Some classes of pseudo-MTL algebras

by

LAVINIA CORINA CIUNGU

Abstract

Pseudo-MTL algebras or weak pseudo-BL algebras are non-commutative fuzzy structures which arise from pseudo-t-norms, namely, pseudo-BL algebras without the pseudo-divisibility condition. The aim of this paper is to investigate the properties of pseudo-BL algebras that also hold for pseudo-MTL algebras. We will also study some classes of pseudo-MTL algebras such as good, local and Archimedean pseudo-MTL algebras and we show that, generally, an Archimedean pseudo-MTL algebra is not commutative. We prove that any locally finite pseudo-MTL algebra is Archimedean.

Key Words: Pseudo-MTL algebra, Local pseudo-MTL algebra, Good pseudo-MTL algebra, Perfect pseudo-MTL algebra, Archimedean pseudo-MTL algebra, Hyperarchimedean element.

2000 Mathematics Subject Classification: Primary 03G10, Secondary: 03G25, 06D35.

1 Introduction

In order to formalize the many-valued logics induced by continuous t-norms on the real unit interval \([0,1]\), in 1998 P. Hájek introduced a very general many-valued logic, called Basic Logic ([14]). It is well known the result that a t-norm has residuum if and only if the t-norm is left-continuous, so this shows that the Basic Logic is not the most general t-norm based logic. In fact, a logic weaker than the Basic Logic, called Monoidal t-norm based logic (MTL for short) was defined by Esteva and Godo in [8] and proved in [17] to be the logic of left-continuous t-norms and their residua. Thus, the MTL is indeed the most general t-norm based logic and MTL algebra is an algebraic counterpart of this logic. Pseudo-BL algebras were introduced by G. Georgescu and A. Iorgulescu in [11] as a non-commutative extension of Hájek’s BL-algebras. Pseudo-BL algebras are bounded non-commutative residuated lattices \((A, \land, \lor, \odot, \rightarrow, \leftrightarrow, 0, 1)\) which satisfy the conditions:
Depending on the above conditions, there are two directions to extend pseudo-BL algebras. One direction investigates the (bounded) non-commutative residuated lattices satisfying the pseudo-divisibility condition which were studied under the name (bounded) divisible pseudo-residuated lattices in [15] or (bounded) \(R\)-\ell-monomoids ([7], [19], [21]) and examples in the bounded case are given in [16]. The second direction deals with (bounded) non-commutative residuated lattices with the pseudo-prelinearity condition, that is pseudo-MTL algebras. Pseudo-MTL algebras were introduced in [9], under the name weak pseudo-BL algebras in order to obtain a structure on \([0, 1]\), since there are not pseudo-BL algebras on \([0, 1]\). They were studied in [15] (including the not-bounded case and the good pseudo-MTL algebras) and examples in the bounded case of finite good and not good pseudo-MTL algebras are given in [16].

In this paper we will study some properties for pseudo-BL algebras proved in [5] and [6] which are valid in the case of pseudo-MTL algebras, in other words, some properties of pseudo-BL algebras whose proofs don’t need the pseudo-divisibility condition. We will also investigate some special classes of pseudo-MTL algebras, such as good, local and Archimedean pseudo-MTL algebras. It was proved that every locally finite pseudo-MV algebra is commutative ([20]) and that every locally finite pseudo-BL algebra is an MV algebra, so it is commutative ([12]).

We show that in the case of pseudo-MTL algebras this fact is not true, namely we will give an example of locally finite pseudo-MTL algebra which is not commutative. Finally, we prove that any locally finite pseudo-MTL algebra is Archimedean.

2 Pseudo-MTL algebras and their basic properties

Definition 2.1. A pseudo-MTL algebra is an algebra \(A = (A, \land, \lor, \odot, \to, \multimap, 0, 1) \) of the type \((2, 2, 2, 2, 0, 0)\) satisfying the following conditions:

\(M_1\) \((A, \land, \lor, 0, 1)\) is a bounded lattice;
\(M_2\) \((A, \odot, 1)\) is a monoid;
\(M_3\) \(x \odot y \leq z \iff x \leq y \to z \iff y \leq x \multimap z\) for any \(x, y, z \in A\);
\(M_4\) \((x \to y) \lor (y \to x) = (x \multimap y) \lor (y \multimap x) = 1\) (pseudo-prelinearity).

Remark 2.2. (1) If additionally for any \(x, y \in A\) the structure \(A\) satisfies the axiom:
\(M_5\) \((x \to y) \odot x = x \odot (x \multimap y) = x \land y\) (pseudo-divisibility)
then \(A\) is a pseudo-BL algebra.

(2) If \(A\) satisfies the conditions \((M_1), (M_2), (M_3)\) and \((M_5)\), then it is a bounded divisible residuated lattice ([15], [16]). These structures were also studied under the name bounded \(R\)-\ell-monomoids ([7], [19], [21]).

\(A\) is called commutative if the operation \(\odot\) is commutative. In this case \(\to = \multimap\) and thus, a commutative pseudo-MTL algebra is a MTL algebra.
A totally ordered (linear ordered) pseudo-MTL algebra is called chain.

In the sequel we will agree that the operations \land, \lor, \circ have higher priority than the operations \rightarrow, \neg.

A pseudo-MTL algebra \mathcal{A} will be also referred by its universe A.

Example 2.3. Let’s consider $A = \{0, a, b, c, 1\}$ with $0 < a < b < c < 1$ and the operations \circ, \rightarrow, \neg given by the following tables:

<table>
<thead>
<tr>
<th>\circ</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>0</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\rightarrow</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\neg</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Then $\mathcal{A} = (A, \land, \lor, \circ, \rightarrow, \neg, 0, 1)$ is a pseudo-MTL chain. One can easily prove that \mathcal{A} is not a pseudo-BL algebra, because $(b \rightarrow a) \circ b \not= b \circ (b \neg a)$, so (M_3) doesn’t hold.

In a pseudo-MTL algebra $\mathcal{A} = (A, \land, \lor, \circ, \rightarrow, \neg, 0, 1)$ we define for all $x \in A$: $x^- = x \rightarrow 0$ and $x^+ = x \neg$.

The following proposition provides some rules of calculus in a pseudo-MTL algebra (see [5], [6], [9], [15]).

Proposition 2.4. In any pseudo-MTL algebra \mathcal{A} the following rules of calculus hold:

1. $x \rightarrow (y \rightarrow z) = (x \circ y) \rightarrow z$ and $x \neg(y \neg z) = (y \circ x) \neg z$;
2. $x \leq y$ iff $x \rightarrow y = 1$ iff $x \neg y = 1$;
3. $x \rightarrow x = x \neg x = 1$ and $x \rightarrow 1 = x \neg 1 = 1$;
4. $0 \rightarrow x = 0 \neg x = 1$;
5. $x \circ 0 = 0 \circ x = 0$;
6. $x \circ y \leq x \land y$;
7. $(x \rightarrow y) \circ x \leq y$ and $x \circ (x \neg y) \leq y$;
8. $x \leq y \rightarrow (x \circ y)$ and $x \leq y \rightarrow (y \circ x)$;
9. $x \leq y$ implies $x \circ z \leq y \circ z$ and $z \circ x \leq z \circ y$ for any $z \in A$;
10. $(x \rightarrow y) \circ x \leq x \land y$ and $x \circ (x \neg y) \leq x \land y$;
11. $(x \rightarrow y) \circ x \leq x \leq y \rightarrow (x \circ y)$ and $(x \rightarrow y) \circ x \leq y \leq x \rightarrow (y \circ x)$;
12. $x \circ (x \neg y) \leq x \neg x \rightarrow (y \circ x)$ and $x \circ (y \rightarrow x) \leq x \leq y \rightarrow (y \circ x)$;
13. if $x \leq y$ then $z \rightarrow x \leq z \rightarrow y$ and $z \rightarrow x \leq z \neg y$;
14. if $x \leq y$ then $y \rightarrow z \leq x \rightarrow z$ and $y \rightarrow z \leq x \rightarrow z$;
15. $1 \rightarrow x = x$ and $1 \neg x = x$;
16. $x \rightarrow y \leq (y \rightarrow z) \rightarrow (x \rightarrow z)$ and $x \neg y \leq (y \neg z) \rightarrow (x \neg z)$;
17. $x \rightarrow y \leq (z \rightarrow x) \rightarrow (z \rightarrow y)$ and $x \rightarrow y \leq (z \rightarrow x) \rightarrow (z \rightarrow y)$;
18. $x \rightarrow (y \neg z) = y \neg (x \rightarrow z)$ and $x \neg (y \rightarrow z) = y \rightarrow (x \neg z)$;
19. $x \rightarrow (y \neg z) = x \neg (x \rightarrow y)$ and $x \rightarrow (x \rightarrow y) = x \rightarrow (x \neg y)$;
(c20) $x \rightarrow y = x \rightarrow (x \land y)$ and $x \rightsquigarrow y = x \rightsquigarrow (x \land y)$;

(c21) $y \leq x \rightarrow y$ and $y \leq x \rightsquigarrow y$;

(c22) if $x \leq y$, then $x \leq z \rightarrow y$ and $x \leq z \rightsquigarrow y$;

(c23) $z \circ (x \land y) \leq (z \circ x) \land (z \circ y)$ and $(x \land y) \circ z \leq (x \circ z) \land (y \circ z)$;

