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Abstract

We present a compared analysis of some properties of indefinite almost
S-manifolds and indefinite S-manifolds. We give some characterizations in
terms of the Levi-Civita connection and of the characteristic vector fields.
We study the sectional and ¢-sectional curvature of indefinite almost S-
manifolds and state an expression of the curvature tensor field for the inde-
finite S-space forms. We analyse the sectional curvature of indefinite S-
manifold in which the number of the spacelike characteristic vector fields
is equal to that of the timelike characteristic vector fields. Some examples
are also described.
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1 Introduction

In the framework of Riemannian geometry, almost S-manifolds and S-manifolds
represent a natural generalization of contact and Sasaki manifolds, respectively.
Such manifolds have been extensively studied by several authors and from differ-
ent points of view ([2, 3, 4, 7, 8, 12]). On the other hand, also Sasakian manifolds
with semi-Riemannian metric have been considered ([10, 6, 17]), and in recent
works many authors, (for example, in [13], K.L. Duggal and B. Sahin) study
lightlike submanifolds of indefinite Sasakian manifolds. Indefinite S-manifolds
are natural generalizations of indefinite Sasaki manifolds. Moreover many space-
time manifolds can be endowed with f-structures ([9]).

After a first section on f-structures and indefinite metric g. f.f-structures, in
section 3, we carry out an in-depth study of the indefinite (almost) S-manifolds.
In section 4 we describe two examples of 6-dimensional indefinite S-manifolds
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having two characteristic vector fields which are both spacelike or both timelike.
A third example is a Lorentzian indefinite S-manifold of dimension 4 with two
characteristic vector fields of different causal type. In section 5, after some Lem-
mas, we prove that the ¢-sectional curvatures completely determine the sectional
curvatures. Then, we find an expression of the curvature tensor field R which
characterizes the indefinite S-space forms, that is indefinite S-manifolds with
constant (p-sectional curvature. Then, in section 6, we consider the curvature
of special indefinite S-manifold in which the number of the characteristic vector
fields is even with an equal number of spacelike and timelike characteristic vector
fields; we prove that the special indefinite S-manifold described in the third ex-
ample in section 4 turns out to be an indefinite S-space form whose ¢-sectional
curvature vanishes.

All manifolds and tensor fields are assumed to be smooth.

Acknowledgments. The authors are grateful to Prof. S. Ianus for discussions
about the topic of this paper during his stay at the University of Bari and the
stay of the first author at the University of Bucharest.

2 Indefinite metric f-structure

We recall that an f-structure on a manifold M is a non null (1,1)-tensor field
@ on M of constant rank such that ¢34+ ¢ = 0. A manifold M, provided with
an f-structure, is said to be an f-manifold, and it is known that T'M splits
into two complementary subbundles Im ¢ and ker ¢ and that the restriction of
@ to Im ¢ determines a complex structure on it and the rank of ¢ is even. An
interesting case of f-structure occurs when ker ¢ is parallelizable for which there
exist global vector fields &,, « € {1,...,r}, with their dual 1-forms n®, satisfying:
* = =T+ 31" ® &, and n*(§s) = 05. Such an f-structure is called an f-
structure with parallelizable kernel or globally framed f-structure, briefly denoted
g.f.f-structure ([14]). Moreover, a manifold M endowed with a g.f.f-structure
is called a g.f.f-manifold, and it is denoted with (M, ¢, &, n%); the vector fields
¢ay (@ =1,....,7), are called characteristic vector fields.

It is also known that an f-structure, on a manifold M, is called normal if
the tensor field N = N, + 23" _, dn® ® &, vanishes, where N,, is the Nijenhuis
torsion of .

Definition 2.1. Let (M, ¢) be a (2n + r)-dimensional f-manifold and g a semi-
Riemannian metric on M with index v, 0 < v < 2n + r. Then, the pair (p, g) is
said to be an indefinite metric f-structure, and the triple (M, p, g) is called an
indefinite metric f-manifold, if ¢ is skew-symmetric with respect to g, that is,
for any X, Y e (T M):

9(@X,Y) 4+ g(X,0Y) = 0.

Definition 2.2. Let (M?"*" ¢, £,,7%) be a g.f.f -manifold, and g a semi-
Riemannian metric on M with index v, 0 < v < 2n 4+ r. Then, we say that the
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two structures are compatible if for any X, Y € I'(T' M)
9(pX,9Y) = g(X,Y) Zsan (YV), cag(X, &) =n"(X) (1)

for any « € {1,...,r}, where ¢, = +1 according to whether &, is spacelike or
timelike. Then (M?"t7 ¢, £,,1n%, g) is called an indefinite metric g.f.f-manifold.

We shall use the Einstein convention omitting the sum symbol for repeated in-
dices above and below, writing, e.g., £4n*(X)n*(Y) tomean Y. _, ean®(X)n*(Y).

Observe that if g is a semi-Riemannian metric on a g.f. f-manifold (M, ¢, &,
n®) compatible with the f-structure ¢, then the pair (¢, g) is necessarily an indefi-
nite metric f-structure. The fundamental 2-form ® is defined putting ®(X,Y) =
9(X,9Y), for any X, Y € I'(TM). Let (M,p,€n,n%), with a« = 1,...,7, be
a ¢g.f.f-manifold, and g a compatible semi-Riemannian metric on M. We know
that the orthogonal decomposition TM = Im pdker ¢ holds, and that the induced
structure J on Im is an almost complex structure; then (Imy, g9 = glime,J)
is a indefinite Hermitian distribution and the only possible signatures of g are
(2p,2q) with p 4+ ¢ = n; therefore g cannot be a Lorentz metric, for n > 1. We
shall denote Im ¢ and ker ¢ with ® and D~ respectively and for a section of D
(D) we will write X € D or X € (D) (X € D+ or X € T(D1)).

We recall the following result due to A. Bejancu and K.L. Duggal ([10]).

Theorem 2.3. Let (M, p,&0,n%), a = 1,...,r, be a g.f.f.-manifold and hy a
semi-Riemannian metric on M; we suppose that {4 }1<a<r are ho-orthonormal
and that ho(Ea,Ea) = —€a, for any o € {1,...,r}. Then there exists a symmetric
tensor field g of type (0,2) on M satisfying (1).

Now, with a standard computation as in the Riemannian setting ([2]), one
can prove the following results.

