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Abstract

The spacing distribution between Farey points has drawn attention in
recent years. It was found that the gaps ;41 — 7; between consecutive
elements of the Farey sequence produce, as  — oo, a limiting measure.
Numerical computations suggest that for any d > 2, the gaps v;j4+q —; also
produce a limiting measure whose support is distinguished by remarkable
topological features. Here we prove the existence of the spacing distribution
for d = 2 and characterize completely the corresponding support of the
measure.
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1 Introduction

Let §, = {71,...,7n} be the Farey sequence of order ), which is defined to
be the set of all subunitary irreducible fractions with denominators < @, ar-
ranged in ascending order. For any interval Z C [0, 1], we write §,(Z) = §, N Z.
The cardinality of §,(Z) is well known to be Nz(Q) = 3|Z|Q?/7? + O(Qlog Q).
When 7 = [0,1] we write shortly N(Q) instead of Njo 1)(Q). Since §, contains
a large number of fractions obtained by a combined process of division, sieving
and sorting of integers from [1,Q], one would apriori expect little or even no
special structure in the set of all differences between consecutive fractions (which
we also call intervals of a second). Though, this expectation is not fulfilled. This
is sustained from many points of view by a series of authors, such as Franel [4],
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Kanemitsu, Sita Rama Chandra Rao and Siva Rama Sarma [9], Hall and Tenen-
baum [7], [8], Hall [5], Augustin, Boca and the authors [1], who have studied the
set of gaps between consecutive Farey fractions. A regularity is expected also in
the set of larger gaps v(t1 —~/ where 4/ runs over {71,---,Yn-a} and d > 2.
(We use up-scripts, such as v/,7",7",... to write consecutive elements of §,.)
It is our object to treat here the case d = 2, that is, the case of intervals of a
third.

Geometrical representations of the set of pairs of neighbor intervals of fractions
from §, created for different values of @) reveals sets of points whose density
concentrates on different parts of the plane. The aesthetical qualities of the
pictures catches attention immediately. For any d > 1 they look like a swallow
and the main topological distinctions are in the number of folds of the tail. Thus,
when d = 1 (neighbor pairs of intervals of a second) the swallow has a one-fold
tail (see [1]). When d = 2, the case treated in the present paper, the swallow has
a two-fold tail (see Figure 1) and in Section 3 we have calculated explicitely the
equations of the frontier. In the cases d > 3 the tail appears always to have a
three-folded tail, but this is more complex and its characterization will appear in
a separate paper.

Given N real numbers x1 < x5 < --- < xy with mean spacing 1, we consider
the h-th level of intervals of a third probability pop on Ri, defined, for f €
Ce([0,00)), by

N—h—-1

. _
/[0700)}1 fdpap = ] 32:31 J(@j =2, Tj43—Tj41, s Tjghg1—Tjrh1) -

In our case, we normalize §,(Z) to get the sequence z; = N(Q,Z)v;/|Z],
1 < j < N(Q,T) with mean spacing equal to one. Accordingly, we get the
sequence (pg’hI)Qzl of the h-th level of intervals of a third probabilities on [0, c0)".
We show that this sequence converges, as () — oo, to a probability measure ps p,
which is independent of Z, and can be expressed explicitly.

For any v; = a;/q; and v; = a;j/q; in §,, we set A(y;,7v;) = A4, ]) =

—|q ¢ |- This is the numerator of the difference 7; — ~;. It is well known that
A(y',~") = —1 for any consecutive elements of §,, and it turns out that this

equality is responsible for the existence of the h-spacing distribution of the Farey
sequence. Though, this relation is no longer true for larger intervals, but there
is a convenient replacement. To see this, let us note that a Farey fraction can
be uniquely determined by its two predecessors. Indeed, if Z—: < Z%: < % are
consecutive fractions of §,, we have o’ = ka” —a and ¢ = kq" — ¢/, where
k=AM,y") = [29].

The basic idea ofg our procedure is to parametrize the set of h-tuples of intervals
of a third in terms of just two variables that run over a completely described
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Figure 1: The support of s ».

domain. The set of pairs of consecutive denominators of fractions in §, are
exactly the elements of

{(dd"): 1<¢,¢"<Q, ¢ +¢">Qand (¢,¢") =1}.