(c24) $x \rightarrow y \leq (x \circ z) \rightarrow (y \circ z)$ and $x \rightsquigarrow y \leq (z \circ x) \rightarrow (z \circ y)$;

(c25) $(y \rightarrow z) \circ (x \rightarrow y) \leq x \rightarrow z$ and $(x \rightarrow y) \circ (y \rightsquigarrow z) \leq x \rightarrow z$;

(c26) $x \circ (y \rightarrow z) \leq y \rightarrow (x \circ z)$ and $(y \rightsquigarrow z) \circ x \leq (z \circ y)$;

(c27) $(x_{n-1} \rightarrow x_n) \circ (x_{n-2} \rightarrow x_{n-1}) \circ \ldots \circ (x_2 \rightarrow x_3) \circ (x_1 \rightarrow x_2) \leq x_1 \rightarrow x_n$ and

$$
(x_1 \rightsquigarrow x_2) \circ (x_2 \rightsquigarrow x_3) \circ \ldots \circ (x_{n-1} \rightsquigarrow x_n) \leq x_1 \rightsquigarrow x_n;
$$

(c28) $(x \rightarrow y) \circ (x' \rightarrow y') \leq (x \lor x') \rightarrow (y \lor y')$ and $(x \rightarrow y) \circ (x' \rightsquigarrow y') \leq (x \lor x') \rightsquigarrow (y \lor y')$;

(c29) $(x \rightarrow y) \circ (x' \rightarrow y') \leq (x \land x') \rightarrow (y \land y')$ and $(x \rightarrow y) \circ (x' \rightsquigarrow y') \leq (x \land x') \rightsquigarrow (y \land y')$;

(c30) $1^\sim = 0^\sim = 0$ and $0^\sim = 0^\sim = 1$;

(c31) $x^\sim \circ x = 0$ and $x \circ x^\sim = 0$;

(c32) $x \leq y^\sim$ iff $x \circ y = 0$ and $x \leq y^\sim$ iff $y \circ x = 0$;

(c33) $x \leq x^\sim^\sim$ and $x \leq x^\sim$;

(c34) $x \rightarrow y^\sim = (x \circ y)^\sim$ and $x \rightsquigarrow y^\sim = (y \circ x)^\sim$;

(c35) $x \leq y^\sim$ iff $y \leq x^\sim$;

(c36) if $x \leq y$, then $y^\sim \leq x^\sim$ and $y^\sim \leq x^\sim$;

(c37) $x \leq x^\sim \rightarrow y$ and $x \leq x^\sim \rightarrow y$;

(c38) $x \rightarrow y^\sim \rightarrow x^\sim$ and $x \rightarrow y \leq x^\sim$;

(c39) $x \rightarrow y^\sim = x^\sim \rightarrow x$ and $x \rightarrow y^\sim = y \rightarrow x^\sim$;

(c40) $x^\sim \rightarrow x^\sim = x^\sim$ and $x^\sim \rightarrow x^\sim = x^\sim$;

(c41) $x \rightarrow x^\sim = x^\sim \rightarrow x^\sim$;

(c42) $x \circ (\lor_{i \in I} y_i) = \lor_{i \in I} (x \circ y_i)$ and $(\lor_{i \in I} y_i) \circ x = \lor_{i \in I} (y_i \circ x)$;

(c43) $(\lor_{i \in I} x_i) \rightarrow y = \lor_{i \in I} (x_i \rightarrow y)$ and $(\lor_{i \in I} x_i) \rightsquigarrow y = \lor_{i \in I} (x_i \rightsquigarrow y)$;

(c44) $y \rightarrow (\lor_{i \in I} x_i) = \lor_{i \in I} (y \rightarrow x_i)$ and $y \rightsquigarrow (\lor_{i \in I} x_i) = \lor_{i \in I} (y \rightsquigarrow x_i)$;

(c45) $(x \lor y) \rightarrow (x \land y) = (x \rightarrow y) \land (y \rightarrow x)$ and $(x \lor y) \rightarrow (x \land y) = (x \rightarrow y) \land (y \rightarrow x)$;

(c46) $(x \land y)^\sim = x^\sim \land y^\sim$ and $(x \lor y)^\sim = x^\sim \lor y^\sim$;

(c47) $(x \land y)^\sim = x^\sim \land y^\sim$ and $(x \lor y)^\sim = x^\sim \lor y^\sim$;

(c48) $(x \land y)^\sim = x^\sim \land y^\sim$ and $(x \lor y)^\sim = x^\sim \lor y^\sim$;

(c49) $y^\sim \rightarrow x^\sim = x^\sim \rightarrow y^\sim = x \rightarrow y^\sim$;

(c50) $y^\sim \rightarrow x^\sim = x^\sim \rightarrow y^\sim = x \rightarrow y^\sim$.

Corollary 2.5. In any pseudo-MLT algebra we have:

(c51) $z \circ (x_1 \land x_2 \land \ldots \land x_n) \leq (z \circ x_1) \land (z \circ x_2) \land \ldots \land (z \circ x_n)$ and $(x_1 \land x_2 \land \ldots \land x_n) \circ z \leq (x_1 \circ z) \land (x_2 \circ z) \land \ldots \land (x_n \circ z)$.

Proposition 2.6. ([15]) For any $g, h, k \in A$ we have

(c52) $g \lor (h \circ k) \geq (g \lor h) \circ (g \lor k)$.

Corollary 2.7. (c53) $g \lor (h_1 \circ h_2 \circ \ldots h_n) \geq (g \lor h_1) \circ (g \lor h_2) \circ \ldots \circ (g \lor h_n)$.

Some classes of pseudo-MTL algebras

Proposition 2.8. ([9]) In any pseudo-MTL algebra the following properties hold:

(c54) $x \lor y = [(x \multimap y) \rightarrow y] \land [(y \rightarrow x) \multimap x]$;

c55) $x \lor y = [(x \multimap y) \multimap y] \land [(y \rightarrow x) \multimap x]$.

Corollary 2.9. If $x \lor y = 1$, then $x \rightarrow y = x \multimap y = y$.

For any $x \in A$ we put $x^0 = 1$ and $x^{n+1} = x^n \bowtie x^n$. The order of $x \in A$, denoted $\text{ord}(x)$ is the smallest $n \in \mathbb{N}$ such that $x^n = 0$. If there is no such n, then $\text{ord}(x) = \infty$.

Proposition 2.10. In any pseudo-MTL algebra the following hold:

(1) if $x \lor y = 1$, then for each $n \in \mathbb{N}, n \geq 1$, $x^n \lor y^n = 1$;

(2) $(x \multimap y)^n \lor (y \rightarrow x)^n = 1$ and $(x \multimap y)^n \lor (y \multimap x)^n = 1$;

(3) $x \lor y^n \geq (x \lor y)^n$.

Proof: (1) Similarly as in [5], Lemma 2.16;

(2) It follows from (1) and the pseudo-prelinearity condition;

(3) It follows from Corollary 2.7.

Definition 2.11. A pseudo-MTL algebra A is locally finite if for any $x \in A$, $x \neq 1$ implies $\text{ord}(x) < \infty$.

Example 2.12. (1) Consider the pseudo-MTL chain A from Example 2.3. Since $\text{ord}(c) = \infty$, it follows that A is not locally finite.

(2) Let’s consider $A = \{0, a, b, c, 1\}$ with $0 < a < b < c < 1$ and the operations $\bowtie, \rightarrow, \multimap$ given by the following tables:

<table>
<thead>
<tr>
<th>\odot</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>0</td>
<td>a</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\rightarrow</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>c</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>c</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>b</td>
<td>c</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\multimap</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>c</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>c</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>b</td>
<td>c</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
</tbody>
</table>

Then $A = (A, \land, \lor, \bowtie, \rightarrow, \multimap, 0, 1)$ is a pseudo-MTL chain. Because $(b \rightarrow a) \bowtie b = c \bowtie b = a$ and $b \bowtie (b \multimap a) = c \bowtie c = 0$, it follows that $(b \rightarrow a) \bowtie b \neq b \bowtie (b \multimap a)$, so A is not a pseudo-BL algebra. We have:

$\text{ord}(0) = 1$, $\text{ord}(a) = 2$, $\text{ord}(b) = 2$, $\text{ord}(c) = 3$.

so A is a locally finite pseudo-MTL algebra.

Remark 2.13. (1) In [20] is proved that every locally finite pseudo-MV algebra is commutative.

(2) In [12] is proved that every locally finite pseudo-BL algebra is an MV algebra, so it is commutative.

(3) By the above example we proved that there exist locally finite pseudo-MTL algebras which are not MTL algebras.
Let \((L, \vee, \wedge, 0, 1)\) be a bounded lattice. Recall (see \([13]\)) that an element \(a \in L\) is called \textit{complemented} if there is an element \(b \in L\) such that \(a \vee b = 1\) and \(a \wedge b = 0\); if such element \(b\) exists it is called a \textit{complement} of \(a\). We will denote \(b = a'\) and the set of all complemented elements in \(L\) by \(B(L)\). Complements are generally not unique, unless the lattice is distributive. In pseudo-\(\text{MTL}\) algebras however, although the underlying lattices need not be distributive, the complements are unique.