Proposition 2.4. Let (M,¢,£,,1n%,¢g) be an indefinite metric g.f.f-manifold.
Then, the Levi-Civita connection satisfies the following equality, for any X,Y, Z €
(TM):
29((Vx@)Y, Z) = 3d0(X, oY, ¢Z) = 3d®(X,Y, Z) + g(N(Y, Z), pX)  (2)
+ea NP (Y, Z)0 (X) + 220dn® (9Y, X )0 (Z)
- 25ad77 (@Za X) (Y)v

where N&(X,Y) = (Loxn®) (V) = (Loyn®)(X) = 2dn°(¢X,Y) — 2d5° (9Y, X).

Proposition 2.5. Let (M, ¢,£4,1n%,¢g) be an indefinite metric g.f.f-manifold.
Then the following statements hold:

a‘) (ﬁga(ﬁ)(X,Y) - (‘Cﬁag)(Xa QDY) + g(X7 (‘CEQSD)Y)} Jor any a € {17 s 7T}'
b) (Vx®)(Y,Z) = g(Y,(Vxp)Z), for any X,Y,Z € I'(TM).
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c) If Le, o =0, then nﬁ[goZ,fa] =0, forany B € {1,...,r}.
d) N=0= NP =0, for any a € {1,...,r}.

Between the indefinite metric g.f.f-manifolds, we can define the following
classes.

Definition 2.6. Let (M?"*" ¢, £,,1m%, g) be an indefinite metric g. f. f-manifold.
M is called indefinite KC-manifold if it is normal and d® = 0.

In this case L¢, @ = i¢, d® + dig, ® = 0, therefore, from a) of Proposition
2.5, we obtain that L¢ ¢ = 0 if and only if the characteristic vector fields &,
are Killing. Two subclasses of indefinite K-manifolds are those of indefinite C-
manifolds and indefinite S-manifolds, that are defined as follows: an indefinite
K-manifold is called indefinite C-manifold if dn® = 0 for any « € {1,...,r}, while
it is called indefinite S-manifold if dn® = ® for any a € {1,...,7}.

3 Indefinite S-manifolds

The properties of (almost) S-manifolds (with Riemannian metric) are studied
in [12] and in [2]. Now, we discuss indefinite (almost) S-manifolds and their
properties.

3.1 Indefinite almost S-manifolds

Definition 3.1. Let (M2"*" ,£,,1%, g) be an indefinite metric g. f. f-manifold.
M is called indefinite almost S-manifold if dn® = ® for any « € {1,...,r}.

Lemma 3.2. Let (M, p,&,,n%, g) be an indefinite almost S-manifold. Then the
tensor fields N&2 vanish and for any XY € I'(®) and o € {1,...,r}, we have

N[ X, Y] =n[pY, X]
Proof: For a € {1,...,r}, we have N\ (X,Y) = 2dn®(pX,Y) — 2dn°(pY, X) =

20(pX,)Y) — 20(9Y,X) = 0. Then, for any X,Y € I'(®), 2dn“(pX,Y) =
—n*([pX, Y]) implies n*[p X, Y] = n*[pY, X]. D

Proposition 3.3. Let (M, p,€4,m%, g) be an indefinite almost S-manifold and
=Y _1€an™. Then, the following statements hold:
29((Vx @)Y, Z) = g(N(Y, Z),0X) + 29(¢Y, 0 X)11(Z) — 29(0Z, 0 X)7(Y), (3)

Ve, 0 =0, Ve, =0 (4)
foralla,p e {1,...,r}.
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Proof: Equation (3) follows from (2) using d® = 0, N =0 and dn® = @, for
a €{1,...,r}. Then, putting X = &,, we obtain V¢_¢ = 0.

Hence, we have 0 = (V¢ ¢)(&5) = —p(Ve, &p) , therefore Ve &5 € DL, which
implies that [¢,, &3] € D*. On the other hand, for any v € {1,...,r}

1 1
0= (I)(gaafﬁ) = dﬁv(fmfa) = 7577’“50”55] = *§€wg([£aagﬁ]a€'y)~

Therefore [£4,&5] € D N DT and we obtain [£,,&3] = 0 and V¢ &g = Ve éa.
Now we check that V¢ {3 € D, that is, for any v € {1,...,7}, 9(Ve, €3,&) = 0.
Being g(&s,&+) = €303 and using the covariant derivative with respect to &, we
find g(Ve, &5, &y) + 9(€8, Ve, &) = 0, and, covariantly differentiating g(&4,&,) =
€aday With respect to &g, we obtain g(Ve,€a,&y) + 9(€a, Ve, &y) = 0. From the
last two equations, using V¢, & = Ve, 8o, we have g(€3, Ve, &) = 9(€a; Ves&y).
Therefore,

9(Ve. €, 8y) = 9(8ar Ve, 8) = 9(€ar Ves&y) = —9(Vepbar &) = —9(Ve 88, 65),
from which g(Ve_ €g,&,) = 0 follows. This result and V¢ &g € D+ imply

Proposition 3.4. Let (M, p, €., 1%, g) be an indefinite almost S-manifold. Then
a) for any o € {1,...,r} the operator ho = $L¢ ¢ is self-adjoint,
b) for any a, B €{1,...,7}, ha(€s) =0,
¢) foranya € {l,...,r}, ha oo+ @oh, =0.

Proof: As first step, using (4), for any X,Y € I'(TM) and any o € {1,...,7},
we easily obtain,

9(Le, )X, Y) = ea(—(X)(*(Y)) + 1% (Vex Y + Vi (¢Y))).
It follows that
29(ha(X),Y) = 29(ha(Y), X) = —ea(eX)(n*(Y)) + can®[pX, Y]

+ eal9Y)(n* (X)) — ean®[pY, X]
= _Ea('cszna)(Y) + Ea(ﬁtpyna)(X) = 0.

Obviously, for any «, 8 € {1,...,r} we have hy({3) = 0 and finally

2(ha 0 + @0 ha)(X) = Le, (*X) = o(Le, (X)) + ¢(Le, (9X) — p(Le, X))
= &a(’(X)&s — n’[€a, X]Es =0
for any a € {1,...,r} and any X € T'(T'M). 0
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Proposition 3.5. Let (M, p,&4,n%, g) be an indefinite almost S-manifold. Then,
for any XY € I'(TM), the following properties hold:

a) o(N(X,Y)) + N(pX,Y) = 27%(X)ha(Y),
b)) N(X,Y)eD.
Proof: Using Lemma 3.2, we obtain
@(N(Xv Y)) + N(SDXa Y) = _('Csﬂyna)(X)Ea + ('C@Xna)(y)fa
+ 17 (X)(Le, ) (V) = 207 (X)ha(Y).

