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Abstract

This paper is concerned with the boundedness of all solutions of non-
linear vector differential equations of the form:

X +AMF(X) + B()G(X) + C(HH(X) = 0.

The Lyapunov’s second (or direct) method is used as a basic tool in obtain-
ing the criteria for the boundedness of all solutions of the equation.
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1 Introduction

In the recent years there have been intensive studies on the qualitative behavior
of solutions of certain scalar differential equations of third order; see for instance
[2-12], [14], [15], [17-25] and the references cited therein for some works on the
subject. In this connection, Swick [18] investigated the asymptotic behavior of
solutions of the differential equation

i +a(t) & +b(t)g(d) + h(z) = e(?). (1.1)

Hara [11] studied the uniform ultimate boundedness of the solutions of the non-
linear differential equations

T +a(t) f(z,z) £ +b(t)g(z,z) + c(t)h(z) = p(t) (1.2)

and
T +a(t)f(z,z)  +b(t)g(z,z) + c(t)h(z) = p(t, z, T, ). (1.3)
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In 1999, Mehri&Shadman [12] discussed the boundedness of the solutions of the
scalar differential equation

T 4a(t)f(x) + b(t)g(2) + c(t)h(z) = e(t). (1.4)

However, for the case n = 1, not much is known about the boundedness of solu-
tions of certain nonlinear differential equations of the form (1.1)-(1.4), (namely,
when a(t) # 1,b(t) # 1 and ¢(t) # 1 in (1.1)-(1.4)). It is worth mentioning that
the author of this paper (see [22], [23]), more recently, established some similar
results on the same topic for the third order nonlinear scalar differential equations
as follows:

T +a(t) f(z,,7) T +b(t)g(z, ) + c(t)h(z) = p(t)

and
Z +a(t) f(z,2,%) T +b(t)g(z, %) + c(t)h(z) = p(t, =, 2,7),
and
T +i(z,2,7) £ +f(z,z) = p(t,z, T, %),
respectively.

This paper is interested in the boundedness of all solutions of the third-order
nonlinear vector differential equations of the form:

X +A()F(X) +Bt)G(X) + C(t)H(X) =0, (1.5)

in which t € RT, R" = (0,00) and X € R"; A,B and C are continuous
n X n -symmetric matrices; F': R® - R",G: R" - R"”, H : R" - R" and
F(0) = G(0) = H(O) = 0. It is supposed that the functions F,G and H are
continuous. Let Jr(X), Jg( (), Jr(X) and B (t) denote the Jacobian matrices
corresponding to F(X),G(X), H(X) and B(t),respectively, that is,

i+ () (35) - (3.
d

B = 5 05),65=1,2.m)

U

where ($17$27 ey Z‘n), ('1:17 1‘:27 ey '(L:n)7 (";1517'.7527 rey Zlfn), (fl; f27 rey fn)a (gla g2, - gn)7
(h1,ha,...;h,) and (b;;(t)) are components of X, X, X, F, G, H and B, re-
spectively. Other than these, it is also assumed, as basic throughout what
follows, that the Jacobian matrices Jp(X),Jg(X),Ju(X) and B (t) exist
and are symmetric and continuous, and that all matrices given in the pairs
A(t), Jr(X); B(t), Jo(X); C(t), Ju(X) and B (t), Jg(X) commute with each oth-
ers. Equation (1.5) represents a system of real third-order differential equations
of the form:

$z+zazk ) fr(z +szk gk(T +Zczk (t)hg(z) =0,(i = 1,2,...,n).
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We consider through in what follows, in place of equation (1.5), the equivalent
differential system:

X=Y,vy=Z,
(1.6)
Z=—A(t)F(Z) — B(t)G(Y) — C(t)H(X)

was obtained as usual by setting X=Y, X= Z in (1.5).
The symbol (X,Y) will be used to denote the usual scalar product in IR™

for given X,Y in R", that is, (X,Y) = E z;y;; thus (X, X) = ||X||>. It should

be noted that the matrix A is said to be negative-definite, when (AX, X) < 0
for all non-zero X in IR", and X;(4), (i = 1,2,...,n), are eigenvalues of the
n X n-matrix A.