The next result is proved in \([18]\) for the case of commutative residuated lattices, but the proof is also valid for the non-commutative case.

\begin{lemma} ([18]) \label{lemma:complemented} Let \(A\) be a pseudo-\(\text{MTL}\) algebra. Suppose that \(a \in A\) has a complement \(b \in A\). Then the following hold:
\begin{enumerate}[\upshape (1)]
\item If \(c\) is another complement of \(a\) in \(A\), then \(c = b\);
\item \(a' = b\) and \(b' = a\);
\item \(a^2 = a\).
\end{enumerate}
\end{lemma}

Let \(B(A)\) the set of all complemented elements of the lattice \(L(A) = (A, \wedge, \vee, 0, 1)\).

\begin{lemma} \label{lemma:complements}
Let \(A\) be a pseudo-\(\text{MTL}\) algebra. Then the following are equivalent:
\begin{enumerate}[\upshape (a)]
\item \(x \in B(A)\);
\item \(x \vee x^- = 1\) and \(x \wedge x^- = 0\);
\item \(x \vee x^\sim = 1\) and \(x \wedge x^\sim = 0\).
\end{enumerate}
\end{lemma}

\begin{proof}
(a) \(\Rightarrow\) (b). Since \(x \in B(A)\), there exists \(y \in A\) such that \(x \vee y = 1\) and \(x \wedge y = 0\). Hence, \(x^- = x^- \circ 1 = x^- \circ (x \vee y) = (x^- \circ x) \vee (x^- \circ y) = x^- \circ y\), so \(y \geq x^- \circ y = x^-\).

On the other hand, because \(y \circ x \leq x \wedge y = 0\) it follows that \(y \circ x = 0\), so \(y \leq x^-\). Thus, \(x^- = y\), that is \(x \vee x^- = 1\) and \(x \wedge x^- = 0\).

(b) \(\Rightarrow\) (a). Obviously.

(a) \(\Leftrightarrow\) (c). Similarly as (a) \(\Leftrightarrow\) (b).
\end{proof}

\begin{proposition} \label{proposition:complemented}
Let \(A\) be a pseudo-\(\text{MTL}\) algebra, \(x \in B(A)\) and \(n \in \mathbb{N}, n \geq 1\). Then the following are equivalent:
\begin{enumerate}[\upshape (a)]
\item \(x^n \in B(A)\);
\item \(x \vee (x^n)^\sim = 1\) and \(x \wedge (x^n)^\sim = 1\).
\end{enumerate}
\end{proposition}

\begin{proof}
(a) \(\Rightarrow\) (b). Let \(x^n \in B(A)\). By Lemma 2.15 we have \(x^n \vee (x^n)^\sim = 1\). Since \(x^n \leq x\), we get \(1 = x^n \vee (x^n)^\sim \leq x \vee (x^n)^\sim\), so \(x \vee (x^n)^\sim = 1\). Similarly, \(x \wedge (x^n)^\sim = 1\).

(b) \(\Rightarrow\) (a). Since \(x \vee (x^n)^\sim = 1\), by Proposition 2.10(1) we have \(x^n \vee ((x^n)^\sim)^n = 1\). Because \(((x^n)^\sim)^n \leq (x^n)^\sim\), we get \(1 = x^n \vee ((x^n)^\sim)^n \leq x^n \vee (x^n)^\sim\), so \(x^n \vee (x^n)^\sim = 1\).
\end{proof}
Some classes of pseudo-MTL algebras

$(x^n)^- = 1.$ Similarly, $x^n \lor (x^n)^\sim = 1$, so $(x^n)^- \land (x^n)^\sim = 0.$

Because $x^n \leq (x^n)^\sim$ we get $(x^n)^- \land x^n \leq (x^n)^- \land (x^n)^\sim = 0$, so $(x^n)^- \land x^n = 0.$ From $x^n \lor (x^n)^- = 1$ and $x^n \land (x^n)^- = 0$ it follows that $x^n \in B(A).$

Proposition 2.17. ([4]) If $x \in A$, $n \in \mathbb{N}$, $n \geq 1$ such that $x^n \in B(A)$ and $x^n \geq x^- \lor x^\sim$, then $x = 1.$

3 Lattice of filters of a pseudo-MTL algebra

Recall that a nonempty subset F of a lattice L is a filter of L if it satisfies the conditions: (i) $x, y \in F$ implies $x \land y \in F$ and (ii) $x \in F$, $y \in L$, $x \leq y$ implies $y \in F$.

Definition 3.1. Let A be a pseudo-MTL algebra. A nonempty set F of A is called filter of A if the following conditions hold:

(F$_1$) If $x, y \in F$, then $x \circ y \in F$;
(F$_2$) If $x \in F$, $y \in A$, $x \leq y$, then $y \in F$.

We will denote by $\mathcal{F}(A)$ the set of all filters of A.

Remark 3.2. If F is a filter of A, then:

(F$_3$) $1 \in F$;
(F$_4$) If $x \in F$, $y \in A$, then $y \to x \in F$, $y \leftarrow x \in F$;
(F$_5$) If $x, y \in F$, then $x \land y \in F$.

Example 3.3. The subset $F = \{c, 1\}$ of the pseudo-MTL chain A from Example 2.3 is a filter of A.

Remark 3.4. Any filter of A is a filter for the lattice (A, \lor, \land), but the converse is not true. Indeed, let F be a filter of a pseudo-MTL algebra A and $x, y \in A$. Since $x \circ y \in F$ and $x \circ y \leq x \land y$, we get $x \land y \in F$, so F is a filter of the lattice (A, \lor, \land).

Let’s consider the Example 2.12 and $F = \{c, 1\}$. One can easily prove that F is a filter of the lattice (A, \lor, \land), but F is not a filter of the pseudo-MTL algebra A.

Proposition 3.5. ([5]) For a subset F of A the following are equivalent:

(a) F is a filter of A;
(b) $1 \in A$ and if $x, x \to y \in A$, then $y \in A$;
(c) $1 \in F$ and if $x, x \leftarrow y \in A$, then $y \in A$.

Definition 3.6. A filter F of A is proper if $F \neq A$.

Remark 3.7. If F is a proper filter, then $0 \notin F$.
Proposition 3.8. ([12]) If A is a pseudo-\(\text{MTL}\) algebra, then the sets

\[A^- = \{ x \in A \mid x^- = 0 \} \text{ and } A^0 = \{ x \in A \mid x^0 = 0 \} \]

are proper filters of A.

Definition 3.9. For every subset $X \subseteq A$, the smallest filter of A containing X (i.e. the intersection of all filters $F \in \mathcal{F}(A)$ such that $X \subseteq F$) is called the filter generated by X and will be denoted by $[X]$.

Lemma 3.10. ([12]) Let A be a pseudo-\(\text{MTL}\) algebra and $x, y \in A$. Then:

(1) $[x]$ is proper iff $\text{ord}(x) = \infty$;
(2) if $x \leq y$ and $\text{ord}(y) < \infty$, then $\text{ord}(x) < \infty$;
(3) if $x \leq y$ and $\text{ord}(x) = \infty$, then $\text{ord}(y) = \infty$.

Proposition 3.11. ([5]) If $X \subseteq A$, then

$[X] = \{ y \in A \mid y \geq x_1 \odot x_2 \odot \cdots \odot x_n \text{ for some } n \geq 1 \text{ and } x_1, x_2, \ldots, x_n \in X \}$.

Proposition 3.12. ([5]) If $X \subseteq A$, then

$[X] = \{ y \in A \mid x_1 \multimap (x_2 \multimap (\ldots (x_n \multimap y) \ldots)) = 1$
for some $n \geq 1$ and $x_1, x_2, \ldots, x_n \in X \} = \{ y \in A \mid x_1 \multimap (x_2 \multimap (\ldots (x_n \multimap y) \ldots)) = 1$
for some $n \geq 1$ and $x_1, x_2, \ldots, x_n \in X \}$.

Remark 3.13. ([5]) (1) If X is a filter of A, then $[X] = X$;
(2) If $X = \{x\}$ we write $[x]$ instead of $\{\{x\}\}$ and $[x] = \{y \in X \mid y \geq x^n \text{ for some } n \geq 1\}$. $[x]$ is called principal filter.
(3) If F is a filter of A and $x \in A$, then

$F(x) = [F \cup \{x\}] = \{ y \in A \mid y \geq (f_1 \odot x^{n_1}) \odot (f_2 \odot x^{n_2}) \odot \cdots \odot (f_m \odot x^{n_m}) \text{ for some } m \geq 1, n_1, n_2, \ldots, n_m \geq 0, f_1, f_2, \ldots, f_m \in F \}$.

If F_1 and F_2 are filters of A, we define $F_1 \land F_2 = F_1 \cap F_2$ and $F_1 \lor F_2 = [F_1 \cup F_2]$.

Proposition 3.14. ([5],[4]) In any pseudo-\(\text{MTL}\) algebra A the following hold:

(1) If F is a filter of A and $x \in A \setminus F$, then $F(x) = F \lor [x]$;
(2) $[x]$ is a proper filter iff $\text{ord}(x) = \infty$;
(3) $[x] \lor y = [x] \cap [y]$;
(4) If $x \leq y$, then $[y] \subseteq [x]$;
(5) $[x] \lor [y] = [x \lor y] = [x \odot y]$;
(6) $[x \odot y] = [y \odot x]$;
(7) $[x \multimap y] \lor [x] = [x \multimap y] \lor [x]$.