Now, we observe that for any o € {1,...,r} we have [£,,D] C D, in fact, if
Be{l,...,r} and X € T'(TM), we have n°[£,, pX]| = —2dn®(£n, 9 X) = 0 and
in particular, if X € ©® and a = 3, we get n%[¢,, X] = 0. So, if Z € © then
N, Z) = —[€a, Z] — ¢lla, pZ] € D. Tt is easy to check that N(&,,&3) = 0 for
any «, 3 € {1,...,r}; therefore, we have that N(¢,, X) € ® for any X € T'(TM).
Finally, applying a), we have g(N(0X,Y),&,) = 20°(X)g(hs(Y), &,) = 0. Hence,
if X,Y € I(TM), we get N(X,Y) = —N(¢*X,Y) +n*(X)N(&,,Y), and being
N(p?X,Y) €D and N(£,,Y) € D, we conclude that N(X,Y) € D. O

Proposition 3.6. Let (M, ¢,£4,1n%,¢g) be an indefinite almost S-manifold. For
any X € I(TM) and for any oo € {1,...,7},

VXga = _ga@(X) - @(haX)'

Proof: Putting X = £, in a) of Proposition 3.5, we have that for any Z,Y €
(TM)

9(N(a,Y),0Z) = —g(e(N (&, Y)), Z) = =20° (€a)g(hp(Y), Z) = —2g(ha(Y), Z).

Moreover, applying (3) of Proposition 3.3, for any a € {1,...,r} we find:

o0V xEa). Z) = 50(N(€ar 2),0X) ~ 9(0Z, X n(E0)
= _g(ha(Z)vX) - Eag(ZvX) +5a55775(X)77”B(Z)
= 0 ha(X) ~ 2aX + 2an(X)65.2),

then ©(Vx&a) = ha(X) 4+ eaX — ean®(X)és, and, applying ¢, we complete the
proof. Note that Vx&, € ©. D

Proposition 3.7. Let (M, ¢,£4,1n%,¢g) be an indefinite almost S-manifold. For
X, Y eT(TM), we have

(Vx@)(Y) + (Vox @) (9Y) = 29(pX, 9Y ) + (Y )¢ (X) = n*(Y)ha(X).
where & =Y _ &, and 7j(X) = g(X,§), for any X € T(TM).
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Proof: Using (3), Proposition 3.5 and Proposition 3.6, for any X,Y, Z € I'(T M)
we have

29(Vx@)(Y), Z) +29((Vox ) (¢Y), Z) = —g(p(N (Y, Z)) + N(¢Y, Z), X)
+49(pY, pX)N(Z) — 29(pZ, X )7 (Y)
= —29(Z,n*(Y)ha(X))+
+4g9(pY, 0X)g(Z,€) + 29(Z,7(Y )" X).

Then, we deduce

(Vxo)(Y) + (Vox @) (9Y) = 29(0 X, 9Y )€ + (Y )0*(X) = n*(Y ) ha(X).

Obviously, ﬁ(X) = 22:1 Eana(X) = 22:1 g(X, fa) = g(Xa §) U

Corollary 3.8. Let (M, p,&4,1n%, g) be an indefinite almost S-manifold. Then,
forany X, Y € ®:

a) (Vx@)(Y) + (Vexe)(9Y) = 29(X,Y)E,

b) (Vxp)(pX) = (Veoxp)(X).

Proof: The first statement follows from the above proposition. Putting ¥ := ¢ X
in a), we have (Vx¢)(0X) + (Voxe)(9?X) = 29(X, ¢ X)E = 0, therefore, being
©*X = —X, we obtain (Vxp)(pX) = (Vexe)(X). O

Remark 3.9. The statement b) can be written as Vx(¢?X) — p(VxpX) =
wa(wX) — (p(vwxX), i.e. as Vx X +wa(<pX) = gp[(pX,X].

3.2 Indefinite S-manifolds

Definition 3.10. Let (M, ¢, &4, n%,¢g) be an indefinite metric g.f.f-manifold.
M is said an indefinite S-manifold if it is a normal indefinite almost S-manifold.

Proposition 3.11. Let (M, ¢,&,,n%, g) be an indefinite almost S-manifold. Then
M is an indefinite S-manifold if and only if, for any X, Y € T(TM), the Levi-
Civita connection satisfies:

(Vx@)Y = g(X,Y)E = (Y)X — ean®(X)n* (V)& + 7(Y)n* (X)&a.

or equivalently

(Vxp)Y = g(eX, oY )E +ij(Y)*(X). (5)
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Proof: Assuming that M is an indefinite S-manifold, (3) becomes

9(Vx@)Y, Z) = g(Y, 0 X)il(Z2)—g(eZ, o X)il(Y) = g(Z, g(£Y, 0 X )E+i1(Y ) > X),
from which ~
(Vx@)Y = g(eX, oY )E +7(Y)? (X)
= g(X,Y)E —ean®(X)n*(Y)§ — n(Y)X +n(Y)n* (X)éa.

Vice versa, we suppose that V satisfies (5). Then we obtain g((Vxp)Y,Z) =
9(eY, XN Z) — g(0Z, pX)(Y), and comparing with (3), we deduce for any
X, Y €e I(TM), g(N(Y,Z),pX) = 0. From Proposition 3.5, we obtain that
N(Y,Z)=0for any Y,Z € I'(T M), that is M is normal. 0

Remark 3.12. In an indefinite S-manifold (M, ¢, &4, 1%, g), the operators L¢_ ¢,
and then h,, vanish. In fact, by direct computation for any X € I'(TM) and
for any o € {1,...,r} we get N(pX,&) = (Le, )X = 2ho(X), and the nor-
mality condition implies h, = 0. Using Proposition 3.6, we obtain, for any
a€{l,...;r}, Vx& = —eapX.

