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1 Introduction.

In his paper on the theory of points proches [17], A. Weil, generalizing the notion
of jet prolongation due to C. Ehresmann [5], introduced the idea that to any local
algebra A corresponds a covariant functor which associates with a differential
manifold P a fibre bundle AP over P. The bundle AP is called the prolongation
of P of kind A and its elements the A-points, or points proches, on P.

From this paper, several lines of study followed. Among them, the study of
the structures one can lift on the prolongations of a manifold ([2], [3], [6], [13],
[14]); the theory of product preserving, or natural bundles ([4], [7], [8], [9], [10]);
the study of differential invariants on sheaves of tangent vector fields ([15], [16]).

Since the starting point is, in any case, a local algebra, it seemed of some
interest to study the category of local algebras and, in particular, the categorial
methods for generating new local algebras from old ones. This is the content of
the first section of the paper.

It is known that each local algebra is isomorphic to an algebra of (generalized)
truncated polynomials. Thus, in the second section of the paper, we study these
kind of local algebras, performing the constructions introduced in the previous
part and finding, in particular, examples of local algebras which are isomorphic
as A-modules but not as algebras.

*Supported by PRIN SINTESI.
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Finally, in the third section, we study the differential structure of the prolon-
gation bundles whose existence was first stated by Weil himself. We propose a
proof which seems to be very direct and concise. An extension of this method
to the more general framework of local algebra fibrations will be presented in a
forthcoming paper.

We consider paracompact manifolds modelled over finite dimensional affine
spaces. We make use of the notion of polynomial function on an affine space and
of some related results presented in [1], which we recall, without proofs, in the
Appendix.

We refer to [12] for all basic notions of category theory we use.

2 The Category of Local Algebras.

We will study the category of local algebras and, in particular, the categorial
methods for generating new local algebras from old ones. For the sake of com-
pleteness, we will first recall the main definitions and basic properties.

2.1 Objects and Morphisms.

Let C be the category of associative, commutative, real algebras and algebra
homomorphisms.
We will refer to them as algebras and morphisms respectively.

Definition 1. A local algebra A is an algebra with identity such that
(i) A is a finite dimensional vector space over IR;
(ii) A has a unique maximal ideal I4 and A/I4 ~ TR. »

A morphism which preserves the identity will be called a local algebra mor-
phism.

We denote by A the subcategory of C of local algebras and local algebra
morphisms.

Unless otherwise noted, all commutative diagrams considered in this section
will be assumed to be local algebra diagrams.

As a consequence of condition (ii) of Definition 1, we have an epimorphism of
local algebras
OA A — R

whose kernel is I4. If 14 is the identity of A, it follows that A = IR14 + I 4 since
the subalgebra IR14 of A is mapped isomorphically onto IR by 04, via A14 +— A.
This gives a natural way to identify IR14 with IR. Then we have that

A=R+1y4, (1)

where the sum is direct. This means that for every element a of A there is a
unique decomposition a = « + a, where a € IR and a € I4; a will be called
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the finite part of a. Conversely, for every object J of C without identity, we can
endow the direct product
A=RxJ (2)

of real vector spaces with a local algebra structure by defining the product:
(a1,a1) (2, ay) = (@102, @109 + 2a; + a10,).

Condition (i) of Definition 1 implies that all ideals of A are finitely generated
as vector spaces over IR. A fortiori they are finitely generated as modules over A.
Hence A is a Noetherian ring. Furthermore, finite dimension over IR forces the
descending sequence of powers of I4 to be stationary. By Nakayama’s Lemma (cf.
[11], Th.2.2), this implies that If{“ = (0) for some integer £. The least integer £
with this property is called the height of A.

Every local algebra morphism ¢ : A — B maps IR identically onto IR. In
particular, ¢ preserves the finite part of every element; therefore, for all a € 4,
we have that p(a) € Ip, ie., ¢(I4) C Ig. It follows that 04 is the only local
algebra morphism from A to IR, and that the inclusion mapping of IR into A is
the only local algebra morphism from IR to A. Hence, in the category A, R is
both the final and the initial object, i.e., it is the zero object of A.

2.2 Subobjects and Quotient Objects.

(i) A local algebra B is a subobject of the local algebra A in A if there is a local
algebra monomorphism ¢ : B — A. Up to an isomorphism, B can be identified
with ¢«(B) = R + «(Ip). Since ¢(Ip) is a subspace of I4 which is closed under
multiplication, ¢(B) is an object of A. We will call it a local subalgebra of A.
Conversely, every subspace J of I4 which is closed under multiplication gives
rise to a local subalgebra IR + J of A, and this correspondence defines all local
subalgebras of A.

