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Abstract

By making use of topological degree theory for Poincáre map estab-
lished in [1], we obtain the existence of periodic solutions for a class of
non-autonomous differential delay equations, which can be transformed to
planer Hamiltonian systems.
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1 Introduction

In this article we consider the existence of periodic solutions for the following
non-autonomous differential delay equation

x′(t) = f(x(t− τ) + g(t, x(t− τ)), (1.1)

where τ > 0, f and g are both continuous. Some special autonomous differential
delay equations similar to Eq.(1.1) have been studied by many authors through
various methods. Lots of results of periodic solutions for those equations can be
found in [1-7].

The previous works are mainly concerned with the autonomous cases. The
purpose of the present paper is to use a new approach to study the existence of
periodic solutions of the non-autonomous equation (1.1). More precisely, we shall
use the topological degree theory for Poincáre map established in [1] to obtain
the existence of periodic solutions of Eq.(1.1). We give our main result in the
next section .

Throughout the present paper, we assume that the following conditions hold.
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(H1) Let f(x) : R → R be homogeneous, locally Lipschitz continuous and
satisfying f(x) > 0, for all x > 0.

(H2) g(t, x) : R × R → R is T = 4τ -periodic in its first variable, locally Lip-
shitz continuous in its second variable.

(H3) There are two constants α > 0 and β ∈ [0, 1) and a function h : R→ R
such that

|g(t, x)| ≤ α|x|β/2 for all (t, x) ∈ R× R,

lim
λ→+∞

g(t, λx)

λβ
= h(t),∀λ > 0, for all (t, x) ∈ R× R.

Remark 1.1. Here we do not assume the condition that f and g are asymp-
totically linear both at origin and at infinity which plays a crucial role in the
study of the existence and multiplicity of periodic solutions for those autonomous
differential delay equations in previous papers.

In Section 2 we give the main result of this paper and its proof. The proof
will be carried out by applying the topological degree theory for Poincáre map
constructed in [1]. In Section 3 an example will be given as an application of our
result. In Section 4 a useful lemma will be proved by applying the ideas of [1].

2 Main result and its proof

In this section, we first reduce Eq.(1.1) to an associated planer Hamiltonian
system. Consider the following system

J
d

dt
X(t) = Φ(t,X(t)), where J =

(
0 −1
1 0

)
, (2.1)

X(t) = (x1(t), x2(t))> and Φ(t,X) = (f(x1) + g(t, x1), f(x2) + g(t, x2))>. It is
not difficult to see that if X(t) is a solution of (2.1) with the following symmetric
structure

x1(t) = −x2(t− τ), x2(t) = x1(t− τ), (2.2)

then x(t) = x1(t) gives a solution to Eq.(1.1) with the property x(t) = −x(t−2τ).
In fact, by the system (2.1),

x′1(t) = f(x2(t)) + g(t, x2(t)) = f(x1(t− τ)) + g(t, x1(t− τ)).

Therefore x(t) = x1(t) is a solution of Eq.(1.1).
Note that Eq.(2.1) can be written as the following planer system

Jy′(t) = ∇H(y) +G(t, y), (2.3)

where H(y) =
∫ y1

0
f(x)dx+

∫ y2
0
f(x)dx and G(t, y) = (g(t, y1), g(t, y2))> for each

y = (y1, y2)> ∈ R2. Notice that the matrix J is a symplectic matrix. Thus the
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system (2.3) is a planer Hamiltonian system with the symplectic structure J . We
call this planer Hamiltonian system the associated system to Eq.(1.1). Hence in
the next, we only need to find periodic solutions of the system (2.3) satisfying
(2.2).

For the two functions H and G, we have the following lemma.

Lemma 2.1. The functions H and G have the following properties.
(1) the function H ∈ C1(R2,R) with locally Lipschitz continuous gradient

satisfies H(λy) = λ2H(y) and min‖y‖=1H(y) > 0 for every y ∈ R2 and λ > 0.
(2) G ∈ C1(R× R2,R) is T -periodic in its first variable and locally Lipschitz

continuous in its second variable, and G satisfies ‖G(t, y)‖ ≤ α(‖y‖β + 1).

Proof. (1) By (H1) and the definition of H, ∇H(y) = (f(y1), f(y2)). Then
H ∈ C1(R2,R) and ∇H(y) is locally Lipschitz continuous.

For λ > 0, note that H(λy) =
∫ λy1

0
f(x)dx +

∫ λy2
0

f(x)dx. Let x = λv. (H2)
yields

H(λy) =

∫ y1

0

λf(λv)dv +

∫ y2

0

λf(λv)dv

=λ2(

∫ y1

0

f(v)dv +

∫ y2

0

f(v)dv)

=λ2H(y).