Since we are mainly interested in what happens when @ — oo, we reduce the
scale @ times, and consider the background triangle 7 = {(z,y): 0 < z <
L, z+y> 1}, called the Farey triangle. We split it into a series of polygons as
follows. Firstly, for each (z,y) € IR?, we set Lo(x,y) = =, L1(z,y) = y, and then,
for i > 2, we define recursively:

1 + Li—Z(xy y)

Li—1(z,y) } Li-1(z,y) = Li-2(z,y).

Then, as in [3], we consider the map

k:7T — (IN*)h, k(z,y) = (kl(x,y), .. .,kh(az,y)),
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1+L171(I,y)
Li(z,y)
the subsets of 7 on which they are constant plays a special role. Thus, for any

k € (IN*)", we get the convex polygon
Tx = {(z,y) € T: k(z,y) =k}.

Notice that 7 = |J 7k and 7x N 7 = O whenever k # k'
ke(IN*)h
Next we consider the application ®55,: 7 — (0,00)" defined by

3( ki (x,y) ko (2, y) kn(z,y) )
72 \ Lo(%,y)L2(2,y)" Li(z,y)La(z,y)" " La—1(z,y)Lnsa(z,y) )

Our main result shows that, indeed, for () — oo, the sequence (uzQ’;LI)Qzl con-
verges to a measure and ®s ,(z,y) is the needed tool to describe its support.

where k;(z,y) = [ } The functions k;(x,y) are locally constant, and

(pQ,h(xa y) =

THEOREM 1. The sequence (Hg}?)Qzl converges weakly to a probability mea-
sure pa p, which is independent of Z. The support Dap, of pap is the closure of
the range of @2, and

p2,n(C) = 2Area(®;,,(C))
for any parallelepiped C = H?Zl(aj,ﬂj) C (0,00)".

In Table 1 from Section 3 we provide explicit formulae for all the pieces that
form Dy 5.

2 The Existence of the Limiting Measure

It is plain that in order to prove Theorem 1, it suffices to see the effect of ugp,
on bounded parallelepipeds. For any C = H?:l(aj, B;) C (0,00)", we define

0Ty = 1 uly c3(Q): Nef@y < T+~ Y1 < Ry
2 ()= N0y WESI i,k '

We have to show that the sequence {u;"?hI}Q is convergent when @ — oo and
the limit is independent of Z. In the beginning we treat the case of the complete
interval 7 = [0, 1].

2.1 The case 7 = [0,1]

In the following we write shortly u?h instead of ,ug’h[o’l].

With the notations from the Introduction, we see that vjyiy1 — Vjri—1 =
kjt+i/@j+it19j+i—1. Then ,ugh((,’) can be written as

N@Q)  gitit1gitizr - N(Q)
’ . 1
N(Q) fori=1,...,h

“gh(c) =~ T {’Yj €F@): P Kjti o
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Knowing that ¢;+; = QL;(q;/Q, ¢j+1/Q), we consider the set

NQ _ Lia(8.8)Lea(8.8) _ N
Q9(C) = { (z,y) € QT: P k(52 :
fori=1,...,h

Since neighbor denominators in §¢ are always coprime, relation (1) turns into

Mg{h@:% #{(2.y) € 99(C)NN2: ged(z,y) =1} .

Next, we select the points with coprime coordinates using Mobius summation
(cf. [1, Lemma 2]), and we find that

13, (C) = ﬁ@ (% Area (Q2(C)) + O(length (922(C)) log Q)). (3)

Splitting 7 into the series of polygons 7y, we see that the error term in (3) is
O(Qlog@). In the main term, we replace Q%(C) by the bounded set Q(C) =
Q9(C)/Q. These yield

6Q?