The motivation for the present study has come from the paper of Mehri and
Shadman [12], especially, and the papers mentioned above. Qur aim is to extend
and improve the first result established in [12]. It should also be noted that, to
the best of our knowledge, there is not found any research on the boundedness
of solutions of certain nonlinear vector differential equations of the form (1.5) or
more general form of that equation, in the relevant literature.The present work is
the first attempt to obtain sufficient conditions for the boundedness of solutions
of certain nonlinear vector differential equations of the form (1.5).

2 The main result

The main result of this paper is the following theorem.

Theorem : In addition to the basic assumptions imposed on A,B,C, F,G
and H that appeared in (1.6), we assume that the following conditions are
satisfied:

(1) Xi(A(1)) > 0, Mi(B(t)) > 0, M;(C(t)) > co(t) > 0, and X\(B (t)) < 0 for
all teRY.

(ii) \i(Jr(Z)) > 0 for all Z € R™.

(iii) \i(Je(Y)) >0 for all Y € R™.

(iv) |Ni(Ja(X))| < K for all X € IR™, where K is a positive constant.

(v) There are arbitrary continuous functlons ao,a1 and B on Rt = (0, 00)
such that ap and a; are positive and decreasing and 3 is positive and increasing
for all t € RT, R = (0,00) and

ao\? [ag\? 8\? )
(Oi_1> J(F) » Co (Oé_0> €L (0,00),

where L' (0, 00) is space of integrable functions Lebesque.
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Then, every solution (X (¢),Y (t), Z(t)) of system (1.6) is bounded for all ¢ €
R*.

Now, we dispose of some well-known algebraic results which will be required
in the proof. The first of these is quite standard one:

Lemma 1: Let D be a real symmetric n x n— matrix. Then for any X € R"
84 IX|1* < (DX, X) < Aq||IX|I%,

where d4 and Ay are the least and greatest eigenvalues of D, respectively.
Proof: See ([13]).

Secondly, we require the following lemma.

Lemma 2. Let @), D be any two real n X n— commuting symmetric matrices.
Then,

(i) The eigenvalues A\;(QD), (1 = 1,2,...,n), of the product matrix QD are
real and satisfy

max Aj(Q)Ax(D) > \i(QD) > min A;(Q)Ax(D).

1<j5,k<n 1<5,k<n

(ii) The eigenvalues A\;(Q + D), (i = 1,2, ...,n), of the sum of matrices ) and
D are real and satisfy

{ ma 0@ + max (D)} > 0@+ D) > { min 1,(@) + min M(D)}.

1<j<n 1<k< <jisn 1<k<n

where A;(Q) and A, (D) are, respectively, the eigenvalues of matices Q and D .
Proof: See ([1]).

In the proof of the theorem, our main tool is the continuous differentiable
Lyapunov function V =V (¢, X, Y, Z) defined by:

o(t)

=50

o (t) /
(X, X) + G (YY) + +20/ Yydo. (2.1)

Proof of the theorem: By considering G(0) = 0, it follows that V(0,0,0,0) =
0. Further, since G(0) = 0 and 2G(cY) = Jg(cY)Y, then

G(Y) =/Jg(UY)YdJ.
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Hence, by using assumptions (i) and (iii) of the theorem and Lemma, 1 and Lemma,
2, it follows that

/1<B(t)G( /1/1 (01B(t)Jg(0102Y)Y,Y)dordos > 0. (2.2)

In view of the positive definiteness of the function ag,a; and 3,V(0,0,0,0) =0
and the inequality (2.2), then it is clear that the function V' defined by (2.1) is
positive definite. Now, let (X(t),Y(t), Z(t)) be any solution of the differential
system (1.6) and the function v = v(t) be defined by v(t) = V (¢, X (¢), Y (t), Z(¢)) -
An easy calculation from (2.1) and (1.6) shows that

. _d _ [ ah(®) ag(t)B'(t 20
B (1) = 4V(X,Y,2) = (S0 - 2080 (x, x) + 2000 (X V)

0 (H8'(®) 201 (1)
+(51(t) _ mip )(y,y)+ (Y, Z)

(2.3)
—2(A()F(2),Z) - 2(B(t)G(Y), Z)

Recall that

&l

f(B(t)G(aY),Y) do = Jl"<}_':; (t)G(aY),Y> do
0 0
+f10(B(t)Jg(UY)Z,Y) da—i-fl(B(t)G(UY),Z) do
0 0