The above arguments show that for every local algebra morphism ¢ : A — A,
o(A) = R+ ¢(Ia) is a local subalgebra of A’: it is the image of ¢ in both
categories C and A.

Similarly one sees that IR + ¢~ *(14/) is the inverse image of ¢ in both cate-
gories.

On the contrary, the kernel of ¢ in C (ker ¢) and the kernel of ¢ in A (Ker ¢)
are distinct, since

Kerp =R+ kery .

We will call normal subalgebra of A any subalgebra IR + J, where J is a proper
ideal of A. The normal subalgebras of A are the kernels in A of all local algebra
morphisms defined on A.

(ii) A quotient in A of the local algebra A is a local algebra C' for which there
is a local algebra epimorphism 7 : A — C. Then C is isomorphic to the quotient
algebra A/kerm = IR + I4/kern, which is a local algebra with maximal ideal
I,/ kerm.
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This allows us to identify the quotient objects of A in A with the local algebras
of the type A/J =R + 14/J, where J is any proper ideal of A.

Given a local algebra morphism ¢ : A — A’, the cokernel of ¢ in both C and
A is
COk(pZIR+IA// m J.

J proper ideal,
P(Ia)CJ

2.3 Products and Coproducts.

Let A; and As be local algebras.

(i) The usual product in C does not yield a product in A, because the direct
product A; x Ay is not a local algebra. In fact it has two maximal ideals, A; x 14,
and 4, x As.

If we consider the subalgebra without identity I, X 4,, following (2) we can
construct the local algebra

R x IAl X IA2
which is isomorphic to the following subalgebra of A; x As:
IR(lAl,lAQ) JrIAl X IA2 .

We denote it by
Al X Ao =R+ Iy, X 14,,

where we have used the convention introduced in (1).
We can now define a functor x| which associates with every pair of local
algebras A; and A, the diagram

AL xR A
Yj/m
P?”'Al
N ®
Ay

PTAiZAl X]RAQ—>Ai

where

a+(a,ay) = a+a; (i=1,2),

are the natural projections, and with every pair of local algebra morphisms & :
A1 — B1 and 51 : AQ — BQ the diagram
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X
A1 X1R A2 fl IREQ >Bl X1R B2

PTA2 P’r’32
PT‘Al f 1:)7’31
AQ 2 > BQ
Ay &

/

;Bl

where, for any o+ (a;,a5) € A1 XR As,

& xr &(a+ (ar,ay)) = a+ (E1(ay), &2(ay)).

Since diagram (3) fulfills the universal property of products, we will call x the
product functor in A and we will refer to A; X As as the product of A; and As.
Generalizing the above construction, we can consider the product of any finite
number of local algebras.
The associative property is trivially fulfilled.

(ii) Similarly, the coproduct functor associates with Ay, As the diagram:

A1 X1R A2
YLAQ
ITLA
! 4
N @
Ay
where
Ing, : Ay — Ay xR A
a+ta;—a+(a,0),
and

InA2 : A2 — A1 XR A2
a+ay— a+(0,a,)

are the natural injections. It acts in an obvious way on pairs of local algebra
morphisms.

Tt is easy to verify that diagrams (3) and (4) determine a biproduct of A; and
AQ in .A
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2.4 Relative Products.

Definition 2. Let w4, : Ay — B and 74, : As — B be local algebra epimor-
phisms. The following triple product of local algebras

A O As = B xg Kerma, xg Kermg,
(may,may)

=R+ Ip xkerma, xkerma,

will be called the product of Ay and As relative to ma, and 74, . .

Note that, since ker 04, = I4, for i = 1,2, we have that

Al O A2:A1 X1R AQ.
(047,04,)

This shows that Definition 2 generalizes the product introduced in 2.3.

We can now define a functor (O) which associates with every diagram of

epimorphisms
A
Ay
TA,
WA
B
the diagram
Ay O Agy
(Tmay,may)
P?“B (5)
B
and with every diagram
A2 §2 > CQ
A1 /51 > Cl
T Ay TCy
A, TCy
B ! > D

the diagram



The category of local algebras 9

B m >

where, for any a + (b, a,,a,) € Ay ©) Ao,

(may,may)

)

& 0&(a+ (bay,ay)) = a+ (n(b), &1(ay), a(ay)).

Definition 2 can be extended to any finite number of local algebra epimor-
phisms. For example, for n = 3, consider the product

B xg Kermg, xg Kerma, xg Kermy, . (6)

In view of diagram (5), we can also consider the product

<A1( o )A2> O  Aj. (7)

TALTAy (Prp,may)

Since
Ker Prp = Kermg, X Kermy,

and X is associative, we have that (6) and (7) are equal. Similarly one can
prove that (6) is also equal to

Ay o (A2 o A3) .

