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Boundedness analysis for certain two-dimensional
differential systems via a Lyapunov approach
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Abstract

In this paper, the problem of boundedness of solutions of a two-dimensio-
nal differential system is considered. Based on the Lyapunov function ap-
proach, a new boundedness criterion is derived in terms of this system. An
example is given to show the effectiveness of our result.
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1 Introduction

In 1980, Sinha [1] discussed asymptotic stability of null solution of the following
two-dimensional differential system:

fﬂ, = f(xvy) +p1(t)£L' + T(t)ya
y' = g(z,y) + s(t)x + pa(t)y.

In this paper, instead of the preceding system, we consider the following two-
dimensional differential system:

= flx,y) + pr(t)z + )y + p3(t, x,y), (1)
y' = g(z,y) + s(t)x + pa(t)y + pa(t, =, y),

where the prime denotes differentiation with respect to t, t € Rt = [0, 00);
fs g, p1, P2, P3, P4, r and s are continuous functions in their respective argu-
ments on R2, R, RT, RT, R x R?, RT x R?, R and R™, respectively; 7(t)
and s(t) are bounded functions, f(0,y) = ¢(z,0) = 0, and it is also assumed
that the derivatives f,(z,y) = %(m,y) and g,(z,y) = g—g(x,y) exist and are
continuous. We assume further that

pl(t) 7& O7p2(t) # 07
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5 / pr(s)ds = Ru(t) + Qu(t),

2 [ pa(s)ds = Ra(t) + Q2(t),

o—_

where the functions R;(.) and Q;(.), (i =1,
Qi) < e1, Qa(t)] < c2, RI(E) < 0, Rt
positive constants.

The motivation of this paper comes from the paper of Sinha [1]. Our aim is
to improve the result established in [1] to the system (1) for boundedness of the
solutions. We also give an example to illustrate the effectiveness of our result.
In particular, one can refer to the papers of Tung ([2, 3, 4]), C. Tung and E.
Tung [5], Tung and Sevli [6] and the references cited in these papers for some
works performed on boundedness of the solutions. It is worth mentioning that
our result is new and original.

2), are defined on R* = [0, 00), and
) < 0, in which ¢; and co are some

2 Problem Description

We establish the following theorem.

Theorem. In addition to the basic assumptions imposed on the functions
fy 9, p1 ,p2,p3 ,p4,7 and s that appearing in the system (1), we assume that
there exist two positive constants b, and by such that the following conditions
hold:

()
—b1e” R ORI (1) > 0,bybye” D O=LOR (1)RY(t) — K2(t) > 0 for all t € RT,
where K (t) = 7(t)bie~@1®) 4 s(t)bye= (1)
fo(z,y) <0 and gy(z,y) <0 forallt€ R and z,y € R,
(i)
p3(t, 2, 9)| < q1(t), [pa(t, 2, )| < qa(t), q1(t) < q(t) and go(t) < g(t) forall t € RT

and z, y € R,

where q1, g2, ¢ € L'(0,00), in which L'(0,00) is the space of Lebesgue inte-
grable functions.Then, there exists a positive constant M such that the solution
(z(.), y(.)) of the system (1) satisfies the inequalities

la(t)] < M, |y(t)] < M

for all t > tg > 0.
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Proof: We employ a Lyapunov function V' = V (¢, z,y) defined by:
V(t,z,y) = bie” g2 4 hye= 22 (2)

in which b; and by are some positive constants.

It is clear that V'(£,0,0) = 0, and bye~?*® and bye~ 9™ are bounded since
|Q1(t)] < ¢1 and |Q2(t)| < c2. Hence, it is seen that the Lyapunov function V is
positive definite.

Let (z(t),y(t)) be an arbitrary solution of the system (1). Differentiating the
function V along the system (1), we have

@V (ta(t),yt) =

= —01Qq(t)e @Dz (t) — baQh(t)e” = Dy(t)
2016~ (1) 42 | 9p,e=QR2(t)y(1) WD
= —b1Q1(t)e” M2 (t) — b2Qh(t)e” PWy()
+2bre” U Oa(t){ f(2(t), y()) + pr(8)x(t) +r()y(t) +ps(t, (1), y(1)}

+2bse” @2 Wy(t){g(x(t), y(t)) + s(B)x(t) + p2()y(t) + pa(t, 2(2), y(1))}.

In view of the assumptions

2 [ pi(s)ds = Ri(t) + Q1 (t)
/

and

2 [ pa(s)ds = Ra(t) + Qa(t),
/

the preceding equality leads that
FV(tat),y(t) =
= 2b1e= Q1O Fa(t), y(t))z(t) + 2be= 2D g(2(t), y(t))y(t)
+2b1e” A D (t)pa(t, x(t), y(t)) ¥

+2bse” @2 Wy()pa(t, 2(t), y(1)) — Wa(t),

where
W1 = —ble_Ql (t)Rll (t)x2 (t)—
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—2{r(t)b1e= O 4 s(t)bae= 2DV (t)y(t) — boe” DR, (£)y2(1).

It follows that the expression Wj(t) represents a quadratic form, and one can
arrange W1 (t) as the following:

where

—bre” AR (1) —r(t)bre= @11 — 5(t)bye@2()

A7 —rhe @0 — s(t)hoe 0 —bye= @0 Ry ()

Now, by noting the basic information related to the positive definiteness of a
quadratic form, we can conclude that Wi (t) > 0 provided that

—bie" ORI (1) > 0

and
biboe= @ O=Q2(M) R1 (1) Ry (t) — [r(t)bre QD) + s(t)boe=2(0]?

= byboe~ @ O=QO R (H)RL () — K2(t) > 0.

