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1 Introduction

We consider the following multiobjective nonlinear fractional programming pro-
blem:

(V FP )
min f(x)

g(x) =

(
f1(x)

g1(x)
, . . . ,

fp(x)

gp(x)

)

subject to

{
hj(x) ≦ 0, j = 1, 2, . . . ,m

x ∈ X0,

where X0 ⊆ Rn is a nonempty open set, f = (f1, . . . , fp), g = (g1, . . . , gp) : X0 →
Rp, h = (h1, . . . , hm) : X0 → Rm, gi(x) > 0 for all x ∈ X0 and each i = 1, . . . , p.

We denote X = {x ∈ X0 | hj(x) ≦ 0, j = 1, 2, . . . ,m}, the feasible set of problem
(VFP).

Optimality conditions and duality for nonlinear singleobjective or multiobjec-
tive optimization problems involving generalized convex functions have been of
much interest in the recent past and many contributions have been made to this
development, e.g. Antczak [1], Corley [2], Egudo [3], Geoffrion [5], Mishra [10],
Mititelu [16], Mukherjee and Mishra [17].

There exists an equivallence between saddle-points of the Lagrangian and
optima for an inequality constrained minimization problem, under a convexity
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assumption and a regularity hypothesis. In [7], Jeyakumar discussed a class of
nonsmooth nonconvex problems in which functions are locally Lipschitz and are
satisfying some invex type conditions and he proved that duality theorems of
Wolfe type hold for this class of problems.

Mishra and Mukherjee extended the concept of V–invex functions to non-
smooth case [13] and nonsmooth composite case [9] and [11]. Mishra [8] and
Mishra and Mukherjee [12] have also extended the class of V-invex functions to
the case of continuous-time and established duality results for variational and
control problems.

Preda and Stancu-Minasian [22] gave optimality conditions for weak vector
minima using η-semidifferentials and functions satisfying generalized semilocally
preinvex properties and used these results to extend the Wolfe and Mond-Weir
duals, generalizing results of Preda [19], Preda et al. [23].

Preda [20] considered necessary and sufficient optimality conditions for a non-
linear fractional multiple objective programming problem involving η-semidifferen-
tiable functions. Also, a general dual was formulated and duality results were
proved using concepts of generalized semilocally preinvex functions. Thus, results
of Preda [19], Preda et al. [23], Preda and Stancu-Minasian [22] were generalized.

Mishra et al. [15] extended the issues of Preda [20] to the case of semilocally
type I and related functions, generalizing results of Preda [20].

Niculescu [18] defined αη-locally starshaped sets, considered optimality con-
ditions for (VFP) involving η-semidifferentiable functions and proved a duality
result using generalized ρ-semilocally type I and related functions, extending the
work of Mishra et al. [15].

In this paper, we obtain sufficient optimality conditions and a duality result
for (VFP) involving more general classes of functions. Here, as in Preda [21],
the place of the derivative is taken by a bifunction having certain properties.
Thus, we extend the work of Niculescu [18] and generalize results obtained in the
literature on this topic.

2 Definitions and Preliminaries

Throughout this paper we use the following conventions for x, y ∈ Rn:

x < y iff xi < yi for any i = 1, n;

x ≦ y iff xi ≦ yi for any i = 1, n;

x ≤ y iff x ≦ y and x 6= y.

x ≮ y is the negation of x < y.

We denote Rn
+ = {x ∈ Rn|x≧0} .

Definition 2.1. A point x ∈ X is said to be a weak Pareto solution or weak

minimum for (VFP) if
f(x)

g(x)
≮

f(x)

g(x)
for all x ∈ X.
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Definition 2.2. A point x ∈ X is said to be a local weak Pareto solution or local
weak minimum for (VFP) if there is a neighborhood V (x) around x, such that

f(x)

g(x)
≮

f(x)

g(x)
for all x ∈ X ∩ V (x) .

Let f̂i, ĝi : X0 ×Rn → R for i ∈ P = {1, 2, ..., p} , and ĥj : X0 ×Rn → R for
j ∈ M = {1, 2, ...,m}.

Let ρ1 =
(
ρ1
1, ..., ρ

1
p

)T
, ρ2 =

(
ρ2
1, ..., ρ

2
p

)T
∈ Rp, ρ3 =

(
ρ3
1, ..., ρ

3
m

)
∈ Rm, and

d : X0 × X0 → R+.