By virtue of mean value theorem for integrals and (H1),

H(y) = f(θy1)y1 + f(θy2)y2

= θ(f(y1)y1 + f(y2)y2) > 0 for some θ ∈ (0, 1).

That means min‖y‖=1H(y) > 0.

(2) By (H2), we only need to show ‖G(t, y)‖ ≤ α(‖y‖β + 1) or ‖G(t, y)‖2 ≤
α2(‖y‖β + 1)2. For α > 0 and β ∈ [0, 1), notice that |g(t, x)| ≤ α|x|β/2.

‖G(t, y)‖2 = g2(t, y1) + g2(t, y2) ≤ α2(|y1|β + |y2|β).

Set y1 = rcosθ, y2 = rsinθ. Thus

‖G(t, y)‖2 ≤α2(rβ |cosβθ|+ rβ |sinβθ|)
≤2α2rβ < α2(r2β + 2rβ + 1)

=α2(‖y‖β + 1)2.

This completes the proof of Lemma 2.1. 2

Let E = {ϕ(t) : ϕ(t) ∈ C1([0, T ]→ R2), ϕ(0) = ϕ(T )}. Define an action σ on
E by

σϕ(t) = Jϕ(t− τ).
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Then G = {σ, σ2, σ3, σ4} is a compact group action over E. Moreover if σϕ(t) =
ϕ(t), then ϕ(t) has the symmetric structure (2.2). Denote E0 = {ϕ(t) ∈ E :
σϕ(t) = ϕ(t)}. A direct verification shows that E0 is a subspace of E. Since
solutions of (2.3) in E0 have the symmetric structure (2.2), they will give solutions
of Eq.(1.1). So that in the next, we only find solutions of (2.3) in E0.

As in [1], we now fix a solution of the following autonomous system

Jy′ = ∇H(y).

Let ϕ = (ϕ1(t), ϕ2(t)) ∈ E0 be such that

Jϕ′(t) = ∇H(ϕ) and H(ϕ(t)) =
1

2
,

for each t ∈ R. Then 〈ϕ′(t), Jϕ(t)〉 < 0 for each t ∈ R. Define

Ω = {ρϕ(θ) : θ ∈ [0, T ), ρ ∈ [0, 1)},

which is strictly star-shaped with respect to the origin, i.e. every ray emanating
from the origin crosses the orbit of ϕ at precisely one point.

Let P : Ω̄ → R2 be a continuous function such that ∀t ∈ R, P (ϕ(t)) 6= ϕ(t)
and P (ϕ(t)) 6= (0, 0). That means (P − Id)|∂Ω 6= 0. For δ > 0, define

Ωδ = {1

δ
ρϕ(θ) : θ ∈ [0, T ), ρ ∈ [0, 1)}.

Note that Ω1 = Ω. Define two functions Φ and Ψ by

Φ(θ) =

∫ T

0

〈F (t, ϕ(t+ θ)), ϕ(t+ θ)〉dt,

Ψ(θ) =

∫ T

0

〈F (t, ϕ(t+ θ)), ϕ′(t+ θ)〉dt,

where F (t, y) = limλ→+∞
G(t,λy)
λβ = (h(t), h(t)). Since g(t, x) is continuous, h(t)

is also continuous. Therefore Φ and Ψ are well defined.
Then our main result reads as follows.

Theorem 2.1. Assume that (H1)-(H3) hold. Then

Φ(θ) =

∫ T

0

h(t)(ϕ1(t+ θ) + ϕ1(t+ θ − τ))dt,

Ψ(θ) =

∫ T

0

h(t)(ϕ′1(t+ θ) + ϕ′1(t+ θ − τ))dt

=Φ′(θ).

Suppose
∀θ ∈ R, |Φ(θ)|+ |Ψ(θ)| 6= 0.

If Ψ changes sign more than twice on the zeros of Φ in [0, T ), then Eq.(1.1) has
a T -periodic solution.
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Denote by P : R2 → R2 the Poincáre map for the period T associated to
(2.3). In order to prove Theorem 2.1, it is enough for us to verify that topological
degree for the map P − Id on Ωδ never vanishes, i.e. deg(P − Id,Ωδ) 6= 0. We
need the following lemma.

Lemma 2.2. Assume that (H1)-(H3) hold and

∀θ ∈ R, |Φ(θ)|+ |Ψ(θ)| 6= 0.

