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Abstract

In this paper, the problem of boundedness of solutions of a two-dimensio-

nal differential system is considered. Based on the Lyapunov function ap-

proach, a new boundedness criterion is derived in terms of this system. An

example is given to show the effectiveness of our result.
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1 Introduction

In 1980, Sinha [1] discussed asymptotic stability of null solution of the following
two-dimensional differential system:

x′ = f(x, y) + p1(t)x + r(t)y,

y′ = g(x, y) + s(t)x + p2(t)y.

In this paper, instead of the preceding system, we consider the following two-
dimensional differential system:

x′ = f(x, y) + p1(t)x + r(t)y + p3(t, x, y),
y′ = g(x, y) + s(t)x + p2(t)y + p4(t, x, y),

(1)

where the prime denotes differentiation with respect to t, t ∈ R+ = [0,∞);
f , g, p1, p2, p3, p4, r and s are continuous functions in their respective argu-
ments on R2, R2, R+, R+, R+ × R2, R+ × R2, R+ and R+, respectively; r(t)
and s(t) are bounded functions, f(0, y) = g(x, 0) = 0, and it is also assumed
that the derivatives fx(x, y) ≡ ∂f

∂x
(x, y) and gy(x, y) ≡ ∂g

∂y
(x, y) exist and are

continuous. We assume further that

p1(t) 6= 0, p2(t) 6= 0,
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2

t
∫

0

p1(s)ds = R1(t) + Q1(t),

2

t
∫

0

p2(s)ds = R2(t) + Q2(t),

where the functions Ri(.) and Qi(.), (i = 1, 2), are defined on R+ = [0,∞), and
|Q1(t)| < c1, |Q2(t)| < c2, R′

1(t) < 0, R′

2(t) < 0, in which c1 and c2 are some
positive constants.

The motivation of this paper comes from the paper of Sinha [1]. Our aim is
to improve the result established in [1] to the system (1) for boundedness of the
solutions. We also give an example to illustrate the effectiveness of our result.
In particular, one can refer to the papers of Tunç ([2, 3, 4]), C. Tunç and E.
Tunç [5], Tunç and Şevli [6] and the references cited in these papers for some
works performed on boundedness of the solutions. It is worth mentioning that
our result is new and original.

2 Problem Description

We establish the following theorem.
Theorem. In addition to the basic assumptions imposed on the functions

f , g, p1 , p2, p3 , p4, r and s that appearing in the system (1), we assume that
there exist two positive constants b1 and b2 such that the following conditions
hold:

(i)

−b1e
−Q1(t)R′

1(t) > 0, b1b2e
−Q1(t)−Q2(t)R′

1(t)R
′

2(t) − K2(t) > 0 for all t ∈ R+,

where K(t) = r(t)b1e
−Q1(t) + s(t)b2e

−Q2(t),

fx(x, y) ≤ 0 and gy(x, y) ≤ 0 for all t ∈ R+ and x, y ∈ R,

(ii)

|p3(t, x, y)| ≤ q1(t), |p4(t, x, y)| ≤ q2(t), q1(t) ≤ q(t) and q2(t) ≤ q(t) forall t ∈ R+

and x, y ∈ R,

where q1, q2, q ∈ L1(0,∞), in which L1(0,∞) is the space of Lebesgue inte-
grable functions.Then, there exists a positive constant M such that the solution
(x(.), y(.)) of the system (1) satisfies the inequalities

|x(t)| ≤ M, |y(t)| ≤ M

for all t ≥ t0 ≥ 0.



Boundedness analysis for differential systems 63

Proof: We employ a Lyapunov function V = V (t, x, y) defined by:

V (t, x, y) = b1e
−Q1(t)x2 + b2e

−Q2(t)y2, (2)

in which b1 and b2 are some positive constants.
It is clear that V (t, 0, 0) = 0, and b1e

−Q1(t) and b2e
−Q2(t) are bounded since

|Q1(t)| < c1 and |Q2(t)| < c2. Hence, it is seen that the Lyapunov function V is
positive definite.

Let (x(t), y(t)) be an arbitrary solution of the system (1). Differentiating the
function V along the system (1), we have

d
dt

V (t, x(t), y(t)) =

= −b1Q
′

1(t)e
−Q1(t)x2(t) − b2Q

′

2(t)e
−Q2(t)y2(t)

+2b1e
−Q1(t)x(t)dx(t)

dt
+ 2b2e

−Q2(t)y(t)dy(t)
dt

= −b1Q
′

1(t)e
−Q1(t)x2(t) − b2Q

′

2(t)e
−Q2(t)y2(t)

+2b1e
−Q1(t)x(t){f(x(t), y(t)) + p1(t)x(t) + r(t)y(t) + p3(t, x(t), y(t))}

+2b2e
−Q2(t)y(t){g(x(t), y(t)) + s(t)x(t) + p2(t)y(t) + p4(t, x(t), y(t))}.