Now, we give the condition of indefinite S-manifold in terms of the funda-
mental 2-form:

Proposition 3.13. Let (M, ¢,&,,n%, g) be an indefinite almost S-manifold. Then

M is an indefinite S-manifold if and only if for any X,Y,Z € T(TM):
(Vx®)(Y,Z) =0(Y)g(pX, 0Z) — 1(Z)g(¢ X, Y. (6)

Proof: One simply uses (Vx®)(Y,Z) = g(Y,(Vxp)Z) in (5). O

Proposition 3.14. Let (M, p,&.,n%, g) be an indefinite metric g.f.f-manifold.
If the vector fields &, are Killing, Le.m® = 0 for any o, € {1,...,7} and M
satisfies (5) or equivalently (6), then M is an indefinite S-manifold.
Proof: Being 3d®(X,Y,Z) = Gxyz(Vx®)(Y,Z), from (6) we get d® = 0
and (L, ®)(X,Y) = 0, since L, & = i¢, dP + dig,P. Proposition 2.5 implies
(Le,9)(X,0Y) + g(X, (Le,0)Y) =0, for any e € {1,...,r} and X, Y € I'(TM).
Hence, being &, a Killing vector field, we find L¢, ¢ = 0 and then n°([q, ¢Y]) =
0, for any a, 8 € {1,...,r}. In these hypotheses, (2) becomes
29((Vxp)Y,Z) = g(N(Y, Z),0X) + 2e4[dn* (@Y, Z)n*(X) — dn® (92, Y )n*(X)
+dn* (Y, X)n*(Z) = dn* (0 Z, X)n* (Y)].
On the other hand, (6) implies g(Y, (Vx¢)Z) = ii(Y)g(p X, ¢Z)—)(Z)g(¢ X, ¢Y),
therefore we deduce
9(N(Y, 2),0X) = =2ea[(dn®(pY, Z) — dn®(¢Z,Y))n"(X)
+ (dn™(¢Y, X) — g(p X, 0Y))n*(Z)
— (dn*(pZ, X) = g(pX, 0Z))n*(Y)

]
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Putting Y = &g in the above equation, we get

9(N (&5, 2),0X) = 2e5(dn’ (02, X) — g(¢X, 9 2)). (7)
Since N(¢5, 2) = — (65, Z)~pl€s, 0 Z1+€5(1°(Z) o, then 9N (£5, Z) = (Le, 0) 7~
1%€s, 9Z)6a = 0 and (7) gives dn’(pZ,X) = g(pX,9Z) = ®(pZ,X). Fi-
nally, L¢,n” = 0 implying i¢ dn® = 0 and being Y = —¢?Y + n%(Y)&,, for
any Y € I'(TM), we obtain dn®(Y, X) = —dn”(¢*Y, X) + n*(Y)dn®(£,, X) =

—®(p?Y,X) = ®(Y,X). Then M is an indefinite almost S-manifold and we
apply Proposition 3.11. 0

4 Examples of indefinite S-manifolds

We describe some examples of indefinite S-manifolds, where the characteristic
vector fields are either timelike or spacelike or of both types.

Example 4.1. We consider R® with its standard coordinates {x!, 22, y', %, 21, 22}.
We introduce on R® an indefinite g.f.f-structure (¢, &1, &2, 1,02, g) by setting

2
o = n® =dz" — Zy’davi7 a € {1,2},
i=1

2 2
1 . .
— « [ - 1\2 7\2
g==2_ n*&n"+5 3 (') + (dy")),
a=1 i=1
and ¢ given, with respect to the frame {%, 6%2, aiyl, 6%2, &1,&2}, by the matrix

1 2
F=| -, 0 0|,  wher Y:(yl 92).
y' oy

We put M = (RS, , &1, &2,1t,1m%,g). A straightforward computation shows that
g is a metric tensor field. Firstly we check that g is non-degenerate and then we
compute its index. The matrix G of g is given by

5 —2(y")? 1 —2y'y2 0 0 y' ot
=2ty 5 —2(y?)? (1) 0 3 3
0 0 Lo 0 o0
= 2
G 0 0 0 3 0 0 ’
y! y? 0 0 -1 0
y! y? 00 0 -1
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and detG = % # 0. Now, to determine the index of g, we look for the eigenvalues
of G. Since

1 1 1
det(G = \I) = —(5 - AP+ NN+ 2N +2(17) + A3,
we find that the index of g is two; therefore g is a semi-Riemannian metric of the
index 2 on RS, We remark that &; and & are timelike vector fields. It is easy to
prove that M is an indefinite S-manifold.

Example 4.2. The second example of an indefinite S-manifold is M = (RS, ¢, &,
n%, g), where, for any o € {1,2}, we put

a a o 2 T %
R
©, g are given by
0 IQ 0 1 2
F=|( -, 0 0 |, where Y:(_yl y2)7
0 Y 0 v

and
2 1 2 , )
g=_ _ e +5> . m(de') + (dy')?),

respectively, where 7; = F1 according to whether ¢ = 1 or ¢ = 2. Moreover,
the symmetric (0,2)-type tensor field ¢ is a semi-Riemannian metric because
detG = 1—16 # 0. Therefore g is non degenerate, and

1 1 3 1
det(G = A1) = = (5 + M2 (5 = N = D02 = (5 +2(5)° + 2720 + ),
so, since the signs of eigenvalues are independent from the coordinates, the index
of g is constant. We note that in this example £; and & are spacelike. One proves

that M is an indefinite S-manifold.

Example 4.3. The third example is M = (R{, p, &1, &2,m1, 02, g) constructed as
follows. Denoting the standard coordinates with {z,y, 2, 22}, we endow R* with
the structure (i, &1, &,1%, 7%, g) where

0

T 9z

éa n% = dz* + ydx,

for any o € {1,2} and where the tensor fields ¢ and g are given by

0 -1 0 0 3 0y —y
1 0 0 0 0 2 0 0
. — 2
F: 0 y 00 G: y 0 1 0
0y 00 -y 0 0 -1
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respectively. An immediate computation shows that ¢ is non-degenerate and its

index is constant. In fact, we have detG = —%, and
1 3 1.4 9 1
det(G — \I) = (5 A\ — 5)\ -2y + 1A+ 5)7

hence detG # 0 and, using Cartesio’s rule, we deduce that the index is 1. There-
fore, the tensor field g is a Lorentzian metric. Now, we observe that & is a
spacelike vector field while &5 is a timelike vector field. One can check that M is
an indefinite S-manifold.