Proposition 3.15. ([4]) If F_1, F_2 are nonempty subsets of A such that $1 \in F_1 \cap F_2$, then $F_1 \lor F_2 = [F_1 \cup F_2] = \{ x \in A \mid x \geq (f_1 \odot f'_1) \odot (f_2 \odot f'_2) \odot \cdots \odot (f_n \odot f'_n) \text{ for some } n \geq 1, f_1, f_2, \ldots, f_n \in F_1, f'_1, f'_2, \ldots, f'_n \in F_2 \}$.
Definition 3.16. ([3]) Let $L = (L, \wedge, \vee)$ be a lattice.

(i) For every $y, z \in L$, the relative pseudocomplement of y with respect to z, provided it exists, is the greatest element x such that $x \wedge y \leq z$. It is denoted by $y \Rightarrow z$ (i.e. $y \Rightarrow z = \max\{x \mid x \wedge y \leq z\}$).

(ii) L is said to be relatively pseudocomplemented provided the relative pseudocomplement $y \Rightarrow z$ exists for every $y, z \in L$.

(iii) A Heyting algebra is a relatively pseudocomplemented lattice with 0, i.e a bounded one.

If L is a relatively pseudocomplemented lattice, then \Rightarrow can be viewed as a binary operation on L and there exists the greatest element, 1, of the lattice $1 = x \Rightarrow x$ for all $x \in L$. Consequently, we have the following equivalent definition, with $\odot = \wedge$:

Definition 3.17. (1) A relatively pseudocomplemented lattice is an algebra $L = (L, \wedge, \vee, \Rightarrow, 1)$, where $(L, \wedge, \vee, 1)$ is a lattice with greatest element and the binary operation \Rightarrow on L verifies : for all $x, y, z \in L, x \leq y \Rightarrow z$ if and only if $x \wedge y \leq z$.

(1') A Heyting algebra is a duplicate name for bounded relatively pseudocomplemented lattice. For any $x \in L$, the element $x^* = x \Rightarrow 0$ is called the pseudocomplement of x.

Remark 3.18. (1) ([1], [3]) A Brouwer algebra is the dual of a Heyting algebra (\vee instead of \wedge, \geq instead of \leq, $y \rightarrow z = \min\{x \mid z \leq x \vee y\}$ instead of $y \Rightarrow z$).

(2) Recall that Gödel algebras are Heyting algebras verifying the condition $(x \Rightarrow y) \lor (y \Rightarrow x) = 1$ and that the Gödel t-norm and its associated residuum (implication) on $[0,1]$ are:

$$x \odot_G y = \min(x, y) = x \wedge y, \quad x \rightarrow_G y = \begin{cases} 1, & \text{if } x \leq y \\ y, & \text{if } x > y, \end{cases} \quad (\text{Gödel implication}).$$

Note also that a proper Heyting algebra (i.e. which is not a Gödel algebra) is not linearly ordered.

Theorem 3.19. ([2]) A complete lattice is a Heyting algebra if and only if it satisfies the identity

$$a \wedge (\bigvee_{i \in I} b_i) = \bigvee_{i \in I} (a \wedge b_i).$$

Theorem 3.20. ([4]) $(\mathcal{F}(A), \wedge, \vee, \Rightarrow, \{1\}, A)$ is a complete Heyting algebra, that is

$$F \wedge (\bigvee_{i \in I} G_i) = \bigvee_{i \in I} (F \wedge G_i)$$

for any filter F and for any family of filters $\{G_i\}_{i \in I}$ of A.

Definition 3.21. A filter H of A is called normal if for any $x, y \in A$

$$(N) \quad x \rightarrow y \in H \text{ iff } x \hookrightarrow y \in H.$$
We will denote by \(F_n(A) \) the set of all normal filters of \(A \).

Remark 3.22. It is obvious that for any pseudo-\(MTL \) algebra \(A \):
1. \(\{1\} \) and \(A \) are normal filters of \(A \);
2. \(F_n(A) \subseteq F(A) \).

Example 3.23. Let us consider the filter \(F = \{c, 1\} \) of the pseudo-\(MTL \) chain \(A \) from Example 2.3. Since \(b \to a = c \in F \) and \(b \not\vDash a = b \notin F \), it follows that \(F \) is not a normal filter of \(A \).

Example 3.24. ([16]) Let’s consider \(A = \{0, a, b, c, 1\} \) with \(0 < a < b < c < 1 \) and the operations \(\odot, \to, \vDash \) given by the following tables:

<table>
<thead>
<tr>
<th>(\odot)</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>0</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>a</td>
<td>a</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\to)</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>c</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>1</td>
</tr>
</tbody>
</table>

Then \(A = (A, \wedge, \vee, \odot, \to, \vDash, 0, 1) \) is a pseudo-\(MTL \) chain. Since \((c \to b) \odot c = b \odot c = b \neq a = c \odot b = c \odot (c \vDash b) \), it follows that \(A \) is not a pseudo-\(BL \) algebra.

It is easy to check that \(H = \{a, b, c, 1\} \) is a normal filter of \(A \).

Remark 3.25. ([6]) Let \(H \) be a normal filter of \(A \). Then:
1. \(x^- \in H \) iff \(x^- \in H \);
2. \(x \in H \) implies \((x^-)^- \in H \) and \((x^-)^- \in H \).

Remark 3.26. In the case of a pseudo-\(BL \) algebra \(A \), it is proved that a filter \(H \) is normal if and only if \(x \odot H = H \odot x \) for any \(x \in A \) ([6]). This equality doesn’t hold in the case of pseudo-\(MTL \) algebras as we can see from Example 3.24. Indeed, in this case we have \(c \odot H = \{a, c\} \) and \(H \odot c = \{a, b, c\} \), so \(c \odot H \neq H \odot c \).

Lemma 3.27. Let \(H \) be a normal filter of \(A \). Then:
1. For any \(x \in A \) and \(h \in H \) there is \(h' \in H \) such that \(x \odot h \geq h' \odot x \);
2. For any \(x \in A \) and \(h \in H \) there is \(h' \in H \) such that \(h \odot x \geq x \odot h' \).

Proof:
1. Let \(y = x \odot h \). Then \(x \odot h = y = x \wedge y \geq (x \to y) \odot x \). But \(h \leq x \iff x \odot h = x \to y \). Since \(h \in H \), it follows that \(x \to y \in H \).
 Because \(H \) is a normal filter we have \(h' = x \to y \in H \). Thus \(x \odot h \geq h' \odot x \).
2. Let \(y = h \odot x \). Then \(h \odot x = y = x \wedge y \geq x \odot (x \vDash y) \). But \(h \leq x \iff h \odot x = x \vDash y \). Since \(h \in H \), it follows that \(x \vDash y \in H \). Because \(H \) is a normal filter we have \(h' = x \vDash y \in H \). Thus \(h \odot x \geq x \odot h' \).
Some classes of pseudo-MTL algebras

Proposition 3.28. Let H be a normal filter of A and $x \in A$. Then

$$H(x) = [H \cup \{x\}] = \{y \in A \mid y \geq h \odot x^n \text{ for some } n \in \mathbb{N}, h \in H\}$$

$$= \{y \in A \mid y \geq x^n \odot h \text{ for some } n \in \mathbb{N}, h \in H\}$$

$$= \{y \in A \mid x^n \rightarrow y \in H \text{ for some } n \geq 1\}$$

$$= \{y \in A \mid x^n \leadsto y \in H \text{ for some } n \geq 1\}.$$

Proof: Let $y \in H(x)$. Then $y \geq (h_1 \odot x^{n_1}) \odot (h_2 \odot x^{n_2}) \odot \cdots \odot (h_m \odot x^{n_m})$ for some $m \geq 1$, $n_1, n_2, \ldots, n_m \geq 0, h_1, h_2, \ldots, h_m \in H$, by Remark 3.13(3).

If $m = 1$, then $y \geq h_1 \odot x^{n_1}$ and we take $h = h_1$ and $n = n_1$.

If $m = 2$, then $y \geq (h_1 \odot x^{n_1}) \odot (h_2 \odot x^{n_2}) = h_1 \odot (x^{n_1} \odot h_2) \odot x^{n_2}$.

According to Lemma 3.27, there is $h_2' \in H$ such that $x^{n_1} \odot h_2 \geq h_2' \odot x^{n_1}$.

Hence, $y \geq h_1 \odot (h_2' \odot x^{n_1}) \odot x^{n_2} = (h_1 \odot h_2') \odot x^{n_1+n_2}$ and we take $h = h_1 \odot h_2'$ and $n = n_1 + n_2$. By induction we get $y \geq h \odot x^n$ for some $n \in \mathbb{N}, h \in H$.

Similarly, $y \geq x^n \odot h$ for some $n \in \mathbb{N}, h \in H$. Thus,

$$H(x) = \{y \in A \mid y \geq h \odot x^n \text{ for some } n \in \mathbb{N}, h \in H\} = \{y \in A \mid y \geq x^n \odot h \text{ for some } n \in \mathbb{N}, h \in H\}.$$

If $y \in H(x)$, then $h \odot x^n \leq y$ for some $n \geq 1, h \in H$. Thus, $h \leq x^n \rightarrow y$, hence $x^n \rightarrow y \in H$.

Conversely, assume that $h = x^n \rightarrow y \in H$ for some $n \geq 1$.