In view of the assumptions

2

t
∫

0

p1(s)ds = R1(t) + Q1(t)

and

2

t
∫

0

p2(s)ds = R2(t) + Q2(t),

the preceding equality leads that

d
dt

V (t, x(t), y(t)) =

= 2b1e
−Q1(t)f(x(t), y(t))x(t) + 2b2e

−Q2(t)g(x(t), y(t))y(t)

+2b1e
−Q1(t)x(t)p3(t, x(t), y(t))

+2b2e
−Q2(t)y(t)p4(t, x(t), y(t)) − W1(t),

(3)

where
W1 = −b1e

−Q1(t)R′

1(t)x
2(t)−



64 Cemil Tunç

−2{r(t)b1e
−Q1(t) + s(t)b2e

−Q2(t)}x(t)y(t) − b2e
−Q2(t)R′

2(t)y
2(t).

It follows that the expression W1(t) represents a quadratic form, and one can
arrange W1(t) as the following:

W1(t) = [x(t), y(t)] A

[

x(t)
y(t)

]

.

where

A =

[

−b1e
−Q1(t)R′

1(t) −r(t)b1e
−Q1(t) − s(t)b2e

−Q2(t)

−r(t)b1e
−Q1(t) − s(t)b2e

−Q2(t) −b2e
−Q2(t)R′

2(t)

]

Now, by noting the basic information related to the positive definiteness of a
quadratic form, we can conclude that W1(t) ≥ 0 provided that

−b1e
−Q1(t)R′

1(t) > 0

and
b1b2e

−Q1(t)−Q2(t)R′

1(t)R
′

2(t) − [r(t)b1e
−Q1(t) + s(t)b2e

−Q2(t)]2

= b1b2e
−Q1(t)−Q2(t)R′

1(t)R
′

2(t) − K2(t) > 0.

Hence, we have

d
dt

V (t, x(t), y(t)) ≤

2b1e
−Q1(t)f(x(t), y(t))x(t) + 2b2e

−Q2(t)g(x(t), y(t))y(t)

+2b1e
−Q1(t)x(t)p3(t, x(t), y(t)) + 2b2e

−Q2(t)y(t)p4(t, x(t), y(t)).

(4)

Let W2(t) represent the first two terms included in (4):

W2(t) = 2b1e
−Q1(t)f(x(t), y(t))x(t) + 2b2e

−Q1(t)g(x(t), y(t))y(t).

By the fact f(0, y) = 0, g(x, 0) = 0 and the generalized mean value theorem for
the derivative, we obtain that there exist θ1(t) and θ2(t) ∈ [0, 1] such that

W2(t) = 2b1e
−Q1(t) f(x(t),y(t))−f(0,y(t))

x(t) x2(t)

+2b2e
−Q2(t) g(x(t),y(t))−g(x(t),0)

y(t) y2(t)

= 2b1e
−Q1(t)fx(θ1x(t), y(t))x2(t) + 2b2e

−Q2(t)gy(x(t), θ2y(t))y2(t).

Making use of the assumptions fx(x, y) ≤ 0 and gy(x, y) ≤ 0, it follows that
W2(t) ≤ 0. This fact now yields to the following inequality:

d

dt
V (t, x(t), y(t)) ≤ 2b1e

−Q1(t)x(t)p3(t, x(t), y(t)) + 2b2e
−Q2(t)y(t)p4(t, x(t), y(t)).
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By noting the assumption (ii), the inequalities |y| < 1 + y2, |z| < 1 + z2 and the
boundedness of b1e

−Q1(t) and b2e
−Q2(t), the preceding inequality implies that

d
dt

V (t, x(t), y(t)) ≤

≤ 2b1e
−Q1(t) |x(t)| |p3(t, x(t), y(t))| + 2b2e

−Q2(t) |y(t)| |p4(t, x(t), y(t))|

≤ 2b1e
−Q1(t) |p3(t, x(t), y(t))|x2 + 2b2e

−Q2(t) |p4(t, x(t), y(t))| y2(t)

+2b1e
−Q1(t) |p3(t, x(t), y(t))| + 2b2e

−Q2(t) |p4(t, x(t), y(t))|

≤ 2b1e
−Q1(t)q1(t)x

2(t) + 2b2e
−Q2(t)q2(t)y

2(t)

+2b1e
−Q1(t)q1(t) + 2b2e

−Q2(t)q2(t)

≤ 2{b1e
−Q1(t)x2(t) + b2e

−Q2(t)y2(t)}q(t)

+2b1e
−Q1(t)q1(t) + 2b2e

−Q2(t)q2(t)

≤ 2V (t, x(t), y(t))q(t) + k1q1(t) + k2q2(t),

(5)

where 2b1e
−Q1(t) ≤ k1, 2b2e

−Q2(t) ≤ k2, k1 and k2 are some positive constants,
which we now assume.