Then for every sufficiently small δ,

deg(P − Id,Ωδ) =1− deg(Φ, (a, a+ T ) ∩ {Ψ > 0}),
=1 + deg(Φ, (a, a+ T ) ∩ {Ψ < 0}),

where a is chosen such that Φ(a) 6= 0.

Proof. Since the proof is similar to Theorem 2 of [1], for the readers’ conve-
nience, we give the proof of Lemma 2.2 in Appendix. 2

Proof of Theorem 2.1. Notice that ϕ(t) ∈ E0. ϕ = (ϕ1, ϕ2) has the

symmetric structure (2.2). From (H3) F (t, y) = limλ→∞
G(t,λy)
λβ = (h(t), h(t)).

Hence

Φ(θ) =

∫ T

0

〈F (t, ϕ(t+ θ)), ϕ(t+ θ)〉dt

=

∫ T

0

h(t)(ϕ1(t+ θ) + ϕ2(t+ θ))dt

=

∫ T

0

h(t)(ϕ1(t+ θ) + ϕ1(t+ θ − τ))dt.

A direct computation yields Ψ(θ) = Φ′(θ).
If Ψ(θ) > 0, then Φ′(θ) > 0. This implies that the zeros of Φ in {Ψ > 0} are

all simple with positive derivative. By assumption, there are at least two of them
in [a, a+ T )∩ {Ψ > 0}, where a is chosen so that Φ(a) 6= 0. Then it follows from
Lemma 2.2 that

deg(P − Id,Ωδ) = 1− deg(Φ, (a, a+ T ) ∩ {Ψ > 0}) ≤ −1.

If Ψ(θ) < 0, then Φ′(θ) < 0. By using similar arguments, the conclusion of
Theorem 2.1 holds. Therefore the proof is complete. 2

3 Applications

In order to illustrate some applications for our result, we consider the following
differential delay equation

x′ = x(t− τ) + λβh(t) + µe(t)sin(x(t− τ)ν(x(t−τ))), (3.1)



60 R. Cheng, J. Hu

where h(t) and e(t) are both T -periodic, λ > 0, ν(x) is a continuous function
satisfying

ν(x) =

{
β1, as |x| ≥ 1,
β2, as |x| < 1,

where β1 ≤ β
2 and β2 >

β
2 .

Take f(x) = x and g(t, x) = λβh(t) + µe(t)sin(xν(x)). Then f and g satisfy
the conditions (H1)-(H3).

It is easy to see H(y) = 1
2y

2
1 + 1

2y
2
2 . By a simple computation, a nontrivial

periodic solution ϕ(t) = (ϕ1(t), ϕ2(t)) for the autonomous system Jy′ = ∇H(y)
is ϕ0(t) = ( 1

2sint,
1
2cost), which satisfies H(ϕ0(t)) = 1

2 . Moreover take τ = 3
2π,

we can verify easily that Jϕ0(t−τ) = ϕ0(t), i.e. σϕ0(t) = ϕ0(t). Thus ϕ0(t) ∈ E0

and has the symmetric structure (2.2).
A direct computation shows that

Φ(θ) =
1

2

∫ T

0

h(t)(sin(t+ θ) + cos(t+ θ))dt,

Ψ(θ) =
1

2

∫ T

0

h(t)(cos(t+ θ)− sin(t+ θ))dt.

Assume that

∀θ ∈ R, |Φ(θ)|+ |Ψ(θ)| 6= 0

and Ψ changes sign more than twice on the zeros of Φ in [0, T ), then Eq.(3.1) has
a T -periodic solution.

4 Appendix

In this section, we give a skeleton of the proof of Lemma 2.2. The main idea
comes from [1].

For the continuous map P , we can define two continuous functions R,Θ : R→
R such that

P (ϕ(t)) = R(t)ϕ(t+ Θ(t))

with R(t) > 0 for all t ∈ R.
Let τopp(t) denote the function defined by

τopp(t) ∈ (0, τ) and
ϕ(t)

‖ϕ(t)‖
= − ϕ(t+ τopp(t))

‖ϕ(t+ τopp(t))‖
(4.1)

We have the following theorem.

Theorem 4.1. (Theorem 1 of [1]) Let P : Ω̄→ R2 be continuous and such that

P (ϕ(t)) = R(t)ϕ(t+ Θ(t)),
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where R,Θ : R→ R are continuous and, for every t ∈ R

R(t) > 0 (4.2)

τopp(t)− τ < Θ(t) < τopp(t) (4.3)

and
|R(t)− 1|+ |Θ(t)| 6= 0. (4.4)

Then,

deg(P − Id,Ω) = 1 + deg(Θ, (a, a+ τ) ∩ {R > 1})
= 1− deg(Θ, (a, a+ τ) ∩ {R < 1}),

where a is chosen so that Θ 6= 0.