We also have $(h \odot x^n) \rightarrow y = h \rightarrow (x^n \rightarrow y) = h \rightarrow h = 1$, hence $h \odot x^n \leq y$.

Therefore, $y \in H(x)$ and we conclude that

$$H(x) = \{y \in L \mid x^n \rightarrow y \in H \text{ for some } n \geq 1\}.$$

Similarly, $H(x) = \{y \in A \mid x^n \leadsto y \in H \text{ for some } n \geq 1\}$.

Note that the last two equalities are also proved in [6], Lemma 1.12 for the case of pseudo-BL algebras.

Proposition 3.29. If $F_1, F_2 \in \mathcal{F}_n(A)$ then,

$$F_1 \lor F_2 = [F_1 \cup F_2] = \{x \in A \mid x \geq u \odot v \text{ for some } u \in F_1, v \in F_2\}.$$

Proof: By Proposition 3.15 we have:

$$F_1 \lor F_2 = [F_1 \cup F_2] = \{x \in A \mid x \geq (f_1 \odot f'_1) \odot (f_2 \odot f'_2) \odot \cdots \odot (f_n \odot f'_n) \text{ for some } n \geq 1, f_1, f_2, \ldots, f_n \in F_1, f'_1, f'_2, \ldots, f'_n \in F_2\}.$$

Put $f = (f_1 \odot f'_1) \odot (f_2 \odot f'_2) \odot \cdots \odot (f_n \odot f'_n) = f_1 \odot (f'_1 \odot f_2) \odot \cdots \odot (f'_{n-1} \odot f_n) \odot f'_n$.

By Lemma 3.27, there is $f'' \in F_2$ such that $f_1' \odot f_2 \geq f_2 \odot f''$. Hence,

$$f \geq f_1 \odot f_2 \odot (f'' \odot f_3) \odot \cdots \odot (f_n \odot f'_n).$$

Similarly, there is $f'' \in F_2$ such that $f'_2 \odot f_3 \geq f_3 \odot f''$, so

$$f \geq f_1 \odot f_2 \odot f_3 \odot (f'' \odot f_4) \odot \cdots \odot (f_n \odot f'_n).$$
Finally, $f \geq f_1 \circ f_2 \circ f_3 \cdots \circ f_n \circ f''$ with $f_1, f_2, \ldots, f_n \in F_1, f'' \in F_2$. Taking $u = f_1 \circ f_2 \circ f_3 \cdots \circ f_n, v = f''$, we get $x \geq f \geq u \circ v$ with $u \in F_1, v \in F_2$. □

Proposition 3.30. If $F_1, F_2 \in \mathcal{F}_n(A)$ then:
1. $F_1 \wedge F_2 \in \mathcal{F}_n(A)$;
2. $F_1 \vee F_2 \in \mathcal{F}_n(A)$.

Proof: (1) We have $F_1 \wedge F_2 = F_1 \cap F_2$. Consider $x, y \in A$ such that $x \rightarrow y \in F_1 \cap F_2$, that is $x \rightarrow y \in F_1$ and $x \rightarrow y \in F_2$. It follows that $x \rightarrow y \in F_1 \cap F_2$. Similarly, $x \rightarrow y \in F_1 \cap F_2$ implies $x \rightarrow y \in F_1 \cap F_2 = F_1 \wedge F_2$.

(2) Let $x, y \in A$ such that $x \rightarrow y \in F_1 \vee F_2$. By Proposition 3.29, there are $u \in F_1, v \in F_2$ such that $u \circ v \leq x \rightarrow y$. Hence, $(u \circ v) \circ x \leq y$ so $u \circ (v \circ x) \leq y$. Since there is $v' \in F_2$ such that $v \circ x \geq v'$, we get $y \geq (u \circ v) \circ v'$. Similarly, there is $u' \in F_1$ such that $u \circ x \geq u' \circ v$, so $y \geq x \circ (u' \circ v')$. We get $u' \circ v' \leq x \rightarrow y$, hence $x \rightarrow y \in F_1 \vee F_2$. Similarly, $x \rightarrow y \in F_1 \vee F_2$ implies $x \rightarrow y \in F_1 \vee F_2$. □

Proposition 3.31. If $(F_i)_{i \in I}$ is a family of normal filters of A, then:
1. $\bigwedge_{i \in I} F_i \in \mathcal{F}_n(A)$;
2. $\bigvee_{i \in I} F_i \in \mathcal{F}_n(A)$;

Proof: Similarly as above. □

As a consequence of the above result we get:

Theorem 3.32. (\cite{4}) $\mathcal{F}_n(A)$ is a complete sublattice of $(\mathcal{F}(A), \subseteq)$.

For any normal filter H of A we associate a binary relation \equiv_H on A by defining $x \equiv_H y$ iff $x \rightarrow y, y \rightarrow x \in H$ iff $x \sim y, y \sim x \in H$.

Proposition 3.33. (\cite{6}) For a given normal filter H of A the relation \equiv_H is a congruence relation on A.

For any $x \in A$, let x/H be the equivalence class x/\equiv_H and $A/H = \{x/H \mid x \in A\}$. A/H becomes a pseudo-MTL algebra with the natural operations induced from those of A. If $x, y \in A$, then $x/H \leq y/H$ iff $x \sim y \in H$ iff $x \sim y \in H$.

Definition 3.34. A proper (normal) filter of A is called maximal (normal) filter or (normal) ultrafilter if it is not contained in any other proper (normal) filter of A.

Lavinia Corina Ciungu
Denote:

\[\text{Max}(A) = \{ F \mid F \text{ is maximal filter of } A \} \]

and

\[\text{Max}_n(A) = \{ F \mid F \text{ is maximal normal filter of } A \}. \]

Clearly, \(\text{Max}_n(A) \subseteq \text{Max}(A) \).

Example 3.35. Let’s consider the pseudo-MTL algebra \(A \) from Example 2.3. It is obvious that \(H_1 = \{ c, 1 \} \) is a maximal filter of \(A \), but \(H_2 = \{ 1 \} \) is not a maximal filter.

Theorem 3.36. ([4]) If \(F \) is a proper filter of \(A \), then the following are equivalent:

1. \(F \in \text{Max}(A) \);
2. For any \(x \notin F \) there is \(f \in F \), \(n, m \in \mathbb{N} \), \(n, m \geq 1 \) such that \((f \odot x^n)^m = 0 \).

Theorem 3.37. ([6]) If \(H \) is a proper normal filter of \(A \), then the following are equivalent:

(a) \(H \in \text{Max}_n(A) \);
(b) For any \(x \in A \), \(x \notin H \) iff \((x^n)^\sim \in H \) for some \(n \in \mathbb{N} \);
(c) For any \(x \in A \), \(x \notin H \) iff \((x^n)^\sim \in H \) for some \(n \in \mathbb{N} \).

Proposition 3.38. ([6]) If \(H \) is a proper normal filter of \(A \), then the following are equivalent:

(a) \(H \in \text{Max}_n(A) \);
(b) \(A/H \) is locally finite.

Proposition 3.39. Let \(F \) be a maximal filter of a pseudo-MTL algebra \(A \) and \(x, y \in A \). Then:

1. \(y \notin F \) and \(y \odot x = x \) implies \(x = 0 \);
2. \(y \notin F \) and \(x \odot y = x \) implies \(x = 0 \).

Proof: Let’s consider \(y \in A \setminus F \) such that \(y \odot x = x \).

1. Assume \(x \in A \), \(x > 0 \) and consider \(E = \{ z \in A \mid z \odot x = x \} \). First we prove that \(E \) is a proper filter. Obviously, \(1, y \in E \) and \(0 \notin E \). Consider \(z \in A \) such that \(y \rightarrow z \in E \), so \((y \rightarrow z) \odot x = x \). Since \((y \rightarrow z) \odot y \odot x = (y \rightarrow z) \odot x = x \), it follows that

\[
 x = [(y \rightarrow z) \odot y] \odot x \leq (y \land z) \odot x \leq (y \odot x) \land (z \odot x) = x \land (z \odot x) = z \odot x \leq x
\]

Thus \(z \odot x = x \), hence \(z \in E \). Therefore \(E \) is a proper filter. Since \(y \in E \) and \(F \) is maximal, it follows that \(y \in F \), a contradiction. Thus, \(x = 0 \).
2. Similarly as in (1). \(\square \)
Example 3.42. Let’s consider tables: are incomparable. Consider also the operations c Spec x, y if for all P.

Proposition 3.40. ([5]) For a given filter F, the relations $\equiv_{L(F)}$ and $\equiv_{R(F)}$ are equivalence relations on A.

We also define two order relations $\leq_{L(F)}$ on $A/L(F)$ and $\leq_{R(F)}$ on $A/R(F)$ by:

$$x/L(F) \leq_{L(F)} y/L(F) \iff x \to y \in F \text{ and } x/R(F) \leq_{R(F)} y/R(F) \iff x \sim y \in F.$$

Definition 3.41. A proper (normal) filter P of A is called (normal) prime filter if for all $x, y \in A$, $x \lor y \in P$ implies $x \in P$ or $y \in P$.

The set of all prime filters of A will be denoted by $\text{Spec}(A)$. We also denote by $\text{Spec}_n(A)$ the set of all prime normal filters of A. Clearly, $\text{Spec}_n(A) \subseteq \text{Spec}(A)$.

