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Abstract

In this paper we consider unitar concepts for some optimality and effi-
ciency or approximate solutions in scalar optimization and vectorial opti-
mization respectively. In this cases some necessary and/or sufficient condi-
tions for these approximate solutions in the multiobjective case are derived
via scalarization and an alternative theorem. Thus are generalized and
refined some corresponding results in multiobjective optimization.
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1 Introduction

The general goal in any optimization is to identify a single or all best solution
within a set of feasible points. While it is theoretically possible to identify the
complete set of best solutions, finding an exact description of this set often turns
out to be practically impossible or at least computationally too expensive, and
thus many research efforts focus on approximation concepts and procedures.
Interest in getting approximate solutions of optimization problems has spread
greatly during the past 20 years. The first concepts of approximate solution or
ε-efficient solution in multiobjective optimization appear in the works of Kutate-
ladze [6], Loridan [10, 11], and White [21]. Loridan [11] define ε-efficient point
for a set and, starting from this concept, he extend the ε-optimal solution con-
cept from scalar optimization problems to multiobjective optimization problems
defining ε-efficient solution in a Pareto context.
This definition is the same as Kutateladze’s notion introduced in [6] and is the
concept more used in the literature to study approximate solutions for multi-
objective optimization problems. White [21] analyze six different concepts of
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ε-efficient solution in the context of five solution methods of multiobjective op-
timization problems through scalarization. Tanaka [19] proposed a new approx-
imate solution concept and Yokoyama [22] explored relations among three types
of approximate solution set. Li [8], Lui [12] and Valyi [20] discussed ε-vector La-
grangians, generalized ε-saddle points and ε-problems for nonsmooth nonconvex
multiobjective programming problems. Tammer [18] studied approximate solu-
tions to vector optimization problems via generating the well known Ekeland’s
variational principle.
Related to general result - the Theorem on Nonconvex Functions of Kaliszewski
[5] (a counterpart of the Fundamental Theorem on Convex Functions [15] in the
case the convexity assumption does not hold), in this paper we discuss different
conditions for (ε, ε)-quasi weak efficiency, (ε, ε)-quasi proper efficiency and (ε, ε)-
quasi efficiency for a multiobjective and nonconvex optimization problem. These
results generalize and refine some known results in the literature of multiobjec-
tive programming. Further we can apply these results in statistics or information
theory [1, 2].
We organize this paper as follows: in Section 2 we present the terminology used
in this paper, derive necessary and/or sufficient conditions for the (ε, ε)-quasi
weak efficiency, the (ε, ε)-quasi proper efficiency and the (ε, ε)-quasi efficiency in
Sections 3, 4 and 5 respectively. Finally, in Section 6 we give a few concluding
remarks.

2 Preliminaries

Let ϕ : X → R and the scalar problem

(P )

{
inf ϕ(x)
x ∈ X.

where X is a nonempty set in a normed linear space.

Definition 1. [4, 9] Let α > 0. A point x0 ∈ X is called

i1) α-optimal solution of the scalar problem (P )if ϕ(x0) ≦ ϕ(x)+α,for all x ∈ X;

i2) α-quasi optimal solution of the scalar problem (P ) if
ϕ(x0) ≦ ϕ(x) + α‖x − x0‖,

for all x ∈ X.

We see that an optimal solution is an α-optimal solution and an optimal solution
is an α-quasi solution. When α = 0, an α-optimal solution (quasi solution) of
(P ) is an optimal solution.
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Definition 2. Let (α0, α0) ∈ R+ × R+ and x0 ∈ X. We say that x0 is (α0, α0)-
quasi optimal solution to (P ) if

ϕ(x0) ≦ ϕ(x) + α0‖x − x0‖ + α0, ∀x ∈ X.

We see that for α = α0 = 0 we get the concept of optimal solutions; if α0 = 0
we get α0-optimal solution and when α0 = 0 we obtain α0-quasi optimal solution
concept.