(ray,Pre) (Tay,mag)

This shows the associativity of functor O .

e

2.5 Pullbacks and Pushouts.

(i) Let @4, : Ay — B and ¢4, : A2 — B be local algebra morphisms.
Let us introduce the local algebra

Ay X Ay =R+{(ay,85) € La, X 1a, | pa,(ar) = pa,(as)}.  (8)

(pay,pay)
and notice that it is isomorphic to the following subalgebra of A; x As:
{(a1,a2) | pa, (a1) = ¢a,(az)} =

={(a1 +ay,02 +ay) | a1 = az and pa, (a1) = pa,(as)}-
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We can now define a functor X which associates with every diagram
¢5)

Ay
Ay
PAy
PA
B
the diagram
Aq X Ao
(paypay)
PT’A2
1:)’I“A1
Ay
(9)
Ay
PAy
PA
B

where Pra, and Prg4,, are the restrictions of the natural projections defined in
2.3, and associates with every diagram

AQ 62 > CQ
Al / 51 > Cl
PA, PCy
YA wcy
B il > D
the diagram
§1 X &2
A X Ay N N Ch X Cy
(paq,pa,) - (¢pcyspcy)

PTAQ P’I“C2
PT"A1 §2 P""C]
A2 > 02

. /

Ay >
PA, PCs
QOA (2o
B
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where, for any « + (a,a,) € A; X A,
(par,®az)

&1 >; &2 (Ol + (QlaQQ)) = a+ (&1(ay),&2(ar))

We will call X the pullback functor in A, since diagram (9) fulfills the cor-

responding universal property (in both categories A and C) and we will refer to
Ay X Ag as the pullback of ¢4, and @a4,.

(pay,pay)

It is possible to consider the pullback of an arbitrary number of local algebra
morphisms following the usual categorial method. The associative property is
trivially fulfilled.

It is worth pointing out that Ay xR As = A X As. This shows that
(OAl ,OAQ)
the pullback gives one more generalization of the product defined in 2.3.

(ii) Let w4, : A — Ay and 74, : A — Ay be local algebra epimorphisms.
Consider the quotient

A/(kerma, +kerma,)
together with the natural epimorphism
m:A— A/(kerma, +kermy,).
It is well known that there are unique local algebra epimorphisms
Epy, : A; — A/ (kerma, +kerma,) (1=1,2)

such that
EpAl O TA, :W:EpAQOWAQ.

We introduce the local algebra

(may,may)

Ay X Ag:i=A/(kerma, +kermy,) (10)

(‘7')
and define a functor X which associates with every diagram of epimorphisms

A

7TA2
7TA1

A

Ay
the diagram
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A
TA,
77'141
As
11
N (1)
Epa,
Epa,
(7"1“51 =7TA2)
Ay X 2
and with every diagram
n

A
7TA2 7TC2
TA, e
Ay 3
&1

A1 > Cl

the diagram

A
TrAl 7T-C’1
A €2

2
A, / 3! > )

>

EpA2 Epc2
Epa, Epc,

n
(Ta,,may) gl X 52 R (moy,moy)
Ay X Aq - X Csy

(mAy,mAy)

where, for any a + (kerma, + kerma,) € Ag X Ag,

U
&1 X &(a+ (kerma, +kerma,)) =n(a) + (ker e, + kerme, ).
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Proposition 3. Diagram (11) fulfills the universal property of pushouts in both
categories A and C.

Proof: Suppose we have a diagram

A#}A2

o |-
_—
Aq o D
where 74, and 74, are epimorphisms. We first observe that
kerm = kerma, +kerma, C ker(oy oma,) =ker(og oma,).

Then, from the Factorization Theorem, we conclude that there is a unique local
algebra morphism 7 for which the diagram
010TA, =020T4
A - > D
7Tl /

A(ker my, + ker m4,)

is commutative, i.e., Tom =0y 0m4, = 02 074,, OF
ToEpy, oma, =0;0ma, (1=1,2),
or, since each 74, is surjective,
ToFEpa, =0y (1=1,2).

This completes the proof. 0

e TA,,TA
We will call (X) the pushout functor in A and we will refer to Ay ( 1>< & Ay
as the pushout of w4, and m4,.
It is possible to consider the pushout of an arbitrary number of local algebra
epimorphisms following the usual categorial method. The associative property is
trivially fulfilled.

