D1 then α|D1
(U) = α(U)

An open covering U of D is called complete if whenever U and V are open
subsets of X such that U ∈ U and V ⊂ U then V ∈ U . Note that if U is a
complete covering of D and D1 is an open subset of D then U|D1

is a complete
covering of D.
Remark: If U is an open covering of D we set co(U) := {V : V is open in X
and ∃U ∈ U , V ⊂ U}. Hence U is complete if and only if U = co(U). If U is an
open covering of D and α : U → {0, 1} is consistent then we can extend it to a
consistent function co(α) : co(U) → {0, 1} as follows: if V ⊂ U are open in X
and U ∈ U then we set co(α)(V ) = α(U) if there is no i ∈ I such that V ⊂ Ωi

and co(α)(V ) = 0 otherwise.

We define now a presheaf of sets on X as follows: if D is an open subset of X then
F(D) = {(U , α) : U is a complete covering of D,α : U → {0, 1} is consistent}. If
D1 ⊂ D2 are open sets, (U , α) ∈ F(D2) then ρD2

D1
(U , α) = (U|D1

, α|D1
).

It is clear that for D0 ⊂ D1 ⊂ D2, we have ρD2

D0
= ρD1

D0
◦ ρD2

D1
. Hence F is a

presheaf. We will check next that F has the property (F2). Let {Dl}l∈L, be open
sets in X and (Ul, αl) ∈ F(Dl) be such that, for every l, k ∈ L, ρDl

Dl∩Dk
(Ul, αl) =
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ρDk

Dl∩Dk
(Uk, αk). Let U = ∪l∈LUl. Clearly U is an open covering for D = ∪l∈LDl.

It is also a complete covering: if U ∈ U and V is an open subset of U then there
exists l ∈ L such that U ∈ Ul. Since Ul is complete then V ∈ Ul and hence V ∈ U .

Note now that αk|Ul∩Uk
= αl|Ul∩Uk

. Indeed, if U ∈ Ul ∩ Uk then U ⊂
Dl ∩ Dk and hence U ∈ Ul|Dl∩Dk

. By definition αl(U) = αl|Dl∩Dk
(U) and

similarly αk(U) = αk|Dl∩Dk
(U). The compatibility condition ρDl

Dl∩Dk
(Ul, αl) =

ρDk

Dl∩Dk
(Uk, αk) implies that αl|Dl∩Dk

(U) = αk|Dl∩Dk
(U).

The following function is well defined then: α : U → {0, 1}, α|Ul
= αl, for all

l ∈ L. We claim that it is consistent: let U, V ∈ U and let l, k ∈ L be such that
U ∈ Ul and V ∈ Uk. If U ⊂ Ωi for some i ∈ I then, as αl is consistent, αl(U) = 0
and therefore α(U) = 0. At the same time U ∩ V ∈ Ul and U ∩ V ∈ Uk (by the
completeness of Ul and Uk). If there is no i ∈ I such that U ∩V ⊂ ΩI then, using
the consistency of αl and αk we get:
α(U) = αl(U) = αl(U ∩ V ) = αk(U ∩ V ) = αk(V ) = α(V ).

What is left to notice is that U|Dl
= Ul. This is in fact the main point where

the completeness assumption comes into place. It is clear that U|Dl
⊃ Ul. Let

U ∈ U . Say that U ∈ Uk. Since Ul|Dl∩Dk
= Ul|Dl∩Dk

it follows that there exists
V ∈ Ul such that V ∩Dl ∩Dk = U ∩Dl ∩Dk. Since Ul is complete we have that
V ∩Dl ∩Dk ∈ Ul and therefore U ∩Dl ∩Dk = (U ∩Dk) ∩Dl = U ∩Dl ∈ Ul.