Consider the following multiobjective optimization problem

(V P )

{
minimize f(x) = (f1(x), ..., fm(x))T

subject to x ∈ X,

where fi : X → R, i = 1, 2, ...,m, and m ≥ 2.

Definition 3. Let x0 ∈ X and ε ∈ Rn
+. Then

i) the point x0 is called an ε -quasi efficiency solution of (V P ) if

f(x) + ε‖x − x0‖ − f(x0) · 0,∀x ∈ X

ii) the point x0is called an ε -quasi weakly efficiency solution of (V P ) if

f(x) + ε‖x − x0‖ − f(x0) ≮ 0,∀x ∈ X

If ε = ε0em where ε0 ∈ R∗
+ and em = (1, ..., 1)T ∈ Rm, then this definition is

reduced to Definition 5.1 [4]. If ε = 0 we get the concepts of efficient solution and
weak efficient solution respectively. Similar to ε-properly efficiency we consider
ε-quasi properly efficiency.

Definition 4. x0 ∈ X is called ε-quasi properly efficient solution of (V P ) if it is
ε-quasi efficient and if there exists M > 0 such that for any i ∈ M = {1, 2, ...,m}
and x ∈ X satisfying fi(x) < fi(x0) − εi‖x − x0‖ there exists j ∈ M with
fj(x) > fj(x0) − εj‖x − x0‖ and

fi(x0) − εi‖x − x0‖ − fi(x)

fj(x) − fj(x0) + εj‖x − x0‖
≦ M.

Remark 1. (1) ε-quasi proper efficiency ⇒ ε-quasi efficiency ⇒ α-quasi weakly
efficiency

(2) when ε = 0, an ε-(quasi properly, quasi weakly) efficient solution of (V P ) is
a (properly, weakly) efficient solution.

Definition 5. Let (ε, ε) ∈ Rm
+ × Rm

+ and x0 ∈ X. We say that x0 is:
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i1) (ε, ε)-quasi efficient to (V P ) if

f(x) + ε‖x − x0‖ + ε − f(x0) · 0,∀x ∈ X

i2) (ε, ε)-quasi weakly efficient to (V P ) if

f(x) + ε‖x − x0‖ + ε − f(x0) ≮ 0,∀x ∈ X

i3) (ε, ε)-quasi properly efficient to (V P )if exists M > 0 such that for any i ∈
M = {1, 2, ...,m} and x ∈ Xsatisfying fi(x) < fi(x0)− εi‖x−x0‖− εithere
exists j ∈ M with fj(x) > fj(x0) − εj‖x − x0‖ − εj and

fi(x0) − εi‖x − x0‖ − εi − fi(x)

fj(x) − fj(x0) + εj‖x − x0‖ + εj

≦ M.

As in [7], to prove our main results, we quote an alternative theorem for nonconvex
functions given by Kaliszewski [5, Theorem 3.1].

Theorem Kaliszewski One and only one of the following alternatives holds:

(a) there exists some x ∈ X such that fi(x) < 0, i ∈ M;

(b) for any negative numbers δ1, δ2, ..., δm there exist positive numbers λi =
−δ−1

i , i ∈ M such that

maxi∈Mλi[fi(x) − δi] ≧ 1, for any x ∈ X.

3 Case of (ε, ε)-Quasi Weak Efficiency

In this section, relate to (ε, ε)-quasi weak efficiency we give a necessary and
sufficient condition.

Theorem 1. Let x0 ∈ X. Then x0 is an (ε, ε)-quasi weakly efficient solution
of (V P ) if and only if for any y∗

i < fi(x0), i ∈ M, x0 is (ε0, ε0)-quasi optimal
solution to the following scalar optimization problem

(SP1)

{
minimize maxi∈Mλi[fi(x) − y∗

i ],
subject to x ∈ X,

where λi = [fi(x0) − y∗
i ]−1, i ∈ M, ε0 = maxi∈Mλiεi and ε0 = maxi∈Mλiεi.