(iii) A Special Case. In this subsection we will apply the pullback and
pushout functors to the natural epimorphisms between quotients of a given local
algebra. We will thus establish a connection between the pullback and the in-
tersection of ideals, and between the pushout and the sum of ideals in the sense
that, if A is a local algebra, and Ji, J; are proper ideals of A, the diagram of
natural epimorphisms
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/(J1 N J3)

N\

A/J1

A/ J1+J2

is isomorphic to the pullback—pushout diagram

A/Jl X A/J2 NA/Jl X A/J2

(I, \ (Ep1,Ep2)
Al Jy
Al Jy
Ep,
Ep,

7'r1’71'2) (P’l"l,PTg)
A/Jl X A/JQ’ZA/Jl X A/J2

In fact, according to (10), we have
(m1,m2) A/(Jl N JQ)
A X AlJy=—Tr— "= =
/N /2 ker my + ker mo
_ A/(J N Js) _ A/(J1 N Js)
I/ Te) + Jo/(Jindz)  (J1+J2)/(J1NJ2)

where the last isomorphism follows from the third isomorphism theorem for rings.
Moreover, according to (8), we have

~ A/(Jl + Jg),

A/Jl X A/J2 =
(11 I12)

R+ {(ay +Ji,ay +J2) € In/Jy x Ia/J2 | 0y + (J1 + J2) = ay + (J1 + J2)}

and, as a consequence of the first isomorphism theorem for rings, the mapping

A/(Jlﬁjg) —>A/J1 X A/JQ
(Mg, M2)

a+ (JiNJ2)— (a+Ji,a+ Jo)

is a local algebra isomorphism.
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2.6 Composition of Functors.

We conclude our study of the category of local algebras by examining the be-
haviour under composition of the functors introduced above together with the
tensor product functor, which was considered by A. Weil [17]. We just recall that
for any local algebras A; and As, the tensor product A; ® As is a local algebra,
whose maximal ideal is T4, 54, = L4, ® Ao + A1 ® 14,.

We will only take into consideration the cases involving X with ® and O

®

with ®.
Given a local algebra A and a diagram
A
Ay
PAy
PA
B
we can consider the diagram
AR A,
A® Ay
IdA & YA,y
Ids ® pa,

A®B

Proposition 4. The functor ® is distributive with respect to the functor X ,
('7')
in the sense that we have a natural local algebra isomorphism

A®A1 X A®A2 >~ A® (Al X A2> (12)
)

(Ida®pay,lda®pa,) (pag,pa,

Proof: As we already noticed in 2.3(i), the left-hand side of (12) is (isomorphic
to) a subalgebra of (A ® A1) x (A® Aj).

Let (eq,...,eq) be a basis in A. We have that, for all a;; € A; and a;2 € Ay
(t=1,...,d),

d d
<Zei®ailazei®ai2>eA®Al X A® Ay

i1 P (Ida®pa,,lda®pa,)

if and only if
d d
doei®paan) =Y e ©pa,(ai)
i=1 =1
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which is equivalent to

pa,(ain) = pa,(ai) Vi=1,...,d

ie., to
(ai1,ai2) €A1 X Ay Vi=1,....d
(Pay94,)

and, finally to

d
Z e @ (a;1,02) €A® <A1 X A2> }
i=1

(pa1,04,)

It can be easily shown that the resulting local algebra isomorphism is independent
of the choice of the basis in A. D

Recall that xR is a special case of X and that (O) is obtained by means of
('7') KN
triple products. Therefore, as a trivial consequence of the above proposition, we
have

Corollary 5. The functor ® is distributive with respect to both the functors
X1R and O . [ ]

)

It is easy to check that functor xR is distributive with respect to functor X .
('7')

3 Algebras of Truncated Polynomials.

After studying the category of local algebras in general, the next natural step is
to look for concrete examples. The model of the most general local algebra is a
finite dimensional quotient of an algebra of polynomials over a local algebra A, a
so-called algebra of ‘generalized truncated polynomials’. We will apply some of
the most significant functors introduced in the previous section in order to obtain
special algebras of this kind. In particular we will find examples of local algebras
which are isomorphic as A-modules but not as algebras.

Let A be a d-dimensional local algebra.

Consider the algebra Alz] of all polynomials with coefficients in A in the
indeterminate x.

Let T = (x) be the ideal of A[z] generated by x; then, for all non negative
integers k, I ¥ = (zF).

The proof of the next proposition is reported for the only sake of completeness.
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Proposition 6. The set of all residue classes mod x*+1 of polynomials in Alx],
ie.,

Py Alz] == Alz]/I *+1 |

is a local algebra.

Proof: Since dimp (P, A[z]) = (k + 1)d, condition (i) of Definition 1 is fulfilled.