Definition 2.3. (see [21]). (f, g, h) is said to be of general
(
ρ1, ρ2, ρ3, d

)
- type

I at x ∈ X0 relative to
(
f̂i, ĝi, ĥj

)
, i ∈ P, j ∈ M if there exist the functions

η : X0 × X0 → Rn, αi, βi, γj : X0 × X0 → R+\ {0} , i ∈ P, j ∈ M such that for
all x ∈ X0, we have

fi (x) − fi (x) ≧ αi (x, x) f̂i (x, η (x, x)) + ρ1
i d(x, x),∀i ∈ P,

gi (x) − gi (x) ≦ βi (x, x) ĝi (x, η (x, x)) − ρ2
i d(x, x),∀i ∈ P,

−hj (x) ≧ γj (x, x) ĥj (x, η (x, x)) + ρ3
jd(x, x),∀j ∈ M.

3 Sufficient Optimality Criteria

In this section we obtain some sufficient conditions for a feasible solution x to be
weak minimum for (VFP).

Theorem 3.1. Let x ∈ X such that f (x) ≧ 0, and (f, g, h) be of general(
ρ1, ρ2, ρ3, d

)
- type I at x. Also, we assume that there exists λ0 ∈ Rp, v0 ∈ Rm

such that ρ2 ≧ 0,

p∑

i=1

λ0

i ρ1

i

αi(x,x) +

m∑

j=1

v0

j ρ3

j

γj(x,x) ≧ 0,∀x ∈ X, and

p∑

i=1

λ0
i f̂i(x, η(x, x))+

m∑

j=1

v0
j ĥj(x, η(x, x)) ≧ 0, ∀ x ∈ X, (3.1)

ĝi(x, η(x, x)) ≦ 0, ∀x ∈ X, ∀i ∈ P, (3.2)

v0T

h(x) = 0, (3.3)

λ0 ≥ 0, (3.4)

v0 ≧ 0. (3.5)

Then x is a weak minimum solution for (VFP).

Proof: We proceed by contradicting. We assume that there exists x̃ ∈ X such
that

fi(x̃)

gi(x̃)
<

fi(x)

gi(x)
for any i ∈ P. (3.6)
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Since (f, g, h) is of general
(
ρ1, ρ2, ρ3, d

)
- type I at x, we get

1
αi(ex,x) (fi(x̃) − fi(x)) ≧ f̂i(x, η(x̃, x)) +

ρ1

i

αi(ex,x)d(x̃, x),∀ i ∈ P, (3.7)

1
βi(ex,x) (gi(x̃) − gi(x)) ≦ ĝi(x, η(x̃, x)) − ρ2

i

βi(ex,x)d(x̃, x),∀ i ∈ P, (3.8)

− hj(x)
γj(ex,x) ≧ ĥj(x, η(x̃, x))+

ρ3

j

γj(ex,x)d(x̃, x), ∀j ∈ M. (3.9)

Multiplying (3.7) by λ0
i ≧ 0, i ∈ P, (3.10) by v0

j ≧ 0, j ∈ M and then summing
the obtained relations, we get

p∑

i=1

λ0

i

αi(ex,x) (fi(x̃) − fi(x)) −
m∑

j=1

v0

j

γj(ex,x)hj(x) ≧

p∑

i=1

λ0
i f̂i(x, η(x̃, x)) +

m∑

j=1

v0
j ĥj(x, η(x̃, x))+




p∑

i=1

λ0

i ρ1

i

αi(ex,x) +

m∑

j=1

v0

j ρ3

j

γj(ex,x)


 d(x̃, x) ≧ 0,

where the last inequality is according to (3.1), d(x̃, x) ≧ 0, and

p∑

i=1

λ0

i ρ1

i

αi(ex,x) +

m∑

j=1

v0

j ρ3

j

γj(ex,x) ≧ 0. Hence,

p∑

i=1

λ0

i

αi(ex,x) (fi(x̃) − fi(x))−
m∑

j=1

v0

j

γj(ex,x)hj(x) ≧ 0. (3.10)

By (3.3), (3.5) and x ∈ X we get v0
j hj(x) = 0,∀j ∈ M . Therefore, from (3.10),

we obtain
p∑

i=1

λ0

i

αi(ex,x) (fi(x̃) − fi(x)) ≧ 0. (3.11)

Using (3.4), αi (x̃, x) > 0,∀ i ∈ P and (3.11), we obtain that there exists i0 ∈ P

such that

fi0(x̃) ≧ fi0(x). (3.12)

By (3.2), (3.8), βi (x̃, x) > 0,∀i ∈ P , d(x̃, x) ≧ 0, and ρ2 ≧ 0 it follows

gi(x̃) ≦ gi(x),∀ i ∈ P. (3.13)