Proof: Firstly, let x0 ∈ X be a (ε, ε)-quasi weakly efficient solution (q.w.e.s.) of
(V P ) and we prove that x0 is (ε0, ε0)-quasi optimal for (SP1). Hence the system
of inequalities

fi(x) < fi(x0) − εi‖x − x0‖ − εi, i ∈ M
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has no solution x ∈ X. Thus by Theorem [Kaliszewski, 5] for any negative
numbers δ1, δ2, ..., δm there exist positive numbers λi = −δ−1

i , i ∈ M such that

maxi∈Mλi[fi(x) − fi(x0) + εi‖x − x0‖ + εi − δi] ≧ 1, for any x ∈ X.

Since

maxi∈Mλi[fi(x)−y∗
i +εi‖x−x0‖+εi] ≦ maxi∈Mλi[fi(x)−y∗

i ]+ε0‖x−x0‖+ε0

for all x ∈ X and λi[fi(x0)− y∗
i ] = 1, i ∈ M, we obtain easily that x0 is ε0-quasi

optimal for (SP1).
Conversely, let x0 be a (ε0, ε0)-quasi optimal solution for (SP1). We have to
prove that x0 is (ε, ε)-quasi weakly efficient to (V P ). We suppose contrary, i.e.
x0 is not (ε, ε)-quasi weakly efficient to (V P ). Therefore, there would exist some
x0 ∈ X such that

fi(x0) < fi(x0) − εi‖x0 − x0‖ − εi, i ∈ M.

Let y∗
i = fi(x0), i ∈ M. Then y∗

i < fi(x0), λ−1

i = fi(x0)−y∗
i = fi(x0)−fi(x0) >

εi‖x0 − x0‖ + εi and hence λiεi‖x0 − x0‖ + λiεi < 1 for i ∈ M. By assumption
that x0 is (ε0, ε0)-quasi optimal to (SP1), for any x ∈ X we have

maxi∈Mλi[fi(x) − fi(x0)] ≧

≧ maxi∈Mλi[fi(x0) − fi(x0)] − maxi∈Mλi(εi‖x0 − x0‖ + εi) =

= maxi∈Mλi[fi(x0) − fi(x0)] − ε0‖x0 − x0‖ − ε0 =

= 1 − ε0‖x0 − x0‖ − ε0 > 0.

Taking x = x0 in above inequality, we get 0 > 0. This contradiction implies that
x0 is (ε, ε)-quasi weakly efficient to (V P ). This proof is completed.

4 Case of (ε, ε)-Quasi Proper Efficiency

As in [7] we can prove a similar theorem for (ε, ε)-quasi proper efficiency.

Lemma 1. If x0 ∈ X is (ε, ε)-quasi proper efficient to (V P ) then the system

αifi(x) + ρeT f(x) <

< αifi(x0) + ρeT f(x0) − αiεi‖x − x0‖ − αiεi − ρeT ε‖x − x0‖ − ρeT ε

with i ∈ M admits no solution x ∈ X for some ρ > 0, where αi > 0, i ∈ M.
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Proof: We suppose that x0 is (ε, ε)-quasi properly efficient to (V P ). By the
(ε, ε)-quasi proper efficiency of x0, the system

fi(x) < fi(x0) − εi‖x − x0‖ − εi, i ∈ M (1)

has no solution in X. Therefore, the system

αifi(x) < αifi(x0) − αiεi‖x − x0‖ − αiεi, i ∈ M

has no solution in X for αi > 0, i ∈ M. Let x̂0 ∈ X be fixed. We discuss in the
following two cases:
Case 1 : We prove that if eT f(x0) − eT ε‖x̂0 − x0‖ − eT ε ≤ eT f(x̂0) then the
system of m inequalities