Now consider a maximal ideal J of A[z] containing T **'. Since J is prime
and z*T! € J, we have that € J. Hence I C J, so that J = I + 1 where I is
the ideal of A formed by the constant terms of all the polynomials belonging to
J. Therefore J C I4 + 1 , whence equality follows by maximality. We have thus
proved that P A[z] has I, = (Ia+1 /I *™') as its unique maximal ideal. It also
holds that PPy A[z]/I; ~ IR. Hence condition (ii) of Definition 1 is fulfilled, too.
0

P, A[z] can be identified with the set of all polynomials of degree at most k.

We can consider the following algebras:

PyAlzy,...,z,) = Alzq, ..., 2,]/1 k1 (13)
where I = (z1,...,2,), and
Py, Alrn, .o 2] = Alwy, 2y /T Rkt (14)
where
I krtlkntl) (@F 1, gty

By the same arguments as in Proposition 6, one can easily conclude that all the
above algebras (13) and (14) are local. We will call them algebras of generalized
truncated polynomials.

We now apply the categorial constructions described in the previous section
to algebras of generalized truncated polynomials. In all the cases considered, the
resulting local algebras will still be of the same kind.

Note that we have the following inclusions:
I cI¥ «— k>¥
L (Froekn) o Feebn) s oy > k) foralli=1,...,n
IR ) e k> k4o ky —nt 1

I Fokn) cTF = gy >k foralli=1,...,n
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In each of the above cases we can consider the corresponding quotients of the
local algebras defined in (13) and (14):

Pr 1Az, ... 20 /L I *) = P Az, ..., 2]

,k;L—l)A[CCh -

IPk_lA[iL’l, . ,:Cn]/ (]I (kl’”"k")/]l k) ~ IP(kl—l,.A.,kn—l)A[xh - ,iL'n]

Ptk Alon, ]/ (TE/T 5050} = Py Al )
All the above isomorphisms are a consequence of the third isomorphism the-
orem for rings.

We also have the natural isomorphisms
n
QPrAlwi] = Py, . p, Al 2
i=1

Let m € N*.

We will show that the free A-module A™ of rank m can be given different
local algebra structures.

For any r,s,t € N* such that r+¢ — s+ 1 = m and s < min(r,t), consider
the diagram

P, Alz]

lfﬁ (15)

P, Aly] — P Alz]
t

where 75 (Y1 a;z’) = 37 a;2*, and 77 is defined similarly (with a slight abuse
of notation), and consider the corresponding (relative) product

P,.Alz] O TPAly] =P A[z] xg Kert} xr Ker7/. (16)

(r2,78)
We introduce the free A—module of rank m

5 T t
Cry= {(ao + Zaizl) + Z biz' + Z Ciyl},
=1

i=s+1 i=s+1
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which can be identified in an obvious way with a subset of
]PT,t7SA[‘r7 Y, Z}/(l‘y, Tz, y2> .

It is easy to see that C7,, endowed with the induced local algebra structure, is
isomorphic to (16).

We now apply the pullback functor to diagram (15) and consider the corre-
sponding local algebra
PoAl] X PiAly] =R+ {(p,0,) € Ip _apy X Ip,agy | 72(,) =7 (2,) } -

(Tf» )Tts )
(17)
We introduce the free A-module of rank m

s T t
Bl = {ao + Zai(xi +y') + Z bix' + Z Ciyi} ;
i=1 i=st1 i=st1

which can be identified, in an obvious way, with a subset of

P, Alz,yl/(zy) .

It is easy to see that B}, endowed with the induced local algebra structure, is
isomorphic to (17).

In both of the above constructions, different decompositions of integer m
produce different A-modules (of the same rank m), which, in general, are pairwise
non-isomorphic as local algebras. This yields different local algebra structures on
A™.

4 Points Proches.

We start this section by recalling the construction of the functor associated with
a local algebra, introduced by A.Weil [17].
4.1 Functors associated with Local Algebras.

Let A be a local algebra. For any differential manifold P consider the set AP of
all morphisms u : C°°(P) — A which preserve the identity. The elements in AP
are called points proches associated with the local algebra A.

Let u € AP. There is just one point p € P such that the composition

Ogou:C*(P)— R

is the evaluation mapping ev, at p (cf., e.g., [2], Prop. 0.7).
This defines a surjective mapping (target) ot : AP — P such that

(ap) " Hp) = AP = {u€ AP|0gou=ev,}.
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Now consider a differentiable mapping ¢ : P — @Q and define
Ap: AP — AQ

by setting
Ap(u) : C*°(Q) — A: g u(go ).

For each p € P, this mapping induces by restriction a mapping

App: ApP — Aw(p)Q.

