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Abstract

We study several properties of lattice and Boolean functions of one argu-
ment: being a translation, an endomorphism, a closure operator, and pro-
perties related to the composition of functions. The latter properties include
inversability, commutativity and the existence of classes of lattice/Boolean
functions that are commutative subgroups. It turns out that these semi-
groups are also lattices. We obtain as a by-product a characterization of
distributive lattices.
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The general concept of algebraic function [2] means a function built up from
variables and constants by superpositions of the basic operations of the algebra.
By a lattice function and a Boolean function we mean the specializations of this
universal-algebraic concept to lattices and Boolean algebras, respectively. The
monographs [8],[9] survey these concepts from an algebraic point of view.!

In this paper we study lattice and Boolean functions of one argument. We are
mainly interested in properties such as being a translation or a closure operator,
the existence of fixed points and properties related to the composition of func-
tions: inversability, commutativity of two functions and the existence of classes
of lattice/Boolean functions that are commutative semigroups with respect to
composition. It turns out that these semigroups are also lattices with respect to
the conjunction and disjunction defined pointwise. As a by-product we obtain
a characterization of distributive lattices in terms of unary lattice functions and
endomorphisms.

! Although some of the chapters in [8],[9] are devoted to them, the applications of Boolean
functions would deserve a companion monograph.
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*

Let (L;-,V) be a lattice; the meet operation - will usually be replaced by
concatenation. We recall that, according to universal algebra, the set LF'1 of
lattice functions f : L — L is defined recursively as follows: (i) the identity
function z and the constant functions b (b € L) are in LF1; (ii) if f, g are in LF1,
then fg and f V g are in LF'1, where these functions are defined pointwise, i.e.,
(f9)(z) = f(z)g(x) and (f V g)(z) = f(x) V g(x); (ili) every member of LF1 is
obtained by applying the above rules (i) and (ii).

As shown by rule (ii), the functions in LF1 form a sublattice (LF'1;-,V) of
the pointwise defined lattice (L%;-,V).

Thus the functions of the following forms are lattice functions:

z,b,ax,xzVb,ax Vb (1)

where a,b € L. If the lattice L is distributive, then the functions of the form (1)
exhaust the set LF1 of unary lattice functions. For the functions of the form (1)
are closed with respect to meet and join. To see this we must check 30 cases.
Here is one of them:

(ax V b)(cx Vd) = (acVadVbe)x V bd, (2)

(azVb)V(cxVd)=(aVc)zV(bVd). (3)

Moreover, if the distributive lattice L is also bounded, that is, it has least
element 0 and greatest element 1, then the unary lattice functions are simply
those of the form

f(x)=azVvb. 4)

For
r=1-zv0,b=0-2Vb,ar=azxV0,zVb=1-2Vb. (5)

Remark 1 (J.C. Abbott?). A distributive lattice is bounded if and only if its
unary latice functions coincide with the functions of the form (4). The “if” part
follows from the fact that we have in particular the expansion z = ax V b, which
implies b < z for all z, that is, b = 0. Then the expansion x = ax implies z < a
for all z, that is, a = 1. O

The following easy remarks are well known. In a distributive lattice the rep-
resentation (4) can be replaced by

f(x)=azx Vb, wherea >b : (6)

take @ = aV b. If, moreover, the lattice is bounded, then (4) implies b = f(0) and
aV b= f(1), while the representation (6) is unique: a = f(1) , b = f(0).

The latter results were generalized by Goodstein [1] to functions of several
variables; see also [9], Ch.3, §3.

2Private communication.
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The last prerequisite is the concept of ¢translation, introduced by Szész [11],[12]
for semilattices and lattices. A function f : L — L is called a meet translation
(join translation) if it satifies the identity f(zy) = f(x)y (the identity f(zVy) =
f(z) Vy). Several papers [3]-[7],[11],[12] study translations of lattices, partially
ordered sets and graphs.

We are now in a position to carry out the program announced in the intro-
duction.

Proposition 1 below is motivated by the following results. Szdsz [11] proved
that a lattice is distributive if and only if every meet translation (join translation)
is an endomorphism. Schweigert [10] proved that a lattice is distributive if and
only if every lattice function f : L — L is idempotent (i.e., it satisfies fo f = f);
for a slight extension see [9], Proposition 3.3.23.

Proposition 1. A lattice L is distributive if and only if every lattice function
f:L— L is an endomorphism.