αifi(x̂0) + ρeT f(x̂0) <

< αifi(x0) + ρeT f(x0) − αiεi‖x̂0 − x0‖ − αiεi − ρeT ε‖x̂0 − x0‖ − ρeT ε

with i ∈ M is inconsistent for any ρ > 0. This is because if it was not the case,
we would have

αifi(x0) − αiεi‖x̂0 − x0‖ − αiεi − αifi(x̂0) >

> ρ[eT f(x̂0) − eT f(x0) + eT ε‖x̂0 − x0‖ + eT ε]

with i ∈ M a contradiction to (1).
Case 2 : If eT f(x0) − eT ε‖x̂0 − x0‖ − eT ε > eT f(x̂0), then

I = {i ∈ M|fi(x0) − εi‖x̂0 − x0‖ − εi > f(x̂0)} 6= ∅

By Remark 1, x0 is (ε, ε)-quasi efficient to (V P ). There exists some j0 ∈ M such
that fj0(x̂0) > fj0(x0) − εj0‖x̂0 − x0‖ − εj0 .
Let

fl(x̂0)− fl(x0) + εl‖x̂0 − x0‖+ εl = maxi∈M[fi(x̂0)− fi(x0) + εi‖x̂0 − x0‖+ εi].

It is clear that fl(x̂0)− fl(x0)+ εl‖x̂0 −x0‖+ εl > 0. By the (ε, ε)-quasi properly
efficiency of x0, there exists an M > 0, such that for any i ∈ I, there exists an
j ∈ M satisfying fj(x̂0) > fj(x0) − εj‖x̂0 − x0‖ − εj and

fi(x0) − εi‖x̂0 − x0‖ − εi − fi(x̂0)

fj(x̂0) − fj(x0) + εj‖x̂0 − x0‖ + εj

≦ M.

Thus,

fi(x0) − εi‖x̂0 − x0‖ − εi − fi(x̂0) ≦ M[fj(x̂0) − fj(x0) + εj‖x̂0 − x0‖ + εj ] ≦

≦ M[fl(x̂0) − fl(x0) + εl‖x̂0 − x0‖ + εl]
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and hence

[fl(x̂0) − fl(x0) + εl‖x̂0 − x0‖ + εl]
−1

∑

i∈I

[fi(x0) − εi‖x̂0 − x0‖ − εi − fi(x̂0)] ≦

≦ M(m − 1)

Since

0 < eT [f(x0) − ε‖x̂0 − x0‖ − ε − f(x̂0)] ≦
∑

i∈I

[fi(x0) − εi‖x̂0 − x0‖ − εi − fi(x̂0)]

we have

[fl(x̂0)−fl(x0)+εl‖x̂0−x0‖+εl]
−1eT [f(x0)−ε‖x̂0−x0‖−ε−f(x̂0)] ≦ M(m−1).

Let ρ = (mini∈Mαi)[M(m − 1)]. Then

ρ ≦ αl[M(m − 1)]−1 ≦

≦ αl[fl(x̂0) − fl(x0) + εl‖x̂0 − x0‖ + εl] · [e
T (f(x0) − ε‖x̂0 − x0‖ − ε − f(x̂0))]

−1

i.e.

ρeT [f(x0) − ε‖x̂0 − x0‖ − ε − f(x̂0)] ≤ αl[fl(x̂0) − fl(x0) + εl‖x̂0 − x0‖ + εl].

Hence

αlfl(x0) + ρeT f(x0) − αlεl‖x̂0 − x0‖ − αlεl − ρeT ε‖x̂0 − x0‖ − ρeT ε <

< αlfl(x̂0) + ρeT f(x̂0).

Therefore, the system of m inequalities

αifi(x̂0) + ρeT f(x̂0) <

< αifi(x0) + ρeT f(x0) − αiεi‖x̂0 − x0‖ − αiεi − ρeT ε‖x̂0 − x0‖ − ρeT ε

with i ∈ M is inconsistent.
Noting that x̂0 can be any element of X, we conclude that the system






αifi(x̂0) + ρeT f(x̂0) < αifi(x0) + ρeT f(x0) − αiεi‖x̂0 − x0‖ − αiεi−
− ρeT ε‖x̂0 − x0‖ − ρeT ε, i ∈ M

x ∈ X.