Proposition 7.
(i) To any local algebra A corresponds the covariant functor

1

which associates with any differential manifold P the mapping ot : AP — P
and with any differentiable mapping ¢ : P — @) the diagram

Ap

(ii) To a morphism of local algebras k : A — B corresponds the functor

A i > B
I I

which associates with a manifold P the diagram

AP mp > BP

T

P P

where

rp(u) =rou,
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and with a morphism ¢ : P — @) the diagram

AP Ay -AQ
K Q
o S N e 0/ N
BP > BQ
/S .

7
P\\P W Q\;\Q o

In the first part of the paper we introduced some basic categorial construc-
tions in order to obtain new local algebras from old ones. In view of the above
proposition, to each of these algebras corresponds a functor. Weil noticed that to
the tensor product of local algebras corresponds the composition of the functors
associated with the factors. Here we study what corresponds to the pullback of
local algebras.

Let
Aq X Ay Pry, > A
(SﬂAl #PAz) e 2
PAs
PTAl
A >
! PA; B

be the pullback diagram of two local algebra morphisms ¢4, : 41 — B and
wa, : Ay — B.

Then, for any manifold P, we have the diagram

(Ar X AP (Pra)p  g,p

(pa;,pay)

(1 X a2)p (Pra,)p . (04.)p
(‘PA17S0A2) Q5p
AP > BP
/ (<)0A1)P/

P\\P ‘/o:?p P\\P 8%

On the other hand, consider the pullback diagram of (p4,)p and (pa,)p
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P
A1P XBP AQP 42P >A2P
\ \(iDAz)P
P?‘Alp
AP >BP
(pa,)p

where
AP xpp AP = {(u1,u2) € A1 P x AaP|(pa,)p(u1) = (¢a,)p(u2)}-

If we put
7= (pa,)poPra,p=(pa,)poPra,p,

it is easy to prove that in the following diagram

P s (Pra,
(Al X AQ)P (( TAl)P ( 4 )P)>A1P xpp AP

(¢1,02)
5] X 042)T T
O onn °27 Ppor
P P

the upper arrow is a bijection.

This allows us to conclude that the pullback commutes with the operation of
associating with a local algebra the corresponding points proches.

Since the product of local algebras is a special case of pullback, we have the
diagram

((Pra,)p, (Pra,)p)

(Al XR AQ)P > A1P Xp AQP
(01 X 02)p T
P P

and the upper arrow is still bijective. In this case,
AP xp AP = {(ul,ug) € AP x A2P|OZ"1TP('U/1) = agp(w)},

is the fibre product of the target mappings.
We conclude that the product of local algebras gives rise to the fibre product
of the corresponding points proches.

4.2 The Local Character of Points Proches.

Let A be a local algebra and P a differential manifold.
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Proposition 8. Let u € A,P. Then u(f) =0, for any function f vanishing in
some neighbourhood of p.

Proof: Let f be a function vanishing in the neighbourhood U of p. If 3 is a
bump function at p with support in U, we have

f=Q0=p)f
both on U, where f vanishes, and on P — U, where [ vanishes. Therefore
u(f) =u(l = Bu(f). (18)

Put

Owing to (18) we have
a=ba < (1-ba=0,

but, since b € T4 and 1 ¢ 14, it must be 1 —b ¢ I4. This implies that 1 — b is
invertible. Hence u(f) =a = 0. O

The proof of Proposition 8 directly derives the local character of points proches
from the local nature of algebra A (a different approach is followed in [2], Prop.
1.10). This result allows us to prove that the functor associated with a local
algebra A preserves open inclusions. Let us apply this functor to the inclusion

mapping
U — P

of the open subset U into P. Then for each p € U, we have the mapping
Apiy : AU — A, P

given by
Apwy(w)(f) = u(flu) -
On the other hand, the mapping

n:ApP — AU

given by
n(u)(g) := u(f)

for any differentiable prolongation f of ¢ in P, is well defined, in view of the local
character of u, and is the inverse of A,y,. Hence Ayuy is a bijection.
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If we identify A, U with A,P and consequently regard Ay, as the inclusion
tay of AU in AP, we have the following diagram:

A tAau AP

az;l lag (19)
u

U ____w . p

This result will be used for introducing the differential fibration structure on
AP.

4.3 Points Proches in Affine Spaces.

In this section we study the special case where the functor associated with a local
algebra is applied to an affine space. We will prove that the result is a fibre
bundle whose total space has an affine structure. In addition, we will show that
the functor transforms every differentiable mapping between affine spaces into a
differentiable morphism of trivial bundles.