We will prove that F does not have the property (O1)(X). Let D1 = X \ F2

and D2 = X \ F1. Let U1 = {U : U is open in D1}, U2 = {U : U is open in D2},
α1 : U1 → {0, 1}, α1(U) = 1 if there is no i ∈ I such that U ⊂ Ωi and α1(U) = 0
otherwise, α2 : U2 → {0, 1}, α2(U) = 0 for every U ∈ U2. We have that (U1, α1) ∈
F(D1) and (U2, α2) ∈ F(D2). At the same time, for every x ∈ D1 ∩ D2 =
X \ (F1 ∪ F2) there exists i ∈ I such that x ∈ Ωi. As ρD1

Ωi
(U1, α1) = ρD2

Ωi
(U2, α2)

it follows that (U1, α1)x = (U2, α2)x for every x ∈ D1 ∩D2.

Suppose that there exists (U , α) ∈ F(X) such that (U , α)x = (U1, α1)x for
every x ∈ D1 and (U , α)x = (U2, α2)x for every x ∈ D2. We set A1 = {U ∈
U1 : U ∩ F1 6= ∅}, A2 = {U ∈ U2 : U ∩ F2 6= ∅} which are obviously open
coverings for F1 and F2 respectively. Let U ∈ A1 and let x ∈ U ∩ F1. Because
(U , α)x = (U1, α1)x, there exists an open set V in X such that x ∈ V ⊂ (U ∩D1)
and ρD1

V (U1, α1) = ρUV (U , α). By definition Ωi ⊂ X \ (F1 ∪F2) for every i ∈ I. In
particular there is no i ∈ I such that V ⊂ Ωi. This implies that α1|V (V ) = 1 and
hence α|V (V ) = 1. By the consistency of α we deduce that α(U) = α(V ) = 1.
The same argument shows that for every U ∈ A2, α(U) = 0.

For U1 ∈ A1 and U2 ∈ A2, since α(U1) 6= α(U2) and α is consistent, it follows
that there exists i ∈ I such that U1 ∩ U2 ⊂ Ωi which is a contradiction with the
choice of {Ωi}i∈I .

Proposition 2. Let X be a topological space such that every two disjoint closed
subsets of X satisfy the property (WS), then every presheaf of sets on X, F , that
satisfies property (F2) satisfies also the property (O1)(X).
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Proof: Suppose that D1 and D2 are open subsets of X such that D1 ∪D2 = X
and s1 ∈ F(D1), s2 ∈ F(D2) are sections such that s1x = s2x for every x ∈
D1 ∩ D2. Let F2 = X \ D1 and F1 = X \ D2. Therefore F1 and F2 are two
disjoint closed subsets of X and hence they have the property (WS).

Since s1x = s2x for every x ∈ D1 ∩D2 = X \ (F1 ∪ F2), there exists {Ωi}i∈I

an open covering for X \ (F1∪F2) such that s1|Ωi
= s2|Ωi

for every i ∈ I. On the
other hand, since F1 and F2 have (WS) there exist two open coverings A1 and
A2 of F1 and F2, respectively, such that for every U1 ∈ A1 and U2 ∈ A2 there
exists i ∈ I such that U1 ∩ U2 ⊂ Ωi

We consider the following open covering for X: U = A1 ∪ A2 ∪ {Ωi : i ∈ I}.
We consider also the following collection of sections corresponding to U : s1|U1

∈
F(U1) for all U1 ∈ A1, s2|U2

∈ F(U2) for all U2 ∈ A2 and s1|Ωi
= s2|Ωi

∈ F(Ωi)
for all i ∈ I.

Now if U, V ∈ U and s ∈ F(U) and t ∈ F(V ) are the corresponding sections
then s|U∩V = t|U∩V . Indeed: if U ∈ A1 and V ∈ A2 then s = s1|U and t = s2|V .
On the other hand, by the choice of A1 and A2, there exists i ∈ I such that
U ∩ V ⊂ Ωi. It follows that

s|U∩V = (s1|Ωi
)|U∩V = (s2|Ωi

)|U∩V = t|U∩V .

The other cases are trivial.
Since F has the property (F2) there exists σ ∈ F(X) such that σ|U = s for

every U ∈ U and s the corresponding section. In particular σx = s1x for every
x ∈ D1 and σx = s2x for every x ∈ D2.