(2)

has no solution for some ρ > 0. This completes the proof.

From Theorem Kaliszewski and Lemma 1 we get the following necessary condition
for a feasible solution to be an (ε, ε)-properly efficient solution to (V P ).
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Theorem 2. Let x0 be a (ε, ε)-quasi proper efficient solution of (V P ). Then x0

is an (ε0, ε0)-quasi optimal solution to the following scalar optimization problem

(SP2)

{
minimize maxi∈Mλi[(fi(x) − y∗

i ) + ρeT (f(x) − y∗)]
subject to x ∈ X,

for some ρ > 0, when ε0 = maxi∈M λi(εi + ρeT ε), ε0 = maxi∈M λi(εi + ρeT ε)
and λi = [fi(x0) − y∗

i + ρeT (f(x0) − y∗)]−1.

Proof: Let αi = 1, i ∈ M. By Lemma 1, there exists a ρ > 0 such that the
system (2) has no solution. By Theorem Kaliszewski, for any negative numbers
δ1, δ2, ..., δm, λi = −δ−1

i > 0, i ∈ M and

maxi∈Mλi[(fi(x) − fi(x0)) + ρeT (f(x) − f(x0)) + εi‖x − x0‖ + εi+

+ρeT ε‖x − x0‖ + ρeT ε − δi] ≧ 1

for any x ∈ X.
Let y∗

i be a number such that δi = (y∗
i − fi(x0)) + ρeT (y∗ − f(x0)) < 0, i ∈ M.

Denote λi = −δ−1

i . Then λi > 0, i ∈ M and for any x ∈ X,

1 ≦ maxi∈Mλi[(fi(x) − y∗
i ) + ρeT (f(x) − y∗)+

+εi‖x − x0‖ + εi + ρeT ε‖x − x0‖ + ρeT ε] ≦

≦ maxi∈Mλi[(fi(x) − y∗
i ) + ρeT (f(x) − y∗)]+

+maxi∈Mλi[εi‖x − x0‖ + εi + ρeT ε‖x − x0‖ + ρeT ε] =

= maxi∈Mλi[(fi(x) − y∗
i ) + ρeT (f(x) − y∗)]+

+maxi∈Mλi(εi + ρeT ε)‖x − x0‖ + maxi∈Mλi(εi + ρeT ε) =

= maxi∈Mλi[(fi(x) − y∗
i ) + ρeT (f(x) − y∗)] + ε0‖x − x0‖ + ε0.

Hence, for any x ∈ X

maxi∈Mλi[(fi(x) − y∗
i ) + ρeT (f(x) − y∗)] ≧

≧ maxi∈Mλi[(fi(x0) − y∗
i ) + ρeT (f(x0) − y∗)] − ε0‖x − x0‖ − ε0.

The proof is completed.

Theorem 3. Let x0 be a (ε, ε)-quasi properly efficient solution of (V P ). Then
there exists ρ ∈ R∗

+ such that x0 is (ε0, ε0)-quasi optimal to the following scalar
optimization problem

(SP3)

{
minimize maxi∈M[λi(fi(x) − y∗

i ) + ρeT (f(x) − y∗)]
subject to x ∈ X,
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where ε0 = maxi∈M(λiεi+ρeT ε), ε0 = maxi∈M(λiεi+ρeT ε), λi = [fi(x0)−y∗
i ]−1

and y∗
i is a fixed number such that λi > 0, i ∈ M.