Proposition 9. Let (M,V) be an affine space. Then, for each xy € M, we
have a natural bijection

AIOM—>{CC0} XIa®V.

Proof: We denote by K*(M,xg) the linear space of homogeneous polynomials
in M, at xg, of degree s (cf. Definition 13 in the Appendix). There is a natural
isomorphism

KY(M,xo) ~V*

which allows us to identify 4 ® V with Homp (K*(M,x0),14). We will prove
that there is a natural bijection

AggM — {x0} x Homp (K (M, x0),14).

Let (eq,...,em) be a basis of V, (e!,...,e™) its dual basis and
M —R:x— e(x— ) (20)
the corresponding Cartesian coordinate functions at xg, fori =1,...,m.

Let us now consider the mapping
AggM — {zo} x Homp (K" (M, z0), 1)

U= (ﬂfo,U|K1(M,mo))
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We will prove that it admits an inverse, i.e., for each & € Homp (Kl (M, xp), IA)
there is a unique u € Ay, M with u|g1(pr,0,) = U. We are going to construct u
starting from its action on polynomials. Let h € K*(M,zp). In view of Proposi-
tion 14 in the Appendix, we have

1
h(z) = HA%h(zo;z — 20)
1 ,
= EAsh(ﬁo;xlei)
= L 0°h : i1 is
- ; (xoaeil,u-,eis)x e

where A®h and §°h are the s-th unidirectional and (multidirectional) polarizations
of h, respectively (cf. Definition 12 in the Appendix) and we have adopted the
Einstein convention over repeated indices. We define

u(h) := éésh(xg; Ciryen oyl )U(z) - a(xt).

Easy linear algebraic arguments show that this definition is independent of the
choice of the basis. It follows that

u(h)=0if s > ¢

where £ is the height of A, and that u preserves the product of polynomials.

We extend the definition of u from polynomials to arbitrary smooth functions
f € C>=(M) by counsidering the Taylor polynomial of f of order ¢ at xg (cf. Note
18 in the Appendix) and setting

4

1 4
u(f) = flwo) + D 5u(D'f(wo; — z0)) (21)
i=1
We recall that each D f(xg;- — o) is a homogeneous polynomial at xq of degree

i (cf. Proposition 16 in the Appendix).
The above formula defines u as a linear mapping. We show that u preserves
products, too. In fact,

Note that

u(DT(f)(xo;'fxo))u(Ds(g)(xoyfxo)):O if r4+s>4
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Hence, by the Leibniz rule we deduce that

u(flulg) = f(xo)g(wo) +

= [(zo)g(zo) +

‘ .
Z %U ( Z T%!DT(f)(Io;' —20)D*(g)(2o; - — 950))

=1 r4+s=1
L
— foa) + Y 5 u(Di(f)woi — w0))
= u(fg).

We have constructed a u € A, M such that u|g1(pre,) = @. It is the only
element in A,, M fulfilling this property because, on the one hand, the action
of an algebra morphism on polynomials is uniquely determined by its action
on K'(M,z0) and, on the other hand, each element in A,,M vanishes on all
homogeneous polynomials of degree £ 4+ 1 at xg; in particular it vanishes on the
Lagrange remainders of order ¢ at xo (cf. Note 18 in the Appendix). As a
consequence, its action on a function must be the one defined in (21). 0

According to Proposition 9 we have a natural bijection
AM — M x I, ®V (22)

which induces on AM a structure of m(d — 1)—dimensional affine space, d being
the dimension of A.
By virtue of (22) we will identify T, : AM — M with

Pryy MxIy®V —M

Proposition 10. Let (M,V) and (N,W) be affine spaces, and ¢ : M — N a
differentiable mapping. Then Ay : AM — AN is a differentiable mapping.

Proof: Let (e) = (e1,...,em) and () = (&1,...€,) be bases of V and W respec-
tively. We can identify AM with

M x (Iax---x1y)
~———

m times
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via the affine isomorphism

AM — M x (In x - xIx) t u (z,u(z'), ... u(@™)),
~_—
m times

where z = o¥,(u) and, (z!,...,2™) are the Cartesian coordinate functions

at x relative to (e), defined as in (20). Similarly we identify AN with N X
(IA Xoeee XIA).
—_———

n times

Now consider Ap : AM — AN and recall that, for each g € C*°(N),

Ap(u)(g) = u(g o »).