HEN(0) = gy Area (9A€) +Oc (loéQ). (4)

It remains to replace in (4) the set Q(C) by a set as in (2), but with bounds
independent of () in the corresponding inequalities. This set is

3 - Li—a(z,y)Lit1(z,y) < 3
O(C) = (z,y) €QT: TF Ri(e.y) mait 5. (5)
fori=1,...,h

Notice that D(C) is exactly @, }(C). The replacement does not change the error
term because, via N(Q) = 3Q?/7% + O(Qlog Q), we have:

N@ 3 | |INQ _ 3 N _ . (log@
lréliagxh {’ oziQQ B 7T2Ozi ’ ﬂiQQ B 7T2ﬂi } a OC (T) ’ (6)
which implies
Area (Q(C)AD(C)) = Oc (loéQ) . (7)
Therefore, by (5) and (7), we get
ugh(C) = 2 Area (9(C)) +OC<IO§2Q>' (8)

In particular, this gives us ;,(C) = limg_.0o ,ug%h(C) = 2 Area (9(C)), conclud-
ing the proof of the theorem when 7 = [0, 1].



244 Cristian Cobeli, Marian Vajaitu and Alexandru Zaharescu

2.2 The short interval case

Suppose now that Z C [0, 1] is fixed. In order to impose the condition that only
the fractions from Z are involved in the calculations, we employ the fundamental
property of neighbor fractions in F¢g. This says that if v/ = a//¢ and v = a” /¢"
are consecutive then a”’¢’ — a’'q” = 1. Consequently, "= (q')_ (mod ¢"), and

this allows us to write the fraction a” /¢ in terms of ¢’ and ¢”. Thus

1

d'/q" €T = (¢)7" (mod q") e q"'T.

This time we have to estimate

1
WO = gy HE (9)
where
va@ _ b (55) 0 (5.%) | v
02 ={(q.¢") e QT: T w(2.2) Z1Q%a:

We may write (9) as

D

W(T2(9),qT) (10)

q=1

where

No(J1, J2) = #{(m,n) € 1 x Jo: mn=1 (modq)},
for any J1,J2 C [0,Q — 1] and
Nz (Q)

Jla) =Sz e (@Q—qQ): M w(4.2)
fori=1,...,h

For the best available technique to estimate the size of Ny(J1,J2) one requires
bounds for Kloosterman sums (cf. [2]). This is done when J; and J» are intervals,
but it may be easily extended for finite unions of subintervals of [0, g — 1] (as the
set JCQ (¢) is), even with the same formula. For our needs here, it suffices a version
with a slightly weaker term:

Q )
Nq(jcQ(q),qI) _ @(Q)|-7cq(Q)| 7] +0c. (q1/2+€) ' (11)

Inserting (11) into (10), we get

Q
T Z )NTE( _
ﬂgh _ | ‘ SD ‘ C | + OC,E (Q 1/2+€) . (12)

q=1
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To calculate the sum in (12), we employ the Euler-MacLaurin formula, noticing

the fact that \jCQ (¢)|, as a function of ¢, is piecewise continuous differentiable on
[0,1]. We obtain

L o@IE @ 1 i Q
> AU s [198 @l da
1

q=1

(13)

Q
@ 9,0 )
+O<(1EUEQL7C (@) +1/8q|jc (q)|dq) logQ | .

The size of the error term is estimated observing, firstly, that |j§3(q)\ < Q.
Secondly, by the definition of jcQ(q) it follows that there exists a partition of

[1,Q)] in finitely many intervals with the property that the cardinality of JCQ (q)
is monotonic on each of them. Therefore

Q
/ a%uc@(q)\ dg = 0c(Q). (14)

1

Then, forgathering (13), (14), (6) in (12) and using again the estimate Nz(Q) =
31Z1Q% /7% + O(Qlog Q), we obtain

Nz (Q)

=2 Area (9(Q)) + Oc, (Q_1/2+€) :

Q
6|7 s
W) = oL [198 @l da+0c.(@77)
1

This concludes the proof of the theorem.

3 The Support of the Limiting Measure

For h = 1, we have Dy = [6/72,00). For h > 2, by Theorem 1, it follows that
Dy p, is a countable union of hyper-surfaces in [6/7%, 00)".