Example 3.42. Let’s consider $A = \{0, a, b, c, 1\}$ with $0 < a < b, c < 1$, but b, c are incomparable. Consider also the operations \odot, \to, \sim given by the following tables:

<table>
<thead>
<tr>
<th>\odot</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>1</th>
<th>\to</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>1</th>
<th>\sim</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>0</td>
<td>0</td>
<td>a</td>
<td>0</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>a</td>
<td>a</td>
<td>c</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>0</td>
<td>b</td>
<td>0</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>0</td>
<td>c</td>
<td>1</td>
<td>c</td>
<td>b</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>a</td>
<td>a</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>1</td>
<td>1</td>
<td>c</td>
<td>0</td>
<td>b</td>
<td>b</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
</tbody>
</table>

Then $A = (A, \land, \lor, \odot, \to, \sim, 0, 1)$ is a pseudo-MTL algebra. Because $(b \to a) \odot b = c \odot b = a$ and $b \odot (b \sim a) = b \odot c = 0$, it follows that $(b \to a) \odot b \neq b \odot (b \sim a)$, so A is not a pseudo-BL algebra. Clearly, A is not a pseudo-MTL chain. Obviously, $P = \{c, 1\}$ is a prime filter of A. Consider the filter $F = \{1\}$ of A. Since $b \lor c = 1 \in F$, but $b, c \notin F$, it follows that F is not a prime filter of A.

Proposition 3.43. ([5]) If P is a proper filter of A, then the following properties are equivalent:

(a) P is prime;
(b) For all $x, y \in A$, $x \to y \in P$ or $y \to x \in P$;
(c) For all $x, y \in A$, $x \sim y \in P$ or $y \sim x \in P$;
(d) $A/L(P)$ is a chain;
(e) $A/R(P)$ is a chain.

Corollary 3.44. ([5]) If P is a prime filter and Q is a proper filter such that $P \subseteq Q$, then Q is a prime filter.

Proposition 3.45. If P is a prime filter of A, then $x \odot y \in P$ implies $x^2 \in P$ or $y^2 \in P$.
Some classes of pseudo-MTL algebras

Proposition 3.53. A prime and y.

Thus, Proposition 3.53. A prime and y.

Thus, y.

Corollary 3.47. (5) If x, y ∈ A, then there is a prime filter P of A such that F ⊆ P and P ∩ F = ∅.

Corollary 3.48. (5) If x ∈ A, x ≠ 1, then there is a prime filter P of A such that x ∉ P.

Corollary 3.49. (5) Every proper filter F is the intersection of those prime filters which contain F. In particular, ∩Spec(A) = {1}.

Corollary 3.50. (5) Max(A) ⊆ Spec(A).

Proposition 3.51. (5) Any proper filter can be extended to a maximal filter.

Proposition 3.52. (5) The set of proper filters including a prime filter P of A is a chain.

Proposition 3.53. (5) A pseudo-MTL algebra A is a chain if and only if any proper filter of A is prime.

Example 3.54. (1) Consider the pseudo-MTL chain A from Example 3.24. It is obvious that: F(A) = {{1}, {c, 1}, {a, b, c, 1}, A}, F_n(A) = {{1}, {a, b, c, 1}, A}, Max(A) = {{a, b, c, 1}, Max_n(A) = {{a, b, c, 1}, Spec(A) = {{1}, {c, 1}, {a, b, c, 1}}, Spec_n(A) = {{1}, {a, b, c, 1}}. Obviously, in this case we have Max_n(A) = Max(A).

(2) For the pseudo-MTL algebra A from Example 3.42 we have: F(A) = {{1}, {b, 1}, {c, 1}, A}, F_n(A) = {{1}, A}, Max(A) = {{b, 1}, {c, 1}}, Max_n(A) = ∅, Spec(A) = {{b, 1}, {c, 1}}, Spec_n(A) = ∅. The filter {1} is not prime and A is not a chain. This fact is in accordance with the assertion of Proposition 3.53.
Definition 3.55. An element $p < 1$ of a bounded lattice $(A, \wedge, \vee, 0, 1)$ is called meet-irreducible if $p = x \wedge y$ implies $p = x$ or $p = y$.

Theorem 3.56. ([4]) If P is a proper filter of A, then the following are equivalent:

(a) P is prime;
(b) P is meet-irreducible in the lattice $\mathcal{F}(A)$;
(c) If $x, y \in A$ such that $x \vee y = 1$, then $x \in P$ or $y \in P$;
(d) For all $x, y \in A \setminus P$ there is $z \in A \setminus P$ such that $x \leq z$ and $y \leq z$;
(e) If $x, y \in A$ and $[x] \wedge [y] \subseteq P$, then $x \in P$ or $y \in P$.

Proposition 3.57. Any locally finite pseudo-MTL algebra A is a chain.

Proof: Let $x, y \in A$ such that $x \vee y = 1$. Applying (c54), we get:

$$1 = x \vee y = [(x \rightarrow y) \leadsto y] \wedge [(y \leadsto x) \rightarrow x] \leq (x \rightarrow y) \leadsto y,$$

so $(x \rightarrow y) \leadsto y = 1$, that is $x \rightarrow y \leq y$. Taking in consideration that $y \leq x \rightarrow y$, we get $x \rightarrow y = y$. Let’s suppose that $x \neq 1$. Since A is locally finite, there is $n \in \mathbb{N}$ such that $x^n = 0$. We have:

$$y = x \rightarrow y = x \rightarrow (x \rightarrow y) = x^2 \rightarrow y = \cdots = x^n \rightarrow y = 0 \rightarrow y = 1.$$

Thus, $x \vee y = 1$ iff $x = 1$ or $y = 1$. But, for all $x, y \in A$ we have $(x \rightarrow y) \vee (y \rightarrow x) = 1$, so, applying the above result we get $x \rightarrow y = 1$ or $y \rightarrow x = 1$. Hence, $x \leq y$ or $y \leq x$. We conclude that A is a chain.

4 Good pseudo-MTL algebras

Definition 4.1. A pseudo-MTL algebra A is called good if $x^{-} = x^{\sim}$ for any $x \in A$.

Example 4.2. (1) The pseudo-MTL chains from Examples 2.3 and 3.24 are good;
(2) The pseudo-MTL chain from Example 2.12 and the pseudo-MTL algebra from Example 3.42 are not good.

Proposition 4.3. If $F = A \setminus \{0\}$ is a maximal filter of a pseudo-MTL algebra A, then A is good.

Proof: Obviously $(0^{-})^{-} = (0^{-})^{-} = 0$. Assume $x > 0$, that is $x \in F$. If $x^{-}, x^{\sim} \in F$ it follows that $x^{-} \odot x, x \odot x^{\sim} \in F$, that is $0 \in F$, a contradiction. Thus $x^{-} = x^{\sim} = 0$, hence $(x^{-})^{-} = (x^{\sim})^{-} = 1$. Therefore, A is a good pseudo-MTL algebra.
Proposition 4.4. In any good pseudo-MTL algebra we have \((x^- \odot y^-)^- = (x^- \odot y^-)^-\).

Proof: Applying \((c_{34}), (c_{46}), (c_{50})\) we have:

\[
(x^- \odot y^-)^- = x^- \rightarrow y^- \odot y^- = y^- \rightarrow y^- = y^- \rightarrow x^- = (x^- \odot y^-)^-.
\]

(In the last equality we also applied \((c_{34})\)).

Proposition 4.5. In any good pseudo-MTL algebra \(A\) we have \(x^- \odot y^- \leq (x \odot y)^-\).

Proof: Because \(A\) is good, by \((c_{10})\), we have:

\[
(x \odot y)^- = (x \odot y)^- \leq (x \odot y)^- \land x^- \geq x^- \odot (x^- \rightarrow (x \odot y)^-)
\]

\[
= x^- \odot (x^- \rightarrow (x \odot y)^-) = x^- \odot (x^- \rightarrow (x \rightarrow y)^-).
\]

But, applying \((c_{34})\) and \((c_1)\) we have:

\[
x^- \rightarrow (x \rightarrow y)^- = x^- \rightarrow ((x \rightarrow y) \rightarrow 0) = (x^- \rightarrow y^-) \odot x^- \rightarrow 0
\]

\[
= ((x^- \rightarrow y^-) \odot x^-)^- \geq (x^- \land y^-)^- \geq x^- \land (y^-)^-
\]

\[
= x^- \lor y^-.
\]

By \((c_{34})\) we have \((x^- \rightarrow y^-) \odot x^- \leq (x^- \land y^-),\) so

\[
((x^- \rightarrow y^-) \odot x^-)^- \geq (x^- \land y^-)^-.
\]

It follows that

\[
(x \odot y)^- \geq x^- \odot (x^- \lor y^-) = (x^- \odot x^-) \lor (x^- \odot y^-) = 0 \lor (x^- \odot y^-) = x^- \odot y^- = x^- \odot y^-.
\]

(we applied \((c_{42})\) and \((c_{31})\)).

If \(A\) is a good pseudo-MTL algebra, then we will denote

\[
M(A) = \{x \in A \mid x^- = x^- = x\}.
\]

Proposition 4.6. ([12]) Let \(A\) be a good pseudo-MTL algebra. Then:

1. \(0, 1 \in M(A)\);
2. \(x^-, x^- \in M(A)\) for all \(x \in A\);
3. if \(x, y \in M(A)\), then \(x \rightarrow y = y^- \rightarrow x^-\) and \(x \rightarrow y = y^- \rightarrow x^-\);
4. if \(x, y \in M(A)\), then \((x^- \odot y^-)^- = (x^- \odot y^-)^- = x^- \rightarrow y = y^- \rightarrow x\).