From the above identifications it follows that

u=(z,u(z"),...,u(z™))
and
Ap(u) = (p(2), Ap(u)(y"), ..., Ap(u)(y™),
where (y!,...,y") are the Cartesian coordinate functions at () relative to (g).
Moreover, for all j =1,...,n we have:
Ap(u)(y’) = u(y’ o)
= u(¢’)

‘
w @)+ Y DM — )
k=1
= ¢ (z)+u(hz',....2™))

where h7 is a formal polynomial in m indeterminates, whose coefficients are dif-
ferentiable functions of x. Hence

Ap(u)(y’) = ¢ (z) + W [u(z"), ..., u(@™)]

which shows that Ap(u)(y?) is differentiable as a function of z and u(z?). O

The above arguments imply that

A
AM—2F s AN

o) Jox
>
M 7 N
is a differentiable morphism of trivial bundles.
If ¢ is a diffeomorphism, the diagram is an isomorphism.

In view of the local character of the points proches, all the above results are
still true if the affine spaces are replaced by open subsets.
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4.4 The differential structure.

We now show that the functor associated with a local algebra transforms differ-
ential manifolds into differential fibre bundles.

Proposition 11. Let P be a differential manifold modelled on an affine
space (M,V). Then AP is a differential manifold modelled on the affine space
(AM, I, V).

Proof: Let £ : U C P — £(U) C M be an admissible chart of P. We have the
bijection

A AU C AP — AE(U) C AM .
where the inclusions are due to (19). Now let &' : U’ € P — & (U') € M be
another admissible chart on P such that &/ NU’ # 0, then

ot EUnU'y —gunu’)
is a diffeomorphism between open subsets of M. By Proposition 10
A o™ = A o (A6 AcUNU') — AEUNU')

is a diffeomorphism between open subsets of AM. This guarantees that the
functor associated with local algebra A, when applied to a differential atlas of P,
produces a differential atlas of AP.

0

An immediate consequence of the above proposition is that the functor as-
sociated with a local algebra A, applied to chart £ of P, gives rise to a local
trivialization of AP:

AL
AU—> EU) x T4 RV

4w

u —-—————g———->§ U
so that we can conclude that
ob AP — P

is a differentiable fibre bundle.

4.5 Appendix.

We report from [1] some notions and results on real functions defined on affine
spaces.
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Definition 12. Let (Q,V) be a real affine space. The 0-th polarization of a
function f : Q — IR is the function itself. For n > 0, the n-th polarization of f is
the function

fQxV" -1R
defined by

S f(g v, yvn) = (=1)" > (=)™ > flg+vi, e og,).

m=0 1<ip < <im<n

The term in the above sum corresponding to m = 0 is set equal to f(q). .

We introduce the n-th unidirectional polarization of a function, defined by
AMf: QxV = R: (¢;v) — 0" f(g;v,v,...,0).
It is the restriction of the n-th polarization to the product of the space @ with
the diagonal of V™.

Definition 13. A function f : Q — IR is said to be a homogeneous polynomial
of degree n at q € @ if there is a function F' : Q x V" — IR, multilinear at q in
its vectorial arguments, such that, for each v € V,

1
fla+v)==F(gv,...,v). .
n! ~—
n times
Polynomials are sums of homogeneous polynomials. The degree of a polynomial

is the highest degree of its non zero homogeneous components.

We denote by K™(Q, ) the vector space of homogeneous polynomial functions
of degree n at q.

Proposition 14. If f € K™(Q, q), then the polarization 0™ f is multilinear at q
and for each v € V,

A" f(g;v) =nlf(qg+v). .

Definition 15. The limit

. 1
d" f(g;v1,v2,...,0,) = 25% s—nénf(q;svl,svg, e, SUR),

if it exists, is called the n-th multidirectional derivative of f at the point q¢ € Q)
in the multidirection (vi,vs,...,v,) € V™. .

The n-th directional derivative at g in the direction v is the restriction

D" f(q;v) = d" f(q;v,v,...,v)

of the multidirectional derivative to ) times the diagonal of V™.
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Proposition 16. If f € C*(Q) then for each i € N and each ¢ € Q,

D' f(qo,- — q0) € K'(Q, q0)- =

Theorem (Modified Taylor’s theorem) 17. If f € C™(Q), then for each
q,90 € Q

"1
fla) = Z EDkf(QM ¢ = qo) +7(¢,90) (23)
k=0
where r satisfies
. (¢, q0)
r(q,q) =0 and li —_— =
(@9 (a0 a0) T — aoI”
for each q. .
Note 18.

In the formula (23) the function Y, _, %Dkf(qo; - —qop) is the Taylor polyno-
mial of f of order n at ¢’ and the function r(-,¢’) is the remainder of f of order n
at qo. The latter can be given the usual form of a Lagrange remainder, i.e., the
product of a homogeneous polynomial of order n+1 at gy and a suitable function
belonging to C™(Q).
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