5 Sectional curvature and ¢-sectional curvature

In this section, we look for some results about the sectional curvature of inde-
finite S-manifolds. Following the notations in ([15]), for the curvature tensor
R we have R(X,Y,Z) = VxVyZ —VyVxZ — Vixy)Z, and R(X,Y,Z, W) =
g(R(Z,W)Y), X), for any X, Y, Z, W € T'(TM).

A two-dimensional subspace 7 of the tangent space T, M is called non-dege-
nerate if and only if we have A(m) = g,(X, X)gp(Y,Y)-g,(X,Y)? # 0 for any
basis {X,Y} of 7. We know that if 7 is a non-degenerate 2-plane of T,M then
we can define the sectional curvature Kp(m) at p with respect to the 2-plane m,
putting

R, (X, Y, X)Y) ¢p(R,(X,Y.Y), X)

BO="""m = am

where 7 = span{X,Y}. In the following we denote K,(7) = K,(X,Y).

Proposition 5.1. In an indefinite S-manifold (M, ,€4,n%, g) one has:
a) the distribution ker ¢ is integrable and flat;

b) the sectional curvatures K(X,£,) = €a, for any « € {1,...,7}, and non
lightlike X € Im ¢.

Proof: For X,Y € ker p we have X = f¢,, Y = 8¢5 then [X, Y] = [f*€., tP¢5] =
faga(tﬂ)gg — tﬁéﬁ(fa)ﬁa € kery and ker ¢ is integrable. Furthermore, since
Ve, & = 0 and [£4,&5] = 0, we have R(£,,63,&,) = 0 and ker ¢ is flat. Note
that a) holds also for indefinite almost S-manifolds. Now, being M an indefinite
S-manifold, we know that Vx&, = —eopX, L¢, ¢ = 0 and we have

R(fa,X, gﬁ) = _Eﬁvﬁa(QDX) + Eﬁ@[§a>X]
- 55(@[5013)(} - [&OMQOX} - chXEa) = 55604902X~

So, for X € Imp, X non lightlike, we have K(X,¢,) = —%?(SX) =¢e,4.
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As usual, we say that a 2-plane = in T,M, p € M, is a ¢-plane if 7 =
span{X,pX} with X € ©,, and the sectional curvature at p of such a plane, with
X a non lightlike vector, is said the y-sectional curvature at p and is denoted by

H,(X).

We shall prove that on an indefinite S-manifold, as in the Sasakian case, the
p-sectional curvatures determine the sectional curvatures.
As in [3], we define a tensor field of type (0,4) given for any X,Y,Z, W in
I(TM) by
—B(Y, 2)g(X, W) + (Y, W)g(X, Z).

The following lemmas can be easily proved.
Lemma 5.2. Let (M, p,€4,1n%,g) be an indefinite S-manifold. Then:
a) P(X,Y;ZW)=—-P(ZW;X,Y), forany X, Y, Z, W € T'(TM),

b) P(X,Y;X,0Y) =g(X,9Y)?+9(X,Y)2—exey, where X, Y are unit vector
fields in ® and ex = g(X, X) and ey = g(Y,Y).

Proposition 5.3. Let (M, p,&4,1n%, g) be an indefinite S-manifold. Then, putting
e=> " _€a, forany XY, Z,W € T(TM)

g(R(XvY;CPZ%W) + g(R(XaY;Z)vcaOW) = 7€P(X7Y; 27 W) - Q(X,Y, Za W)
where

QX,Y;2,W) = g(W,9Y)(e(g

(X, Z) — g9(pX,pZ)) —n(Z)n(X))
( LX) (e( )

9(Y, Z) — g(@Y,0Z)) — 1(Z)7(Y
-9(Z, wY)(E(g(X, W) = g(X, eW)) — n(X)n(W))
+9(Z,0X)(e(g(Y, W) — g(¢Y, oW)) = (Y)n(W)).

Moreover if XY, Z, W € ® then obviously Q(X,Y;Z,W) =0 and the following
statements hold:

a) g(R(eX, Y, 0Z),oW) = g(R(X,Y, Z),W);

(R(

b) g(R(X,oX,Y),0Y) = g(R(X,Y,X),Y)+
( ( ,(pKX),(pY)—2€P(X,Y,X,(pY);
(R

c) g(R(pX,Y,0X),Y) = g(R(X, ¢Y, X),pY).

Remark 5.4. We remark that € can vanish only if r is an even number and the
number of timelike characteristic vector fields is equal to the number of spacelike
characteristic vector fields. Moreover, ¢ = 0 means that g(£,£) = 0, i.e. & =
Sl 1 & is a lightlike vector field.
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We put
B(X,Y) =g(R(X,Y,X),Y), X Yel(TM)
and
D(X)=B(X,¢X), X el'(®).
The following Lemma, of which we omit the long proof, gives the useful expression

of B(X,Y), for any X,Y € T'(D).

Lemma 5.5. Let (M,¢,&,,n%,g) be an indefinite S-manifold. Then, for any
X, Y eT'(D),

B(X,Y) = 3712{31)()( + V) +3D(X — pV) — D(X +Y) (8)
~D(X —Y) —4D(X) — 4D(Y) + 24eP(X,Y: X, pY)}.

Using the previous Lemmas it is possible to compute the sectional curvature
of a non degenerate 2-plane m = span{X,Y} of D,, as follows.

Proposition 5.6. Let (M, p,&.,n%, g) be an indefinite S-manifold and p in M.
We consider a non degenerate 2-plane m = span{X,Y} of ©,, where X and Y
are unit vectors of ©,. Then the sectional curvature K,(X,Y) is given by

1
32(exey —g(X,Y)?)
+3(ex +ey —29(X,0Y))?Hy(X — oY)

—(ex ey +29(X,Y))2Hy(X +Y)

—(ex +ey —29(X, V)2 H,(X —Y) — 4H,(X) — 4H,(Y)
+ 24e(g(X, oY )? + g(X,Y)? — exey)}.