Definition 4.7. ([10]) If \(A\) is a good pseudo-MTL algebra we say that two elements \(x, y \in A\) are orthogonals, denoted \(x \perp y\), if \(x^- \leq y^-\).
Remark 4.8. ([10]) If A is a good pseudo-MTL algebra, then the following are equivalent:

(a) $x \perp y$;
(b) $y^\sim \leq x^\sim$;
(c) $y^\sim \odot x^\sim = 0$.

Remark 4.9. ([10]) Let A be a good pseudo-MTL algebra. For all $x, y \in A$ we have:
(1) if $x \leq y$, then $x \perp y^\sim$ and $y^\sim \perp x$;
(2) $x \perp x^\sim$ and $x^\sim \perp x$.

5 Local pseudo-MTL algebras

Definition 5.1. A pseudo-MTL algebra is called local if it has a unique ultrafilter.

If A is a pseudo-MTL algebra, we will denote by:

$D(A) = \{x \in A \mid \text{ord}(x) = \infty\}$

$D(A)^* = \{x \in A \mid \text{ord}(x) < \infty\}$.

Obviously, $D(A) \cap D(A)^* = \emptyset$ and $D(A) \cup D(A)^* = A$.

We also can remark that $1 \in D(A)$ and $0 \in D(A)^*$.

Let A be a pseudo-MTL algebra and F a filter of A. We will use the following notations:

$F^+_x = \{x \in A \mid x \leq y^\sim \text{ for some } y \in F\}$;

$F^\sim_x = \{x \in A \mid x \leq y^\sim \text{ for some } y \in F\}$.

Remark 5.2. ([12]) Let A be a pseudo-MTL algebra. Then:

(1) $F^+_x = \{x \in A \mid y \odot x = 0 \text{ for some } y \in F\}$;

(2) $F^\sim_x = \{x \in A \mid x \odot y = 0 \text{ for some } y \in F\}$;

(3) $F^+_x = \{x \in A \mid x^\sim \in F\}$;

(4) $F^\sim_x = \{x \in A \mid x^\sim \in F\}$.

Proposition 5.3. ([12]) Let A be a local pseudo-MTL algebra. Then:

(1) any proper filter of A is included in the unique maximal filter of A;

(2) A° and A°_0 are included in the unique maximal filter of A.

Proposition 5.4. ([12]) Let A be a pseudo-MTL algebra. Then the following are equivalent:

(a) $D(A)$ is a filter of A;

(b) $D(A)$ is a proper filter of A;

(c) A is local;

(d) $D(A)$ is the unique ultrafilter of A;

(e) for all $x, y \in A$, $\text{ord}(x \odot y) < \infty$ implies $\text{ord}(x) < \infty$ or $\text{ord}(y) < \infty$.

Definition 5.12. Let Corollary 5.11. a chain.

Open problem 2. Find an example of perfect pseudo-MTL algebra which is not a chain.

Example 3.42 are not perfect, since they are not good.

The pseudo-MTL chain from Example 2.12 and the pseudo-MTL algebra from A of Rad and it is denoted by Rad. The intersection of all maximal normal filters of A is called the normal radical of A and it is denoted by $\text{Rad}_n(A)$. It is obvious that $\text{Rad}(A)$ and $\text{Rad}_n(A)$ are filters of A and $\text{Rad}(A) \subseteq \text{Rad}_n(A)$.

Proposition 5.6. ([12]) Any pseudo-MTL chain is a local pseudo-MTL algebra.

Example 5.7. (1) The good pseudo-MTL chains from Examples 2.3, 2.12 and 3.24 are local;
(2) The pseudo-MTL algebra A from Example 3.42 is not local. Indeed, $D(A) = \{b, c, 1\}$ is not a filter of A ($b \odot c = 0 \notin A$).

Open problem 1. Find an example of local pseudo-MTL algebra which is not a chain.

Definition 5.8. ([12]) A pseudo-MTL algebra A is called perfect if it satisfies the following conditions:
(1) A is a local good pseudo-MTL algebra;
(2) for any $x \in A$, $\text{ord}(x) < \infty$ iff $\text{ord}(x^-) = \infty$ iff $\text{ord}(x^-) = \infty$.

Proposition 5.9. ([12]) Let A be a local good pseudo-MTL algebra. Then the following are equivalent:
(a) A is perfect;
(b) for any $x \in A$, $\text{ord}(x) < \infty$ implies $\text{ord}(x^-) = \infty$;
(c) for any $x \in A$, $\text{ord}(x) < \infty$ implies $\text{ord}(x^-) = \infty$;
(d) $D(A)^-_\text{ord} = D(A)^+$;
(e) $D(A)^-_\text{ord} = D(A)^+$.

Example 5.10. (1) Consider the good pseudo-MTL chain A from Example 3.24. By Proposition 5.6 it is local. One can easily check that $\text{ord}(x) < \infty$ iff $\text{ord}(x^-) = \infty$ iff $\text{ord}(x^-) = \infty$ for all $x \in A$. Thus, A is a perfect pseudo-MTL chain.
(2) The pseudo-MTL chain from Example 2.3 is not perfect ($\text{ord}(a) = 2 < \infty$, but $\text{ord}(a^-) = \text{ord}(b) = 2 < \infty$).
(3) The pseudo-MTL chain from Example 2.12 and the pseudo-MTL algebra from Example 3.42 are not perfect, since they are not good.

Open problem 2. Find an example of perfect pseudo-MTL algebra which is not a chain.

Corollary 5.11. If A is a perfect pseudo-MTL algebra, then

$$D(A)^* = \{x^- \mid x \in D(A)\} = \{x^\sim \mid x \in D(A)\}.$$
Example 5.13. (1) In the case of the pseudo-MTL algebra A from Example 3.42 we have $\text{Max}(A) = \{\{b, 1\}, \{c, 1\}\}$. It follows that $\text{Rad}(A) = \{1\}$. Note that A is not a chain.

(2) In the case of the pseudo-MTL chain A from Example 3.24 we have $\text{Max}(A) = \text{Max}_n(A) = \{\{a, b, c, 1\}\}$. Hence, $\text{Rad}(A) = \text{Rad}_n(A) = \{\{a, b, c, 1\}\}$.

Proposition 5.14. If A is a local pseudo-MTL algebra, then $\text{Rad}(A) = D(A)$.

Proof: By Proposition 5.4 it follows that $D(A)$ is the unique maximal filter of A, so $\text{Rad}(A) = D(A)$. \hfill \Box

Remark 5.15. If A is a local pseudo-MTL algebra and $x \in \text{Rad}(A)^*$, $y \in A$ such that $y \leq x$, then $y \in \text{Rad}(A)^*$.

Proposition 5.16. (44) For any $x, y \in \text{Rad}(A)$, $x^\sim \circ y^\sim = x^\sim \circ y^\sim = 0$.

Corollary 5.17. Let A be a perfect pseudo-MTL algebra. If $x \in \text{Rad}(A)$ and $y \in \text{Rad}(A)^*$, then $x^\sim \leq y^\sim$ and $x^\sim \leq y^\sim$.

Proof: Since $x, y^\sim \in \text{Rad}(A)$, by Proposition 5.16 we get $x^\sim \circ y^\sim = 0$.

Because $y \leq y^\sim$, we have $x^\sim \circ y \leq x^\sim \circ y^\sim = 0$, so $x^\sim \circ y = 0$. Hence, $x^\sim \leq y^\sim$. Similarly, $x^\sim \leq y^\sim$. \hfill \Box

Proposition 5.18. If A is a perfect pseudo-MTL algebra and $x, y \in \text{Rad}(A)^*$, then $x \perp y$ and $y \perp x$.

Proof: Since $x, y \in \text{Rad}(A)^*$, it follows that $y^\sim, x^\sim \in \text{Rad}(A)$. Hence, $y^\sim \circ x^\sim = 0$. By Proposition 4.8(c) we get $x \perp y$. Similarly, $y \perp x$. \hfill \Box

Theorem 5.19. If A is a perfect pseudo-MTL algebra, then $\text{Rad}(A)$ is a normal filter of A.

Proof: We have to prove that $x \rightarrow y \in \text{Rad}(A)$ iff $x \sim y \in \text{Rad}(A)$ for all $x, y \in A$. Consider $x, y \in A$ such that $x \rightarrow y \in \text{Rad}(A)$ and suppose $x \sim y \notin \text{Rad}(A)$.

From $y \leq y^\sim$ we get $x \rightarrow y \leq x \rightarrow y^\sim$ (by (c33) and (c13)). Since $\text{Rad}(A)$ is a filter of A, it follows that $x \rightarrow y^\sim \in \text{Rad}(A)$, that is $(x \circ y^\sim)^\sim \in \text{Rad}(A)$ (by (c14)).

Hence, $x \circ y^\sim \in \text{Rad}(A)^*$. On the other hand, from $x \sim y \notin \text{Rad}(A)$, it follows that $x \sim y \in \text{Rad}(A)^*$.