Now for some δ > 0, by change of variables z = δy, (2.3) becomes

Jz′ = ∇H(z) + δG(t,
z

δ
). (4.5)

Denote by P̃δ : R2 → R2 the Poincáre map associated to (4.5). Then one has
P̃δ(z) = δP( zδ ). Moreover

deg(P − Id,Ωδ) = deg(P̃δ − Id,Ω).

For each θ0 ∈ [0, τ), write

P̃δ(ϕ(θ0)) = r1ϕ(θ1).

According to [1], we can evaluate θ1 and r1 as

θ1 = θ0 + δ

∫ T

0

1

r(t)
〈G(t,

r(t)

δ
ϕ(t+ θ(t))), ϕ(t+ θ(t))〉

r1 = 1− δ
∫ T

0

〈G(t,
r(t)

δ
ϕ(t+ θ(t))), ϕ′(t+ θ(t))〉,

where r(t) > 0 and r(0) = 1 and z(t) = r(t)ϕ(t + θ(t)), where z(t) is a solution
of (4.5).

We have the following lemma.

Lemma 4.1. (Lemma 2 of [1]) We have

θ1 = θ0 + δ1−β [Φ(θ0) +R1(θ0, δ)]

r1 = 1− δ1−β [Ψ(θ0) +R2(θ0, δ)],

where Φ and Ψ are defined in Section 2, R1 and R2 are such that

lim
δ→0+

R1(θ0, δ) = lim
δ→0+

R2(θ0, δ) = 0

uniformly for θ0 ∈ [0, τ).
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The proof of Lemma 4.1 bases on Lemma 2.1. Here we omit the details. Now
we give a brief proof of Lemma 2.2.

Proof of Lemma 2.2. Let rot(P̃δ − Id, ∂Ω) denote the rotation number of
P̃δ − Id on the curve ∂Ω. In fact,

deg(P̃δ − Id,Ω) = deg(P̃δ − Id, ∂Ω).

Since |Φ(θ)|+ |Ψ(θ)| 6= 0, we can chose a constant c > 0 such that

|Φ(θ)|+ |Ψ(θ)| ≥ 2c.

For λ ∈ [0, 1], consider the functions Pδ,λ : ∂Ω→ R2 defined by

Pδ,λ(ϕ(θ0)) = rλ1ϕ(θλ1 ).

Now we prove Pδ,λ − Id never vanishes on ∂Ω for each λ ∈ [0, 1] and for δ
sufficiently small, i.e. Pδ,λ has no fixed points on ∂Ω. By Lemma 4.1, we can
chose δ̄ > 0 such that

0 < δ < δ̄ ⇒ |R1(θ0, δ)| < c, |R2(θ0, δ)| < c.

Note that

|Φ(θ0)| =
∣∣∣θλ1 − θ0

δ1−β − λR1(θ0, δ)
∣∣∣ < |θλ1 − θ0|

δ1−β + c

|Ψ(θ0)| =
∣∣∣rλ1 − θ0

δ1−β − λR2(θ0, δ)
∣∣∣ < |rλ1 − θ0|

δ1−β + c.

One has (θλ1 , r
λ
1 ) 6= (θ0, 1), or |Φ(θ)| + |Ψ(θ)| < 2c, a contradiction. So we

have the above conclusion. Thus

rot(Pδ,1 − Id, ∂Ω) = rot(Pδ,0 − Id, ∂Ω).

Let us focus on Pδ,0 : ∂Ω → R2. It is easy to see that Pδ,0 = r0
1ϕ(θ0

1), where
r0
1 = 1 − δ1−βΨ(θ0) and θ0

1 = θ0 + δ1−βΦ(θ0). We extend Pδ,0 to a continuous
function P : ¯Ω→ R2. So that

P (ϕ(θ0)) = R(θ0)ϕ(θ0 + Θ(θ0))

with R(θ0) = 1− δ1−βΨ(θ0) and Θ(θ0) = δ1−βΦ(θ0). For sufficiently small δ, we
can check (4.2), (4.3) and (4.4) are satisfied. Therefore by Theorem 4.1, we have

deg(P − Id,Ω) = 1− deg(Θ, (a, a+ τ) ∩ {R < 1})
= 1− deg(Φ, (a, a+ τ) ∩ {Ψ > 0}),

where a is chosen such that Φ(a) 6= 0.
It follows from the excision property of topological degree that the second

formula holds. The proof of Lemma 2.2 is complete. 2
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