Proof: Assume that x0 ∈ X is an (ε, ε)-quasi properly efficient solution to (V P ).
Let y∗

i be a fixed number such that λi = [fi(x0)− y∗
i ]−1 > 0, i ∈ M. By Lemma

1, there exists a ρ > 0 such that for any x ∈ X, the system

λi[fi(x) − y∗
i ] + ρeT [f(x) − y∗] <

< λi[fi(x0)− y∗
i ] + ρeT [f(x0)− y∗]− λiεi‖x− x0‖ − λiεi − ρeT ε‖x− x0‖ − ρeT ε

with i ∈ M is inconsistent. Hence, there exists some i0 ∈ M such that

λi0 [fi0(x) − y∗
i0

] + ρeT [f(x) − y∗] ≧

≧ λi0 [fi0(x0) − y∗
i0

] + ρeT [f(x0) − y∗]−

−λi0εi0‖x − x0‖ − λi0εi0 − ρeT ε‖x − x0‖ − ρeT ε =

= 1 + ρeT [f(x0) − y∗] − [λi0εi0‖x − x0‖ + λi0εi0 + ρeT ε‖x − x0‖ + ρeT ε] =

= maxi∈M[λi(fi(x0) − y∗
i ) + ρeT (f(x0) − y∗)]−

−[λi0εi0‖x − x0‖ + λi0εi0 + ρeT ε‖x − x0‖ + ρeT ε] ≧

≧ maxi∈M[λi(fi(x0) − y∗
i ) + ρeT (f(x0) − y∗)]−

−maxi∈M[λiεi‖x − x0‖ + λiεi + ρeT ε‖x − x0‖ + ρeT ε] ≧

≧ maxi∈M[λi(fi(x0) − y∗
i ) + ρeT (f(x0) − y∗)]−

−maxi∈M[λiεi + ρeT ε]‖x − x0‖ − maxi∈M[λiεi + ρeT ε] =

= maxi∈M[λi(fi(x0) − y∗
i ) + ρeT (f(x0) − y∗)] − ε0‖x − x0‖ − ε0.

Therefore,

maxi∈M[λi(fi(x) − y∗
i ) + ρeT (f(x) − y∗)] ≧

≧ maxi∈M[λi(fi(x0) − y∗
i ) + ρeT (f(x0) − y∗)] − ε0‖x − x0‖ − ε0.

That implies that x0 is (ε0, ε0)-quasi optimal to scalar optimization problem
(SP3). The proof is completed.
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5 Case of (ε, ε)-Quasi Efficiency

Theorem 4. Let x0 be a (ε0, ε0)-quasi optimal solution of (SP2) where ε0 =
maxi∈M λi(εi +ρeT ε), ε0 = maxi∈M λi(εi +ρeT ε), ρ ∈ R∗

+, y∗
i , i ∈ M such that

λi = [fi(x0) − y∗
i + ρeT (f(x0) − y∗)]−1 > 0

with i ∈ M. Then x0 is (ε, ε)-quasi efficient for (V P ).

Proof: Suppose that there exists some ρ > 0 such that, for any y∗
i such that

λi = [fi(x0) − y∗
i + ρeT (f(x0) − y∗)]−1 > 0, i ∈ M, x0 is (ε0, ε0)-quasi optimal

to (SP2). Assume that x0 was not (ε, ε)-quasi efficient to (V P ). By Definition
5, there would exist some x0 ∈ X satisfying

fj(x0) ≦ fj(x0) − εj‖x0 − x0‖ − εj , j ∈ M

with at least one strict inequality. Let y∗
i = fi(x0), i ∈ M. Then

λ−1

i = fi(x0) − y∗
i + ρeT (f(x0) − y∗) =

= fi(x0) − fi(x0) + ρeT (f(x0) − f(x0)) >

> εi‖x0 − x0‖ + εi + ρeT ε‖x0 − x0‖ + ρeT ε ≥ 0, i ∈ M.

We get

λi(εi‖x0 − x0‖ + εi + ρeT ε‖x0 − x0‖ + ρeT ε) < 1, i ∈ M.