<B (t)G(aY),Y> do + }0’% (B(t)G(cY), Z) do
0

I
Ot—

(B()G (oY), Z) do

+
Ot =

(B ()G(Y),Y) do +0 (BH)G(oY), 2)

oO—r

Il
O~

Il
Ot—

(B ()G (Y)Y )do + (BHG(Y), 2).
(2.4)
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On substituting the estimate (2.4) into (2.3) we obtain

o ap(t ao(t)B' (¢ 2a0(t)
= (;}tf— ogg(t)<>)<x,x>+ 20() (X, V)

() ax®F' () 20 (&)
+ (S - 2Wa W) (v y) + 2542 (v, 2)

—2(A(W)F(2),Z) - 2(C()H(X), Z)

2] < B (H)G(oY), Y> do.

Now, clearly, the assumptions imposed on the functions ag,a; and 8 show that

(Oéé)(t) _ aO(t)IBI(t)> (X,X) <0

OB
and () @
(%~ " ) <o
Hence
o< 2l (X, V) + 2552 (v, 2)

~2(AOF(2),2) = 2(COH(X), 2) (2)

2] <B ()G (oY), Y> do.

Making the use of the assumptions of the theorem, (2.1) and the inequality
21X Y]] < [|X)1? + [[Y]|?, it follows that

2a(t) 2a0(t) ao(t)\
20 vy < ol 1y < (299, (26
201 (t) 201 (t) ar(t)\?
el <2 wizi< (58) (2.7
Since 5
F(0)=0,5-F(07) = Jr(0Z)Z
and 5
H(0) =0, 5-H(0X) = Ju(0 X)X,
then
F(Z)= | Jp(c2)Zdo, H(X) = | Ju(0X)Xdo and G(Y) = | Ja(oY)Ydo.
/ / /

(2.8)
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Therefore, by noting assumptions (i), (ii), (iv) of the theorem, the expressions in
(2.8) and Lemma 1 and Lemma 2, we get that

2 (A(t)F( ) / 1) Jr(02)Z, Z)do < 0, (2.9)
0
L2 (C(H(X), Z) = —20f1 (C8) (0 X)X, Z) do < 2e0(®)K X 1Z]
< Ka(t) (28) 0.

(2.10)

11
// o1 B (t)Jg(o102Y)Y, Y> doador < 0. (2.11)
0 0

o _
7~
Sy

On gathering the estimates (2.6)-(2.7), (2.9)-(2.11) in (2.5) we obtain

i [(ao(t)>1/2+ <a1<t)>1/2+KCO(t) (ﬂ(t) )W e (212)

a1 (t) B(t) ao(t)
Let
_ o (t) 1/2 a1 (t) 1/2 B(t) 1/2
o(t) = [(a?(t)) +<W) + Kco(t) (ao(t)> : (2.13)
Then
0< g(t)v(?), (2.14)

by (2.12) and (2.13).
Integrating inequality (2.14) from 0 to ¢, we obtain that

t
o(t) — v(0) < /v(s)gb(s)ds.
0

By using the assumption (v) of the theorem and Gronwall-Reid-Bellman ine-
quality, (see Rao [16]), we finally conclude that

t

o(t) < D exp( / 6(s)ds),

0

where D = v(0). Assumption (v) of the theorem, that is, ¢ € L'(0, 00) implies the
boundedness of the function v = v(t). This completes the proof of the theorem.
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Remark: It should be noted that as mentioned above Mehri&Shadman [12]
considered the scalar ordinary differential equation of the form

T 4a(t)f(x) + b(t)g(2) + c(t)h(z) = e(t).

However, the equation considered here,

X +A@)F(X) + BO)G(X) + CH)H(X) =0

is an n-dimensional extension of the above equation (for the case e(t) = 0). Next,
for the case n = 1, our assumptions reduce those established by Mehri&Shadman
[12, Theorem 1] except some minor modifications. The case arises because of the
Lyapunov’s function used here as basic tool,

ao(t)
B(t)

X, x)+ 2D oy vy 422y 19 / (B)G(oY),Y) do
0

V= B(t)

which is different than that used in Mehri&Shadman [12], that is,

= 0,480((;)) 2+ O,[;l((tg) v+ %22 + 2/g(T)dT.
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