KP(X? Y) = {3(ex +ey +29(X, ‘PY))QHP(X +¢Y)

Proof: We note that if X € ©, we have
Dy(X) = By(X, 9X) = gp(Rp(X, 90X, X), 0X) = —g,(X, X)?Hy(X)
and if X and Y are unit vectors of ©,,, we find
9(X+0Y, X+¢Y) =ex+ey+29(X,¢Y), g(X+Y,X+Y) =ex+ey+29(X,Y).
Being A(r) = exzy — g,(X, )2, we get Ky(m) = —g,(Ry(X, Y, X),Y)/A(r) =

—B,(X,Y)/A(n). Then, using (8) and Lemma 5.2, we get the required for-
mula. 0

Remark 5.7. We note that if X € I'(®D) is a unit vector field we have

R(fa,X, 56) = _55504X7 R(X7 faaX) = _5X<€o¢€-



196 Letizia Brunetti and Anna Maria Pastore

In fact, if Y € T'(T'M), for any o € {1,...,7}, we have

g(R(X, gou X),Y) = 79(R(X7 Y7 fa)vX) = 5ag(vX(¢Y) - VY(QOX) - (P[Xv Y]ﬂ X)
=cag(Vx@)Y — (Vy9)X, X) = eag(—i(Y)X — 7(X)$°Y, X)
= —exeaf(Y) = —excag(&Y).

Finally, if X,Y € I'(®) and Z € I'(T'M) then we get

g(R(XagozaY)aZ) = 75ag(Y>X)ﬁ(Z) - 780&9(}/3)()9(57 Z)

Theorem 5.8. The @-sectional curvatures completely determine the sectional
curvatures of an indefinite S-manifold.

Proof: We show that for any p € M and for any non degenerate 2-plane m =
span{X,Y} in T,(M) the sectional curvature K,(X,Y") is uniquely determined
by the @-sectional curvature. In the sequel of the proof we suppose that p € M is
fixed. If X,Y € ©,, then we apply the previous Proposition and if X or Y is &,,
for any oo € {1,...,7}, we have already seen that K,(X,Y) =¢,.  X,Y € T, M,
they can be written in the following way:

X =aZ+n"(X)é, Y =bW+n*Y),,
where Z, W €D, g,(Z,Z) =€z, g,(W,W) = e, and a and b must satisfy:
a’cy =ex —ea(n®(X))?, blew = ey —ea(n®(Y))2
Therefore, we compute

9p(Ry(X,Y, X),Y) = a®Vg,(Ry(Z, W, Z), W) + 2a°b 1)* (Y ) g, (R, (Z, W, Z), &p)
—|—2ab2 n*(X gp(Rp(Z W, &a), )"'QGbUQ(X)WB(Y)gp(Rp(ZaV[/vfa)aﬁﬁ)
(Y’ (V)gu(Rp(Z, 85, Z),&5) + 2abn” (Y )n™(X) gp(Rp(Z, €5, €a), W)

+ 200" (V) (X)n° (V) gy (Ry(Z, €5, 60), &5) (9)

+ 020 (X)) (X)gp(Rp (Eas W, &), W)

+ 200 (X )’ (V)0 (X)gp(Rp(€ar Z, 65, €5)

+ 0 (X)) (X)n° (V) gp(Rp (6o €8, 64), E5)-

Now, separately we take the terms of previous expression into account, using
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Remark 5.7 and the Bianchi identity, as follows:
9p(Ry(Z, W, Z),€5) = gp(Rp(Z,65,2), W) = —e2259,(€, W) = 0,
Ip(Rp(Z, W, &0), W) = gp(Rp(§a, W, Z), W) = gp(Rp(W, &0, W), Z)
= _waagp(ga Z) =0,
Ip(Rp(Z, W, €0),8p) = —gp(Rp(Z,60,8), W) — gp(Rp(Z, ), €a), W)
= 9p(Rp(&as Z,83), W) + €59p(Z, W) gp( )a §a)
—e3agp(Z, W) + €geagp(Z, W) =0,
9p(Rp(Z,85, W)Ea) = €59p(Z, W)Qp(é)vfa)
= egeagp(Z, W),
9p(Rp(Z,8p,8a),85) = —9p(Rp(€, 2, €a): &) = €820 9p(Z, &5) = 0,
9p(Rp(§a, W, &5),€8) = €4a9p(Z,€5) = 0.

Therefore, replacing the previous expressions in (9), we have:
9p(Bp(X. Y, X),Y) = a’0°g,(Ry(Z,W, Z),W) — a’ez(Y )i (Y)
+2abi)(Y)i)(X)gp (2, W) = b2ewi(X)ij(X).
Hence, being K,(X,Y) = —exeyvgp(Rp(X,Y, X),Y), we deduce
Kp(X,Y) = exey{a®0?g,(Ry(Z, W, W), Z) — 2abi(Y)i)(X)gp(Z, W)~ (10)
+b%ewn(X)? +a’ezn(Y)*}.

gp(Rp(Za gﬁafa)7 W)

Now, we note that

9o, ) = S gy(X — 0 (X)6as ¥ = 07 (V)Es) + 0" (X0 (¥ )y (€ )}
= ——ear (X (¥),

G (RoZ.W, W), 2) = 2w — gp(Z W) (2, W)
= laesbew — (can® (" (V) K, (2,7)
= llex —can® (X)) (e — can(V)?)
— (et (X (V)2 W),

Thus, (10) becomes

Kyp(X,Y) = exev{llex — ea(n®(X))*)(ey —e5(1°(Y))?)
= (ean™ (X)* (V)1 Kp(Z, W) + 20(Y )X )ean™ (X )0 (Y)
+(ey — e’ (Y)*)1(X)? + (ex — ea(n™(X)*)n(Y)?},

and this completes the proof, since K, (Z, W) is given as in Proposition 5.6. 0
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We recall the following result.

Lemma 5.9 ([16]). Let (V,g) be a semi-Euclidean vector space and R a (0,4)-
type tensor on V such that for any X, Y, Z, W € V the following conditions hold:

a) R(X,Y,Z,W) =—R(Y,X,Z,W),
b) R(X,Y,Z,W)=—R(X,Y,W,2),
¢) R(X,Y,Z,W) =R(Z,W,X,Y),
d) Sy zwR(X,Y,Z,W) =0.

IfR(X,Y, X,Y) = 0 for any linearly independent and non lightlike vectors X, Y €
V, then R =0. Moreover, if R and S are (0,4)-type tensors on V such that the
conditions (a-d) are satisfied and R(X,Y,X,Y) = S(X,Y,X,Y) for any X,Y €
V' linearly independent non lightlike vectors, then R = 5.