The support Dy} has some striking features. Let us see them in the case
h = 2. We write k = (k,) and observe that

1+ (4 1)z <1—|—la:}.

T = {) €T o <V

Roughly speaking, by definition we find that 7; corresponds to the set of 3-tuples
(v',7",4"") of consecutive elements of §, with the property that A(y',+") = k.
Similarly, 7, corresponds to the set of 4-tuples (v/,7”,7"”,7%) of consecutive
elements of §, with the property that A(y/,7"”) = k and A(y”,~") = 1. We
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remark that 77 ; = (), and also 7;; = () whenever both k and [ are > 2, except
when (k,1) € {(2,2);(2,3);(2,4);(3,2); (4,2)}. Notice that the symmetry of the
Farey sequence of order @) with respect to 1/2 produces a sort of balance between
the polygons 7;; and 7; .

Then the support Dy p, is the closure of the image of the function ®3 >, which
can be written as

in which z = @ — ky, t = y — It, for (z,y) € T; . A tedious, but elementary,
computation allows us to find precisely the boundaries of ®9 (7). The image
obtained is shown in Figure 1 and the equations are listed in Table 1. All the
functions that produce the equations of the boundaries of ®3 2(7,) are either of
the form % . et , with t in a certain interval that might be unbounded,

a+bt+cy/t(t—d)

or the symmetric with respect to x = y of such a curve. Here a,b,c,d, e are
integers.

We conclude by making a few remarks. Firstly, we mention that ®;, has
a symmetrization effect, namely, it makes ®s2(7,, ) and to ®22(7r,n) to be
symmetric with respect to the first diagonal y = x, for any m,n > 1. The
diamond® ®55(732) is the single nonempty domain ®52(7;,;) that has y = z
as axis of symmetry. The top of the beak of the swallow D5 has coordinates
(6/m2,6/7%). The asymptotes of the wings are y = 6/7% and x = 6/7%. The
highest density is on a region situated in the neck, where many components of
the swallow overlap partially or completely.

Table 1 below lists all the equations of the boundaries of @3 5(7%;). In the
head of the table M N represents an edge of 7, ; (listed in counterclockwise order,
starting either from the East or from the North side) and g, (t) is a parametriza-
tion of @272(MN).

Table 1: The edges of Dy 5.

k,l L MN l %ngN (t) L the domain of ¢
1,2 (3,1); (0,1) t(it%) 3 <t<oo
1,2 0,1); (3,3) m 2 <t<oo
1,2 (%’ %); (%’1) —12—3tigt t(t+8) % sts %O
1,3 (3.1 (5.1) Prew et i<t<?

continued on next page

IRemark that the edges of ®32(72,2) are close to being, but are not exactly straight lines.
The same applies for the edges of the diamonds in the tail.
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k,l L MN 7régMN(t) L the domain of ¢
1,3 1 (5:5) S §<t<®
1 4. 1 3 241 25
173 <g7g>a <Z7Z> *20+7t+9m SStS 3
1 3. 2 5 24t 49
1,3 (1.3 (5,%) Ty oy 8<t< ¥
2 5). T 54T 49
1,3 (79 (3:1) —24—Tt+11,/¢(t+12) d<t<g
T 1), (L i P
1,4 (5.1 (3:1) t—2+/t(t—4) g St<4
1,4 (%’1); (%7%) ﬁ 4§t§%
2 5. I 2 321 49
1,4 (7.7); (5:3) —28+11¢—13/t(t—8) T st=9
1 2. 3 1287 25
1,4 (33 1) —40—13t+19+/t(t+16) T St<?9
-1 1—2 20t [ (+1)?
17 ! > 5 (ﬁa 1)1 (Ta 1) (l—2)t—lm 2(1—2) <t< 2(1—1)
-2 =3 -1 20(1-1)t 12 (I+1)2
Li=5 1 (551 (51 ) (2—1)t+1/t(t+41—4) 20— =S 303
-3 1-1y. (-2 1 8it (+1)° (1+2)*
L2715 5 (5o A4l (I-5)t—(14+3)/t(t—8) | 2(=3) StS 302
_ 1-3 I—1\. (1-2 I 8lt (+1)? (1+2)°
L1=56) (5 m) (52 i A4 (I—5)t+(143)/t(t—8) | 2(=3) SUS 5y
41°t= «
_ _ - 1+1)2 1+2)?
L,i>5 (ééa 43 (Hia 1) @ XQDH H ;(77)1) <t< é(t)z)
(I=1)t—(14+1)1/t(t+41)
2
2,1 (1,1); (5.3) (ﬂ,.g%% 2<t<6
T2y, /2 3 9z 75
2,1 (3:3) (5:3) —124+4t—54/t(t—6) bst=?
2,1 (3.3 (LD PPyt 2<i< %
2,2 (1.3) (1,1) G 2<t< ¥
2,2 (1L,1); (£,9) N (TS 2<t<Z
2 3. J 187 25
2,2 (5.5) (3:2) —30-+13t—14./t(t—6) TSt<8
T TY\. 4 507 10
2,2 (5’ 5)’ (1, 5) —30—11t+144/t(t+10) 3 St<8
5Y. 4 —12¢2 10 14
2,3 (1,2); (1,%) (75-5-2)(7;—10) T St< T
2,3 (L,3); (5,3) ﬁ 2 <<
I B C SR EI) SZIT