Integrating (5) from 0 to t , using the assumptions q1 ∈ L1(0,∞), q2 ∈
L1(0,∞), q ∈ L1(0,∞), and Gronwall-Reid-Bellman inequality, we obtain

V (t, x(t), y(t)) ≤ V (0, x(0), y(0)) + k1A + k2B + 2
t
∫

0

V (s, x(s), y(s))q(s)ds

≤ {V (0, x(0), y(0)) + k1A + k2B} exp[2
t
∫

0

q(s)ds]

= {V (0, x(0), y(0)) + k1A + k2B} exp(2C) = M1 < ∞,

where M1 > 0 is a constant, A =
∞
∫

0

q1(s)ds, B =
∞
∫

0

q2(s)ds and C =
∞
∫

0

q(s)ds.

Now, subject to the above discussion, we arrive at the following:

b1e
−Q1(t)x2 + b2e

−Q2(t)y2 = V (t, x, y) ≤ M1.

Therefore, one can easily conclude, for some positive constant M, that

|x(t)| ≤ M, |y(t)| ≤ M,

for all t ≥ t0 ≥ 0.

The proof is complete.
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Example.Consider the following two-dimensional differential system:

x′ = −x3y2 + a
2 (1 − ε sin λt)x + 1

1+t2+sin2 x+y2

y′ = −x2y5 + b
2 (1 + ε cos λt)y+ 2

1+t2+cos2 x+y2 ,
(6)

where ε and λ (6= 0) are some arbitrary constants, and a and b are some negative
constants.

It is clear that the two-dimensional differential system (6) is a special case
of the two-dimensional differential system (1). By comparing (6) with (1) and
taking into account the assumptions of the theorem, it follows the following:

f(x, y) = −x3y2,

f(0, y) = 0,

fx(x, y) = −3x2y2 ≤ 0,

p1(t)x =
a

2
(1 − ε sin λt)x,

2

t
∫

0

p1(s)ds = a

t
∫

0

(1 − ε sin λs)ds = (at −
aε

λ
) +

aε

λ
cos λt = R1(t) + Q1(t),

R1(t) = at −
aε

λ
,

R′

1(t) = a < 0,

Q1(t) =
aε

λ
cos λt,

|Q1(t)| =
∣

∣

∣

aε

λ
cos λt

∣

∣

∣
≤

|aε|

|λ|
,

r(t) = 0,

p3(t, x, y) =
2

1 + t2 + sin2 x + y2
,

|p3(t, x, y)| ≤
3

1 + t2
= q1(t),

∞
∫

0

q1(s)ds =

∞
∫

0

3

1 + s2
ds =

3π

2
< ∞,

g(x, y) = −x2y5,

g(x, 0) = 0,

gy(x, y) = −5x2y4 ≤ 0,

s(t)x = 0,
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p2(t)y =
b

2
(1 + ε cos λt)y,

2

t
∫

0

p2(s)ds = b

t
∫

0

(1 + ε cos λs)ds = bt +
bε

λ
sin λt = R2(t) + Q2(t),

R2(t) = bt,

R′

2(t) = b < 0

Q2(t) =
bε

λ
sinλt,

|Q2(t)| =

∣

∣

∣

∣

bε

λ
sin λt

∣

∣

∣

∣

≤
|bε|

|λ|
,

p4(t, x, y) =
1

1 + t2 + cos2 x + y2
,

|p4(t, x, y)| ≤
2

1 + t2
= q2(t)

and
∞
∫

0

q2(s)ds =

∞
∫

0

2

1 + s2
ds = π < ∞,

that is, q2 ∈ L1(0,∞).
Let q(t) = 4

1+t2
. Clearly, q1(t) ≤ q(t), q2(t) ≤ q(t) and q ∈ L1(0,∞).

Thus, all the assumptions of Theorem hold. That is, all solutions of the system
(6) are bounded.

Conclusion

By means of Lyapunov function approach this paper obtained a new bound-
edness criterion for a certain two-dimensional differential system. An example
is showed to the importance and applicability of this criterion. Our criterion
improves an important result obtained on the stability of the null solution of a
two-dimensional differential system in the literature to boundedness of the solu-
tions of an extended two-dimensional differential system.
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