Theorem 2. Let X be a topological space. Suppose that every open subset of
X is a (WN)-space and that for every totally ordered set (I,<) and every family
of open subsets of X, {Ui}i∈I with Ui ⊂ Uj for every i < j ∈ I there exists
an increasing function ι : IN → I and {Vn}n∈IN, a sequence of open subsets of
X, such that ∪n∈INVn = ∪i∈IUi, Vn ⊂ Uι(n), and V n ⊂ Vn+1. Then for every
presheaf of sets F on X that satisfies property (F2) and every open subset D of
X the canonical mapping ηD : F(D) → F̃(D) is surjective.

Proof: Let F be an arbitrary presheaf of sets on X that satisfies property (F2)
and D an open subset of X. Since every open subset of X is a (WN)-space,
by Proposition 2, F satisfies property (O1)(D). According to Proposition 1 we
have to check that for every open set D ⊂ X the presheaf F satisfies (O2)(D).
Let (I,<) be a totally ordered set and {Ui}i∈I be a family of open subsets of
D such that ∪i∈IUi = D and Ui ⊂ Uj for every i < j ∈ I. Let {Vn}n∈IN and
ι : IN → I be as in the hypothesis.We will construct inductively a sequence of
sections σn ∈ F(V2n) such that
a) σnx = sι(2n)x for every n ∈ IN and every x ∈ V2n

b) σn|V2n−4
= σn−1|V2n−4

for every n ≥ 2.
We set σ0 = sι(0) and σ1 = sι(2). We assume that we have constructed

σ0, σ1, . . . , σn, n ≥ 1, and we will construct σn+1.
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Because σnx = sι(2n+2)x
for every x ∈ V2n \ V 2n−1 it follows, just by defini-

tion, that each x ∈ V2n \ V 2n−1 has a neighborhood say Ωx such that σn|Ωx
=

sι(2n+2)|Ωx
. Replacing Ωx with Ωx ∩ (V2n \ V 2n−1) we get that {Ωx}x∈V2n\V 2n−1

is an open covering for V2n \ V 2n−1. Changing the notation for the index set
we conclude that there exists {Ωk}k∈K an open covering for V2n \ V 2n−1, Ωk ⊂
V2n \ V 2n−1 ∀k ∈ K, such that σn|Ωk

= sι(2n+2)|Ωk
for every k ∈ K.

Let F1 = V 2n−1 \ V 2n−2 and F2 = V2n+1 \ V2n. They are closed disjoint
subsets of V2n+1 \ V 2n−2 which is a (WN)-space and therefore F1 and F2 satisfy
(WS). Let A1 and A2 be open coverings of F1 and F2, respectively, such that for
every U1 ∈ A1 and U2 ∈ A2 there exists k ∈ K such that U1 ∩ U2 ⊂ Ωk. Note
that each U ∈ A1 ∪A2 is an open subset of V2n+1 \ V 2n−2 hence it is open in X
as well.

We consider the following open covering for V2n+2: U = A1 ∪ A2 ∪ {Ωk : k ∈
K} ∪ {V2n+2 \ V 2n, V2n−1}. We consider also the following collection of sections
corresponding to U :
- σn|U1

∈ F(U1) for all U1 ∈ A1, sι(2n+2)|U2
∈ F(U2) for all U2 ∈ A2

- σn|Ωk
= sι(2n+2)|Ωk

∈ F(Ωk) for all k ∈ K.

- sι(2n+2)|V2n+2\V 2n
∈ F(V2n+2 \ V 2n), σn|V2n−1

∈ F(V2n−1).

As in the proof of Proposition 2 there exists σn+1 ∈ F(V2n+2) such that
σ|U = s for every U ∈ U and s the corresponding section. In particular σn|V2n−2

=
σn+1|V2n−2

and, at the same time, σn+1x = sι(2n+2)x
for every x ∈ V2n+2. The

construction of {σn}n is completed.

If we define now τn ∈ F(V2n), τn = σn+1|V2n
then τn+1|Vn

= τn and as

F has the property (F2) there exists τ ∈ F(∪n∈INV2n) such that τ|V2n
= τn.

However ∪n∈INV2n = D and for every x ∈ V2n we have that τx = τnx = σn+1x =
sι(2n+2)x

= six whenever x ∈ Ui.
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