24—2t+7,/t(t—6)

continued on next page
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continued from previous page

k,l L MN l 7régMN(t) L the domain of ¢
T 3. (1 B 47T Z 75
2,3 (5’ 5)’ (1, 7) —56—22t+274/t(t+14) 5 St=7
2 5 —16t> 14
2,4 (1,5) L7) )11 3 St<6
5 43 287 14 25
2,4 (1,2); (5,%) ETN oYy T St<F
43 2 36t 25
2,4 (5.5): (1.3) 30—t48+/t(t—6) 6<t<%
YY)
3,1 (L2): (1,2) m 3<t<ds
2\, (1 1 9t>
31 (1,5); (3:3) T3 E=3) 3<t<6
T I (23 3¢ a7
3,1 (2:3); (77 7) —72+31t—114/3t(3t—16) 6=<1< %
T3y, (] 3 507 15 a7
3,1 (7’ 7)i (1, 5) —60—23t+94/3t(3t+20) T StS 5
1y. 3 —18¢2 15
3,2 (1,3); (1,%) m T St<6
3,2 (1,3); (3,%) ST o<
T3y, (3 2 21 7 75
3,2 (7.%); (5.5) —168+79t—27+/3t(3t—16) 0 St=3
3 2). T 5I% 75
3,2 (5.5) (Lg) —T2—11t+7/3t(3t—16) 6<t<3
3. 1 —16t> 28
4’ 1 (1’ ?)7 (17 5) (t+4)(t—12) 4 S t § 5
1y. (3 2 16t> 20
4,1 (175)7 (575) T E—D) <t< 5
3 2. 2 1 257 20
41 (5.5) (5:3) —80+37t—38,/t(t—5) Ist<F
2 1. 3 a9¢ 78
b (5.3): (1,7) —56—23t426/1(t+7) 5=t=9
2. 3 —32¢t2 8 20
4,2 (1,%); (1,%) T (=28 TSt T
3Yy. (2 1 T4t 28
4,2 (1,%): (3,3) mrTTvW T 5 <t<9
7T ) 50% 20
4,2 (5.5 (1,%) 0-0t+161/01—5) 5 <t<9
2 ). 2 —k2t? k(k+1)
k=511 (Lg) (L7) =7+ k)(R) kst<
2y, (k=1 _2 k7t2 E(k+1)
k25 1] (g G5 ) (DR Fsts 5
4(k+1)%¢2 %
625, 1 (5 o) (g )] VRO D o (b
x (k2 —=2)t—k+/kt(kt—4k—4)
2(k+1)%t2
_ —dk— k(k+1 k+2)?
kE>5,1 (kLJrzwi-m);(lv}%H) t\x/kt(kt4k4)1 (k_Jrl)StS(j;)
(—k—=2)t+/kt(kt—4k—4)
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