Now, using (3.12), (3.13), f(x) ≧ 0 and g > 0, we obtain
fi0(x̃)

gi0(x̃)
≧

fi0(x)

gi0(x)
,

which is in contradiction to (3.6).
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Theorem 3.2. Let x ∈ X, u0
i =

fi(x)

gi(x)
,∀i ∈ P , and (f, g, h) be of general

(
ρ1, ρ2, ρ3, d

)
- type I at x. Also, we assume that there exists λ0 ∈ Rp, v0 ∈ Rm

such that λ0T

ρ1 −

p∑

i=1

λ0
i u

0
i ρ

2
i + v0T

ρ3 ≧ 0,

p∑

i=1

λ0
i

(
αi (x̃, x) f̂i(x, η(x, x)) − u0

i βi (x̃, x) ĝi(x, η(x, x))
)

+

m∑

j=1

v0
j γj (x̃, x) ĥj(x, η(x, x)) ≧ 0,∀x ∈ X, (3.14)

v0T

h(x) = 0, (3.15)

λ0 ≥ 0, (3.16)

u0 ≧ 0, (3.17)

v0 ≧ 0. (3.18)

Then x is a weak minimum solution for (VFP).

Proof: We proceed by contradicting. If x is not a weak minimum solution for
(VFP), there exists x̃ ∈ X such that

fi(x̃)

gi(x̃)
<

fi(x)

gi(x)
,∀ i ∈ P,

i.e.,

fi(x̃) < u0
i gi(x̃),∀i ∈ P. (3.19)

Since (f, g, h) is of general
(
ρ1, ρ2, ρ3, d

)
- type I at x, we get

fi(x̃) − fi(x) ≧ αi (x̃, x) f̂i(x, η(x̃, x)) + ρ1
i d(x̃, x), i ∈ P,

gi(x̃) − gi(x) ≦ βi (x̃, x) ĝi(x, η(x̃, x)) − ρ2
i d(x̃, x), i ∈ P,

−hj(x) ≧ γj (x̃, x) ĥj(x, η(x̃, x)) + ρ3
jd(x̃, x), j ∈ M.

Using these inequalities, (3.16), (3.17), and (3.18), we get

p∑

i=1

λ0
i (fi(x̃) − fi(x)) −

p∑

i=1

λ0
i u

0
i (gi(x̃) − gi(x)) −

m∑

j=1

v0
j hj(x) ≧

p∑

i=1

λ0
i

(
αi (x̃, x) f̂i(x, η(x̃, x)) − u0

i βi (x̃, x) ĝi(x, η(x̃, x))
)

+

m∑

j=1

v0
j γj (x̃, x) ĥj(x, η(x̃, x)) +

(
λ0T

ρ1−

p∑

i=1

λ0
i u

0
i ρ

2
i + v0T

ρ3

)
d(x̃, x) ≧ 0,

where the last inequality is according to (3.14), d(x̃, x) ≧ 0, and λ0T

ρ1−

p∑

i=1

λ0
i u

0
i ρ

2
i +
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v0T

ρ3 ≧ 0. Therefore,

p∑

i=1

λ0
i

[(
fi(x̃) − u0

i gi(x̃)
)
−

(
fi(x) − u0

i gi(x)
)]

−
m∑

j=1

v0
j hj(x) ≧ 0.

Since u0
i =

fi(x)

gi(x)
,∀i ∈ P, we obtain

p∑

i=1

λ0
i

(
fi(x̃) − u0

i gi(x̃)
)
− v0T

h(x) ≧ 0.

Now, (3.15) gives

p∑

i=1

λ0
i

(
fi(x̃) − u0

i gi(x̃)
)

≧ 0. (3.20)

From (3.16), we get that there exists i0 ∈ P such that:

fi0(x̃) − u0
i0

gi0(x̃) ≧ 0,

which contradicts (3.19).