Proposition 5.10. Let (M, ¢,£.,n%,g) be an indefinite S-manifold, T and S be
(0,4)-type tensor fields on M such that the following conditions hold:

i) T(X,Y,Z,W) = —T(Y,X,Z,W), S(X,Y,Z,W) = —S(Y,X,Z,W),
X,Y,Z,W € I(TM)

i) T(X,Y,Z,W) = -T(X,Y,W,Z), S(X,Y,Z,W) = —S(X,Y,W,Z),
X,Y,Z,W € I(TM)

i) T(X,Y,Z,W)=T(Z,W,X,Y), S(X,Y,Z,W)=S(Z,W,X,Y),
X,Y,Z,W € T(TM)

Z"U) GY,ZJ/VT(X,Y, Z, W) =O7 GY7Z,WS(X,KZ, W) ZO,
X,Y,Z,W e T(TM)

v) for any X, Y, Z,W € T'(D)
T(X,Y,pZ,W)+T(X,Y, Z,oW) =eP(X,Y; Z,W)
S(X.Y,pZ, W)+ S(X,Y, Z,oW) =eP(X,Y; Z,W)
vi) for any X,Y € T'(D) and for any o, 8,7,0 € {1,...,r}

(CL) T(vaomXay) = S(ngaava)}

(b) T(€a7X7€ﬁaY :S(fa,X,fﬁ,Y),
(C) T(gouXagﬁag’Y):S(gouxagﬁag’y) 3
(d) T(&ﬂméﬁ»é’ya&?):S(gavg[%g’wg(?) .

Then, if T(X,pX, X, pX) = S(X,0X, X, 0X) for any X € T'(D) non light-
like vector field, one has T = S.
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Proof: It is easy to verify that v) implies that for any X', Y’, Z/. W’ in ['(D)
T(eX' oY oZ' W) =T(X",Y', Z'\W"),

and, using the above formula, we obtain
T(pX', oY, Z/ W) =T(X", Y, oZ', oW').

Analogously, for the tensor field S we have
S(pX', oY, Z/ W) = S(X",) Y, oZ' oW').

Now, being ¢, an almost complex structure on ®, for any p € M, from
a well-known result analogous to Lemma 5.9 ([1]), in the case of a real vector
space endowed with an almost complex structure, we deduce T(X',Y', Z' W') =
S(X',Y’',Z',W'). Then, in particular, we have

TXY X'Y)=SX Y X Y.
Now, if X, Y € I'(T'M) are linearly independent and non lightlike, we compute
T(X,Y,X,Y) and S(X,Y,X,Y), writing X = X'+ n*(X)§, and Y = Y’ +

n*(Y )&y, and likewise to (9), by the §(M)-linearity of T and S, using vi), we get
T(X,Y,X,Y) = S(X,Y, X,Y). D

Remark 5.11. Using Remark 5.7 and Proposition 5.1, the Riemannian (0,4)-
type curvature tensor field R satisfies the properties listed in Proposition 5.10.
Thus, it is uniquely determined by the ¢-sectional curvature.

Theorem 5.12. Let (M, p, €., 0%, g) be an indefinite S-manifold. Then the -
sectional curvature ¢ is pointwise constant, ¢ € F(M), if and only if the Rieman-
nian (0, 4)-type curvature tensor field R is given by

= 236 19(0Y,0Z)g(p X, oW) — g(p X, pZ)g(¢Y, W)} (11)

- e X)e(Z,Y)

R(X,Y,Z,W) = —

—®(Z, X)D(W,Y) 4 20(X,Y)®(W, Z)}
—{nW)n(X)g(pZ, oY) — (W
+0(Y)7(2)g(eW, 0 X) —n(Z)n

Proof: We suppose that the ¢-sectional curvature c is pointwise constant and
in order to prove (11), denote by S(X,Y, Z, W) the right-hand side of (11). Ob-
viously S is a tensor field of type (0,4) on M, and we shall prove that S coin-
cides with R. To this end it is easy to check that for any X,Y, Z, W € I'(TM)
we have the properties of skew-symmetry —S(X,Y,W,Z) = S(X,Y,Z,W) =
—S(Y,X,Z, W) and the Bianchi identity Sy zwS(X,Y,Z, W) = 0, while the
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property i) of Proposition 5.10, S(X,Y,Z, W) = S(Z,W, X,Y), follows by the
Bianchi identity and the skew-symmetries.

Now, for X,Y, Z,W € I'(®D), computing S(X,Y, Z, oW) + S(X,Y,0Z, W) we
get
S(X,Y,Z, W)+ S(X,Y,pZ W) = —Z{g(Y7 Z2)P(X, W) —g(X,Z)P(Y,W)
+2(Y,2)g(X, W) — ®(X, Z)g(Y, W) + g(W, X)®(Z,Y)
- <I>(Z7X)g(W, Y) + (P(VV, X)g(Z,Y) - g(Z,X)CI)(W, Y)}
— B, W)g(Z,Y) = 30(Y,W)g(X, 2) + 39(X, W)2(Y, )
—3g9(Y,W)®(X,Z) + (Y, 2)g(W, X) — (X, Z)g(W,Y)
+ (I)(X’ W)Q(Z’ Y) - CI)(Y7 W)g(Z7 X)}
= _E{(I)(X7 W)g(Z, Y) - ®(X> Z)g(Y, W) - (I)(Ya W)g(X7 Z) +9(X7 W)(I)(Y, Z)}
=eP(X,Y;Z,W).

We continue verifying vi) of Proposition 5.10, and obtaining S(X,&,,X,Y) =

0= R(X7£aaX7Y>7 S(§a7X7£ﬂa§’y) =0 = R(£57X,€B7€"{)7 S(é-ouféagﬁag’y) =
0= R(ﬁ&v&&vfﬁvf’y) and

S(€ar X, 65, Y) = == 235 {9(p X, 0€3)9(P8as Y ) — g(PEas p€p)g(0 X, Y )}

AR €)2(65, X) — (6,6 2(Y. X)

+ 2(1)(50” X)(I)(Ya gﬁ)} - {ﬁ(y)ﬁ(ga)g<¢657 (:OX)
—(Y)n(X)g(€s, p€a) + 1(X)N(Es) (Y, p€a)
—7(€8)71(Ea)g(0Y, 9 X)} = eagpg(X,Y) = R(£a, X, &3,Y).