Because
ε0 = maxi∈M λi(εi + ρeT ε)

and
ε0 = maxi∈M λi(εi + ρeT ε),

then
ε0‖x0 − x0‖ + ε0 < 1.

Since x0 is (ε0, ε0)-quasi optimal to (SP2), we have

0 = maxi∈Mλi[(fi(x0) − y∗
i ) + ρeT (f(x0) − y∗)] ≥

≥ maxi∈Mλi[(fi(x0) − y∗
i ) + ρeT (f(x0) − y∗)] − ε0‖x0 − x0‖ − ε0 =

= 1 − ε0‖x0 − x0‖ − ε0 > 0

a contradiction. This implies that x0 is (ε, ε)-quasi efficient to (V P ).

Theorem 5. Let x0 be a (ε0, ε0)-quasi optimal solution of (SP3) with ε0 =
maxi∈M(λiεi + ρeT ε), ε0 = maxi∈M(λiεi + ρeT ε), ρ > 0, y∗

i ∈ R, i ∈ M such
that for any i ∈ M, λi = [fi(x0) − y∗

i ]−1 > 0 then x0 is (ε, ε)-quasi efficient
solution (V P ).
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Proof: Suppose that there exists some ρ > 0 such that, for any y∗
i satisfying

λi = [fi(x0) − y∗
i ]−1 > 0, i ∈ M, x0 is (ε, ε)-quasi optimal to (SP3). If x0 was

not (ε, ε)-quasi efficient to (V P ), there would exist an x0 ∈ X such that

fi(x0) ≤ fi(x0) − εi‖x0 − x0‖ − εi, i ∈ M (3)

with at least one strict inequality. Let y∗
i = fi(x0) − εi‖x0 − x0‖ − εi, i ∈ M.

Then

λ−1

i = fi(x0) − y∗
i = εi‖x0 − x0‖ + εi > 0, i ∈ M,

and ε0 = maxi∈M(λiεi + ρeT ε), ε0 = maxi∈M(λiεi + ρeT ε), hence

ε0‖x0 − x0‖ + ε0 = maxi∈M(λiεi + ρeT ε)‖x0 − x0‖ + maxi∈M(λiεi + ρeT ε) =

= maxi∈M(λiεi‖x0 − x0‖ + λiεi + ρeT [ε‖x0 − x0‖ + ε]) =

= 1 + ρeT [ε‖x0 − x0‖ + ε].

By (3) and (ε0, ε0)-quasi optimality of x0 with respect to (SP3), we have

0 > maxi∈M[λi(fi(x0) − y∗
i ) + ρeT (f(x0) − y∗)] >

> maxi∈M[λi(fi(x0) − y∗
i ) + ρeT (f(x0) − y∗)] − ε0‖x0 − x0‖ − ε0 =

= maxi∈M(λiεi‖x0 − x0‖ + λiεi + ρeT ε‖x0 − x0‖ + ρeT ε]) − ε0‖x0 − x0‖ − ε0

= maxi∈M[1 + ρeT (ε‖x0 − x0‖ + ε)] − ε0‖x0 − x0‖ − ε0 = 0

a contradiction. Therefore, x0 is (ε, ε)-quasi efficient to (V P ). The proof is
completed.

Remark 2. For ε = 0 and/or ε = 0 we get some results stated in [3, 4, 5, 7, 9,

13, 14, 16].

6 Conclusions

In this paper we give necessary and sufficient conditions for the (ε, ε)-quasi weak
efficiency, two necessary conditions for the (ε, ε)-quasi proper efficiency and two
sufficient conditions for (ε, ε)-quasi efficiency in multiobjective optimization. No
assumption of any convexity is made in this paper and the discussion is carried
out in a very general framework. The results generalize the corresponding ones
in this field.
We remark that some other results could be obtained, for example in the convex
case with ε-subdifferential calculus for scalar functions or locally Lipschitz case
by using the generalized gradient of Clarke [17].
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