Hence, we have
4V (t,2(1). (1)) <
2b1e= 1O f((t), y(1)) (1) + 2o~ g (), y(1))u(?) (4)
2616~ O (ps (1, (), y(1)) + 2bac= P Oy(D)pa(t, 2(), y(1)).
Let Wo(t) represent the first two terms included in (4):
Wa(t) = 2b1e™ 4O f(w(t), y(1)a(t) + 2bae™ @ O g(a(t), y(H)u(?).

By the fact f(0,y) =0, g(x,0) = 0 and the generalized mean value theorem for
the derivative, we obtain that there exist 61 (¢) and 02(¢) € [0,1] such that

Wa(t) =2bje@®) f(w(t)7y(t1>)t—f(07y(t)) 22(t)
+2bye—Q2(1) g(x(t),y(t;()t;g(:r(t)ﬁ) y2(t)

= 2bye= O £ (012(t), y (1)) 2 () + 2006~ D g, (a(t), 2y (1)) y? ().

Making use of the assumptions f,(z,y) < 0 and g,(z,y) < 0, it follows that
Wo(t) < 0. This fact now yields to the following inequality:

%V(t»x(t)vy(t)) < 2b1e” D Oz ()ps(t, (), y(8)) + 2bae” POy (O)pa(t 2(t), y(¢)).
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By noting the assumption (ii), the inequalities |y| < 1+ 2, |z| < 1+ 22 and the
boundedness of bie~@1() and bye~@>(*) | the preceding inequality implies that
@V (ta(t),y(t) <
< 2b1e” U [z ()] ps (¢, (), y(1))] + 2b2e™ PO |y (t)] |pa(t, z(t), y(1))]
< 2b1e” DO [ps(t, 2(t), y(1)| 2® + 2be =92 [pa(t, (1), y (1)) v (1)
+2b1e” A |ps(t, 2(t), y(t))] + 2bze™ 2 [pa(t, 2(t), y(t))|
< 201~ @1 gy (1) 22 (t) + 2be= 2 M gy (£)y%(t) (5)
+2b1e= Q1 g (1) 4 2bye= 2B gy (1)
< 2{b1e QWA (t) + bpe” @2y () }q(t)
+2b1e= gy () + 2bye= 2B gy (1)
<2V (¢ 2(t),y(t)a(t) + k1qr(t) + k2qa(t),
where 2b1e~ Q1) < ky, 2bye~@Q2(1) < ks Ky and ko are some positive constants,
which we now assume.

Integrating (5) from 0 to ¢ , using the assumptions ¢; € L'(0,00), qo €
L'(0,00), ¢ € L'(0,00), and Gronwall-Reid-Bellman inequality, we obtain

Vit z(t),y(t) < V(0,2(0),4(0)) + k1A + ke B +2 Oft V(s x(s), y(s))q(s)ds

t

< {V(0,2(0),y(0)) + k1A + k2 B} exp|2 Of q(s)ds]
= {V(0,2(0),5(0)) + k1 A + ks B} exp(2C) = M, < o0,

where M7 > 0 is a constant, A = f q1(s)ds, B = f q2(8)ds and C = f q(s

Now, subject to the above dleUbblOH we arrlve at the following:
bre= @M g2 4 poe=Q2(y2 — V(t,z,y) < M.
Therefore, one can easily conclude, for some positive constant M, that
lz(t)] < M, |y(t)] < M,

for all t > tg > 0.
The proof is complete. D
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Example.Consider the following two-dimensional differential system:

o = —23y? + S(1 —esin M)z + 71+t2+si1n2x+y2 6
r_ 2,5 b . ( )
Y =27y’ + (L +ecos A )y+ 175

+cos? z+y2?

where € and A (# 0) are some arbitrary constants, and a and b are some negative
constants.

It is clear that the two-dimensional differential system (6) is a special case
of the two-dimensional differential system (1). By comparing (6) with (1) and
taking into account the assumptions of the theorem, it follows the following:

fla,y) = =2y,
f(O,y) _Oa
fx(x7y) = —3I2y2 < 07
pi(t)a g(l — esin )z,
2/ a/lf{—:sln/\s dsf(atf%)Jr%COS/\t Ryi(t) + Qu(t),
0 0
ae
Rl(t) =at — 7,
Ri(t)=a <0,
Q:1(t) = i;COSAt,
ae |ag|
)] = )\t‘ < el
Qi) = eos | <
r(t) =0,
2
t =
pa(t,,y) 142 4 sin?x + g2’
3
|p3(t,$,y)| S 1+t2 = Q1<t),

oo

T 3 3
/QI(S)d5:/1+52d3:?<007
)

0
g(z,y) = —a*y°,
g(z,()) = Oa
gy(z,y) = —5ay* <0,
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b
pa(t)y = 5(1 + € cos At)y,

¢ t
2/p2 /1—|—€COb/\S ds-bt+%sln)\t—R2()+Q2(t)7
0 0
Ry (t) = bt,
Ry(t)=b<0

Qa(t) = bfsin At,

@a(0) = |y sinae| < .

palts@,y) = 1+t2+(:10s2x+y2’
2
alt. 2. € g = o)
and

T o2
/QQ(S)dSZ/mdS:W< 00,
0 0

that is, g2 € Ll(O 00).

Let ¢(t) = 1+t2 Clearly, q1(t) < q(t), ¢2(t) < q(t) and g € LI(O>OO)'

Thus, all the assumptions of Theorem hold. That is, all solutions of the system
(6) are bounded.

Conclusion

By means of Lyapunov function approach this paper obtained a new bound-
edness criterion for a certain two-dimensional differential system. An example
is showed to the importance and applicability of this criterion. Our criterion
improves an important result obtained on the stability of the null solution of a
two-dimensional differential system in the literature to boundedness of the solu-
tions of an extended two-dimensional differential system.
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