Since $x \leq x^\sim$, by (c14) we get $x^\sim \sim y \leq x \sim y$, so $x^\sim \sim y \in \text{Rad}(A)^*$ (by Remark 5.15). By (c37) we have $x^\sim \leq x^\sim \sim y$, so $x^\sim \in \text{Rad}(A)^*$, that is $x \in \text{Rad}(A)$. But $y \leq x \sim y$, so $y \in \text{Rad}(A)^*$, that is $y^\sim \in \text{Rad}(A)$. Since $\text{Rad}(A)$ is a filter of A and $x, y^\sim \in \text{Rad}(A)$, we get $x \circ y^\sim \in \text{Rad}(A)$ which is a contradiction. Thus, $x \rightarrow y \in \text{Rad}(A)$ implies $x \sim y \in \text{Rad}(A)$.

Similarly, $x \sim y \in \text{Rad}(A)$ implies $x \rightarrow y \in \text{Rad}(A)$ and we conclude that $\text{Rad}(A)$ is a normal filter of A. \hfill \Box
Remark 5.20. If the pseudo-MTL algebra A is not perfect, then the above result is not always valid, as we can see in the following example.

Let’s consider $A = \{0, a, b, c, 1\}$ with $0 < a < b < c < 1$ and the operations $\odot, \rightarrow, \Rightarrow$ given by the following tables:

<table>
<thead>
<tr>
<th>\odot</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>0</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\rightarrow</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>c</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>a</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>a</td>
<td>a</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\Rightarrow</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>a</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>a</td>
<td>a</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>1</td>
</tr>
</tbody>
</table>

One can easily check that the pseudo-MTL chain A is not perfect and $H = \{b, c, 1\}$ is the unique maximal filter of A, so $\text{Rad}(A) = \{b, c, 1\}$. Since $a \rightarrow 0 = c \in H$ and $a \Rightarrow 0 = a \notin H$, it follows that $\text{Rad}(A)$ is not a normal filter of A.

Remark 5.21. There exist pseudo-MTL algebras which are not perfect, but $\text{Rad}(A)$ is a normal filter, so it is not a necessary condition. Indeed, let’s consider $A = \{0, a, b, c, 1\}$ with $0 < a < b < c < 1$ and the operations $\odot, \rightarrow, \Rightarrow$ given by the following tables:

<table>
<thead>
<tr>
<th>\odot</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>0</td>
<td>a</td>
<td>0</td>
<td>0</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>b</td>
<td>0</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>c</td>
<td>0</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>a</td>
<td>c</td>
<td>b</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\rightarrow</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>a</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>a</td>
<td>a</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\Rightarrow</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>a</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>a</td>
<td>a</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>1</td>
</tr>
</tbody>
</table>

One can easily check that the pseudo-MTL chain A is not perfect and $H = \{b, c, 1\}$ is the unique maximal filter of A, so $\text{Rad}(A) = \{b, c, 1\}$. One can easily check that $\text{Rad}(A)$ is also a normal filter of A.

6 Archimedean pseudo-MTL algebras

We will introduce the notion of Archimedean pseudo-MTL algebra in the same way as in the case of pseudo-BL algebras (see [4]).

Proposition 6.1. In any pseudo-MTL algebra the following are equivalent:

(a) $x^n \geq x^- \lor x^-$ for any $n \in \mathbb{N}$ implies $x = 1$;
(b) $x^n \geq y^- \lor y^-$ for any $n \in \mathbb{N}$ implies $x \lor y = 1$;
(c) $x^n \geq y^- \lor y^-$ for any $n \in \mathbb{N}$ implies $x \rightarrow y = x \Rightarrow y = y$.

Proof: (a) \Rightarrow (b) Take $x, y \in A$ such that $x^n \geq y^- \lor y^-$ for any $n \in \mathbb{N}$.
By (c) and by the hypothesis we have:

$$(x \lor y)^- = x^- \lor y^- \leq y^- \lor y^- \leq x^n \leq (x \lor y)^n$$ and
\[(x \lor y)\sim = x\sim \lor y\sim \leq y\sim \leq y\sim \lor y\sim \leq x^n \leq (x \lor y)^n,\]
hence \((x \lor y)^n \geq (x \lor y)^\sim \lor (x \lor y)^\sim\) for any \(n \in \mathbb{N}\). Thus, by hypothesis we get \(x \lor y = 1\).

(b) \implies (c) By (c54) and (c55), for all \(x, y \in A\) we have:
\[
(x \lor y) = [(x \rightarrow y) \bowtie y] \land [(y \bowtie x) \rightarrow x]
\]
\[
(x \land y) = [(x \bowtie y) \rightarrow y] \land [(y \rightarrow x) \bowtie x].
\]

Since \(x \lor y = 1\), it follows that:
\[
[(x \rightarrow y) \bowtie y] \land [(y \bowtie x) \rightarrow x] = 1,
\]
\[
[(x \bowtie y) \rightarrow y] \land [(y \rightarrow x) \bowtie x] = 1,
\]
hence \((x \rightarrow y) \bowtie y = 1\) and \((x \bowtie y) \rightarrow y = 1\). From \((x \rightarrow y) \bowtie y = 1\) we have \(x \rightarrow y \leq y\) and taking in consideration that \(y \leq x \rightarrow y\), we obtain \(x \rightarrow y = y\). Similarly, \(x \bowtie y = y\).

(c) \implies (a) Consider \(x \in A\) such that \(x^n \geq x\sim \lor x\sim\) for any \(n \in \mathbb{N}\). Taking \(y = x\) in (c), we get \(x \rightarrow x = x\), hence \(x = 1\).

Definition 6.2. A pseudo-MTL algebra is called Archimedean if one of the equivalent conditions from the above proposition is satisfied.

Definition 6.3. An element \(x \in A\) is called Archimedean if there is \(n \in \mathbb{N}, n \geq 1\) such that \(x^n \in B(A)\). A pseudo-MTL algebra \(A\) is called hyperarchimedean if all its elements are Archimedean.

Proposition 6.4. Any locally finite pseudo-MTL algebra is hyperarchimedean.

Proof: Let \(A\) be a locally finite pseudo-MTL algebra and \(x \in A\). Hence, there exists \(n \in \mathbb{N}\) such that \(x^n = 0 \in B(A)\). It follows that any element \(x\) of \(A\) is Archimedean, so \(A\) is hyperarchimedean.

Corollary 6.5. Any hyperarchimedean pseudo-MTL algebra is Archimedean.

Proof: Let \(A\) be a hyperarchimedean pseudo-MTL algebra and \(x \in A\) such that \(x^n \geq x\sim \lor x\sim\) for any \(n \in \mathbb{N}\). Since \(A\) is hyperarchimedean, there exists \(m \in \mathbb{N}, m \geq 1\) such that \(x^m \in B(A)\). According to Proposition 2.17 if follows that \(x = 1\), so \(A\) is Archimedean.

Corollary 6.6. Any locally finite pseudo-MTL algebra is Archimedean.

Proof: It follows from Proposition 6.4 and Corollary 6.5.
Theorem 6.7. ([4]) For a pseudo-MTL algebra \(A \), the following are equivalent:
(a) \(A \) is hyperarchimedean;
(b) For any normal filter \(H \), the quotient pseudo-MTL algebra \(A/H \) is an Archimedean pseudo-MTL algebra.

Example 6.8. (1) The pseudo-MTL chains from Examples 2.3 and 3.24 are neither Archimedean, nor hyperarchimedean (for example, in the first case, \(c^n = c \geq c^- \lor c^- = 0 \lor 0 = 0 \) for all \(n \geq 2 \));
(2) The pseudo-MTL chain from Example 2.12 is locally finite, so it is hyperarchimedean and Archimedean;
(3) The pseudo-MTL algebra \(A \) from Example 3.42 is Archimedean, but it is not hyperarchimedean. Indeed:

\[
0^n = 0 \not\leq 0^- \lor 0^- = 1 \lor 1 = 1, \ n \geq 1
\]
\[
a^n = 0 \not\leq a^- \lor a^- = b \lor c = 1, \ n \geq 2
\]
\[
b^n = b \not\leq b^- \lor b^- = 0 \lor c = c, \ n \geq 1
\]
\[
c^n = c \not\leq c^- \lor c^- = b \lor 0 = b, \ n \geq 1
\]
\[
1^n = 1 \geq 1^- \lor 1^- = 0 \lor 0 = 0, \ n \geq 1.
\]

We conclude that, if \(x^n \geq x^- \lor x^- \) for all \(n \in \mathbb{N} \), \(n \geq 1 \), then \(x = 1 \). Hence, \(A \) is an Archimedean pseudo-MTL algebra. Since \(a^2 = 0 \in B(A) \), it follows that \(a \) is an Archimedean element. By contrary, \(b^n = b \not\in B(A) \) for all \(n \in \mathbb{N} \), \(n \geq 1 \), so \(b \) is not Archimedean element. Thus, \(A \) is not hyperarchimedean.

Remark 6.9. By Examples 6.8(2),(3) we proved that, generally, an Archimedean pseudo-MTL algebra is not commutative (i.e. a MTL algebra).

Acknowledgment

The author would like to thank Professor Afrodita Iorgulescu for her useful remarks and suggestions on the subject that helped improving the presentation.

References

Received: 10.11.2006.

Department of Mathematics,
Polytechnical University of Bucharest
Splaiul Independenței 313,
Bucharest, Romania
E-mail: lavinia_ciungu@math.pub.ro