4 Duality

Let f̂i, ĝi, (i ∈ P ), ĥj(j ∈ M), ρ1, ρ2, ρ3, η, and d be as in Section 2. We consider,
for (VFP), a general Mond-Weir dual (FMWD) as

max ψ(y, λ, u, v) = u − vT
I0

hI0
(y)e

subject to:

p∑

i=1

λi

(
f̂i(y, η (x, y)) − uiĝi(y, η (x, y))

)
+

m∑

j=1

viĥi(y, η (x, y)) ≧ 0, (4.1)

for all x ∈ X,

fi(y)− uigi(y) ≧ 0 for any i ∈ P, (4.2)

vT
Is

hIs
(y) ≧ 0 (1 ≦ s ≦ γ), (4.3)

λT e = 1, λ ≥ 0, λ ∈ Rp, (4.4)

u ≧ 0, u ∈ Rp, v ≧ 0, y ∈ X0, (4.5)
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where γ ≧ 1, Is ∩ It = ∅ for s 6= t and

γ⋃

s=0

Is = M. (Here vIs
= (vj)j∈Is

,

hIs
= (hj)j∈Is

).
Let W denote the set of all feasible solutions of (FMWD). Also, we define the

following sets

A = {(λ, u, v) ∈ Rp × Rp × Rm|(y, λ, u, v) ∈ W for some y ∈ X0}

and, for (λ, u, v) ∈ A,

B(λ, u, v) = {y ∈ X0 | (y, λ, u, v) ∈ W}.

We put B =
⋃

(λ,u,v)∈A

B(λ, u, v) and note that B ⊂ X0. Also, we note that if

(y, λ, u, v) ∈ W then (λ, u, v) ∈ A and y ∈ B(λ, u, v).

Theorem 4.1. (Weak Duality). Assume that for all feasible solutions x ∈ X

and (y, λ, u, v) ∈ W for (VFP) and (FMWD) respectively, we have

f̂i (y, η (x, y)) − uiĝi (y, η (x, y)) +
∑

j∈I0

vj ĥj (y, η (x, y)) ≧

−ρ1
i d (x, y) ⇒ fi (x) − uigi (x) + vT

I0
hI0

(x) ≥ fi (y) − uigi (y) + vT
I0

hI0
(y),

for all i ∈ P, (4.6)
and

−vT
Is

hIs
(y) ≦ 0 ⇒

∑

j∈Is

vj ĥj (y, η (x, y)) ≦ −ρ3
sd (x, y) ,

for 1 ≦ s ≦ γ, (4.7)

hold on B(λ, u, v) and

p∑

i=1

λiρ
1
i +

γ∑

s=1

ρ3
s ≧ 0 . Then the following cannot hold:

fi(x)−uigi(x) ≦ vT
I0

hI0
(y), for any i ∈ P, (4.8)

and
fi0(x)−ui0gi0(x) < vT

I0
hI0

(y), for some i0 ∈ P. (4.9)

Proof: Using (4.3) and (4.7), we obtain
∑

j∈Is

vj ĥj (y, η (x, y)) ≦ −ρ3
sd (x, y), 1 ≦ s ≦ γ. (4.10)

Now we suppose to the contrary of the result of the theorem that (4.8) and
(4.9) hold. Hence if (4.8) and (4.9) hold for some feasible x for (VFP) and
(y, λ, u, v) feasible for (FMWD), we obtain

fi(x)−uigi(x) ≦ vT
I0

hI0
(y), for any i ∈ P (4.11)

and

fi0(x)−ui0gi0(x) < vT
I0

hI0
(y), for some i0 ∈ P. (4.12)

According to (4.2), (4.5) and the feasibility of x for (VFP), we have
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vT
I0

hI0
(x) ≦ 0 ≦ fi(y)−uigi(y), for all i ∈ P. (4.13)

Combining (4.11)-(4.13) we get

fi(x)−uigi(x)+vT
I0

hI0
(x) ≦ fi(y)−uigi(y)+vT

I0
hI0

(y),∀i ∈ P , (4.14)

and

fi0(x) − ui0gi0(x) + vT
I0

hI0
(x) < fi0(y) − ui0gi0(y) + vT

I0
hI0

(y),

for some i0 ∈ P. (4.15)
By (4.6), (4.14) and (4.15) we obtain

f̂i(y, η(x, y)) − uiĝi(y, η(x, y)) +
∑

j∈I0

vj ĥj(y, η(x, y))

< −ρ1
i d(x, y), for any i ∈ P. (4.16)

By (4.4) and (4.16) we get

p∑

i=1

λi

(
f̂i(y, η(x, y)) − uiĝi(y, η(x, y))

)
+

∑

j∈I0

vj ĥj(y, η(x, y)) < −

p∑

i=1

λiρ
1
i d(x, y).

Now, by (4.1) and

p∑

i=1

λiρ
1
i +

γ∑

s=1

ρ3
s ≧ 0 we obtain

γ∑

s=1

∑

j∈Is

vj ĥj(y, η(x, y)) >

p∑

i=1

λiρ
1
i d(x, y) ≧ −

γ∑

s=1

ρ3
sd(x, y),

which is a contradiction to (4.10). Thus the theorem is proved.
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