For any X € I'(®) non lightlike vector field, we compute S(X, pX, X, pX), ob-
taining:

c+ 3¢

S(X, X, X, pX) = ———{9(¢* X, pX)g(0 X, 9*X) = g(pX, pX)g(2* X, 0 X) }
— (P X, X)X, 0X) — B(X, X)D(pX, ¢ X)
+20(X, pX)P(pX, X)} (12)

—{ii(eX)i(X)g(pX, 0> X) — ij(pX)ij(¢X)g(0X, 0 X)
+ (e X)N(X)g(* X, X)) — 7(X)7(X)g(* X, ¢* X)}

c+ 3¢ c—e¢

190 X)? = ——{—g(X, X)* - 29(X, X)?}
c+ 3¢ c—e¢

1 9(X, X)? +3 1 9(X, X)? = cg(X, X)*.

Moreover, since by definition of yp-sectional curvature we have

R(X,0X,X,0X) = cg(X,X)*. (13)
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from (12) and (13) we get R(X, X, X,pX) = S(X,pX, X, ¢X), and, using
Proposition 5.10, the previous Remark and the properties of the tensor field S,
we obtain R(X,Y,Z, W) = S(X,Y,Z, W), for any X,Y,Z, W € T'(TM), that is
the formula (11).

Conversely, if we assume (11), choosing a point p € M and a @-plane m =
span{X, pX}, with X € ©, non lightlike vector, by direct computation, omitting
the point p, we have

HX) c+ 3¢

2

cC—¢&
————g(X, X)* =c.
4g(X7X)29( X)) =c

6 Sectional Curvature in the case ¢ = 0, an example

In this section we consider the case ¢ = 0, as already pointed out, » = 2p and
&1, .., &p are timelike vector field, &,11, ..., &2, are spacelike vector field. We call
such a manifold a special indefinite S-manifold. Let (M, ¢, &, n", g) be a special
indefinite S-manifold. The tensor @ is given by

QX,Y;Z,W) = —g(W, oY )(Z)7(X) + g(W, o X)7n(Z)
+9(Z, oY) n(X)n(W) — g(Z, pX)7(Y)

I 3
= =
=5

and
J(R(X,Y,02), W) + g(R(X,Y,2),oW) = —Q(X,Y; Z, W)
Moreover, being Q(X,Y;Z, W) =0 for any X,Y,Z, W € D, we have
a) g(R(pX, Y, 0Z), oW) = g(R(X,Y, Z), W) ;
b) g(R(X,¢X,Y), oY) = g(R(X,Y, X),Y) + g(R(X, Y, X), 0Y) ;
) g(R(pX,Y,0X),Y) = g(R(X, Y, X),¢Y) .
Furthermore, for X,Y € I'(D)

B(X,Y) = 3%{313()( + oY) +3D(X — pY)
—D(X+Y)-D(X-Y)—4D(X) —4D(Y)},

and for a non degenerate 2-plane m = span{X,Y} of ©,, where X and Y are
unit vectors of D,

1
32(exey — 9(X,Y)?)
+3(ex +ey —29(X,9Y) Hy(X —¢Y)
—(ex +ey +29(X,Y))’Hy(X +Y)
—(ex +ey —29(X,Y))*H,(X —Y) —4H,(X) — 4H,(Y)}.

Ky(X,Y) = {3(ex +ey +29(X, @Y))sz(X +¢Y)
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Finally we have that the ¢-sectional curvature c is pointwise constant, ¢ € §(M),
if and only if the Riemannian (0,4)-type curvature tensor field R is given by

c
R(X,Y,Z,W) = = {9(¢Y,02)g(0X, W) — g(¢X, pZ)g(¢Y, W) (14)
+O(W, X)D(Z,Y) — B(Z, X)D(W,Y) + 20(X, Y )B(W, Z)}
— {n(W)n(X)g(eZ, oY) = n(W)n(Y )g(eZ, X)
+1(Y)ii(Z)g(eW, o X) — 0(2)i1(X)g(eW, Y ) }.

An example of a special indefinite S-manifold is M = (R, ¢, &1, &,10%, 02, 9),
which is described in Example 4.3. We observe that the metric is Lorentzian, &;
is a spacelike vector field while &, is a timelike vector field, then, since € = 0, the
structure is a special indefinite S-structure. Now, we compute the tensor field

@ on some relevant set of vector fields, the sectional curvature and ¢-sectional
curvature. We know that () = 0 on ®, moreover we have

Q& Y;Z,W) = =Q(&,Y; Z,W) = —g(W,oY)i)(Z) + g(Z, oY )7(W) = 0,

Q& Y5, W) = Q(Y, {0 W, &) = —cacpg(W, Y ), (15)
for any Y, Z,W € T'(D) and for any «, 8 € {1,2}. Equation (15) shows that Q
never vanishes. Now, computing the Christoffel’s symbols we obtain:

1
F?z = F4112 = 9 F%3 = _Fi = _F%?, = F54 =-1
F%:s = ng = *ngl = *ngx =Y

whereas the other I‘fj vanish. To compute the ¢-sectional curvature, being ©
globally spanned by X = % —y& —yésand Y = pX = 8%, we value H(X). So,
we have

0
R(X, X, X) = Vx (Fé‘l —y(Tys + o) 5 — &1 = @) ~VaX - Ve X

1 0
= —§VX(§1 + &) — (T —y(Ths +T8) + T — y(Tls + Ty))

Ozl
= [} —y(Th +Th) — y(Ths — y(Ths + Tl )+
0

+ T —y(Th + FZ4))]@ =0,

o 0 0

0
+ 9(%752)) + 7 (9(61,61) + 961, &) + 9(62,62)) = %
It follows that

1
59(R(X, X, X),pX) = 0.

H(X) = 9(X, X)
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Then, M is an indefinite S-space form with ¢ = 0 = ¢ and, from (14) for any
Y, Z,W € I'(TM), the Riemannian curvature tensor field R is given by:

R(£a,Y, Z,W) = —ea{1(W)g(0Z, ¢Y) — 1(Z)g(eW, 0Y)},
R(éa,83,2,W) =0,
R(£,,Y, 83, W) = eaepg(eW, YY),

and R vanishes on ©.
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