Proof. If L is distributive, we check that all the functions (1) are endomorphisms.
The following computation is typical:

a-zyVb=azr-ayVb=(axVb)(ay VD),

alzVy)Vb=azxVayVb=(axzVbd)V (ay VD).

If L is not distributive, then, according to a well-known theorem, two cases
are possible.

(i) L includes a diamond sublattice {o,a,b,c,e}, which means that o is the
least element of the sublattice, e is its greatest element, while the elements a, b, ¢
are pairwise incomparable. Then the function z V a is not an endomorphism,
because bcVa =0V a = a, while (bVa)(cVa)=e-e=ce.

(ii) L includes a pentagon sublattice {o,a,b,c, e}, which means that o < a <
b < e and o < ¢ < e, while the elements a and ¢ are incomparable and so are the
elements b and ¢. Then beV a =0V a = a, while (bV a)(cV a) =be =b. O
Corollary 1.The following conditions are equivalent for a bounded lattice L:

(i) L is distributive;

(ii) every lattice function f : L — L is idempotent;

(iii) every lattice function f : L — L is an endomorphism;

(iv) every lattice function f : L — is an idempotent endomorphism.

Proof. By Schweigert’s result and Proposition 1. O

We have seen that in a bounded distributive lattice every function f : L — L
is of the form (4).

Proposition 2. In the above property none of the two hypotheses can be dispensed
with.

3where L™ should read L.
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Proof. Remark 1 shows that the existence of the least and greatest elements is
essential. To prove that distributivity cannot be dispensed with, we will prove
that the property fails for the diamond lattice.

Using the same notation as for case (i) in the proof of Proposition 1, we are
going to prove that the lattice function (az V b)(bz V ¢) cannot be represented in
the form (4). Suppose, by way of contradiction, that an identity of the form

(axz Vb)(bx V) =pzVq

holds. Taking x := o we get bc = q; so ¢ = o. Therefore, taking x := a, we obtain
¢ = pa < a, which is false. O

Remark 2. Since the diamond is a modular lattice, we have proved even more:
distributivity cannot be replaced by modularity. O

Conjecture. L is a bounded distributive lattice if and only if every lattice
function f : L — L is of the form (4).

*

It has been noted that every lattice L can be embedded into a bounded lattice
L. To be specific, if L has no least element (no greatest element), then a new
element 0 (a new element 1) is added to L and one defines -0 = 0-2z = 0 and
zV0=0Vz =2z (onedefinesz-1=1-z=zandzVvV1=1Vz =1) for every
x € L. If L has already least element 0 (greatest element 1), then this is left as
least element (greatest element). So L = L iff L is bounded (for instance, if L is
complete, or, more particularly, if L is finite). Besides, if L is distributive, so is
L.

Notation. In the following (L;-, V) is a distributive lattice.

Proposition 3. If cardL > 2, then every unary lattice function on L can be
uniquely extended to a unary lattice function on L.

Proof. The unary lattice functions on L are of the forms described in (1). These
expressions generate lattice functions on L as well, so that the extensions do exist.

We prove uniqueness in five steps; at each step we are given a function f :
L — L having one of the forms given in (1). Let g : L — L be a lattice
function which extends f. Then g is of the form g(z) = pz V q (Vz € L), hence
f(z) = px VvV q (Vx € L). We shall start from the latter identity and prove that
p and ¢ determine a unique function g: namely, g is the function of the form
(4) such that f is obtained from g as shown in (5). Unless otherwise stated, the
identities are meant to hold in L.

1. From z = pz V q we deduce ¢ =0, p=1 as in Remark 1.

2. Suppose b = pz V q, where b € L.

If b = 0, then ¢ = 0 and px = 0. As L # {0}, it follows that p # 1. So
p=_0or p € L; in the latter case we take = := p and obtain p = 0 again. Thus

p=q=0.
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If b = 1, then ¢ # 0, otherwise 1 = pz would imply p = z = 1, which
contradicts L # {1}. So ¢ = 1 or ¢ € L; in the latter case we take z := ¢ and
obtain 1 = ¢ again. Thus ¢ = 1 and the function g is unique: g(z) =1 (Vz € L).

Ifbe Land b ¢ {0,1}, we note that ¢ < b implies ¢ # 1. But ¢ # 0, otherwise
b = pz would imply b < z, which contradicts b # 0. Therefore ¢ € L and we
can take x := ¢, which yields b = g, so that b = pz V b. Then p # 1, otherwise
b=z Vb would imply z < b, which contradicts b # 1. Therefore p =0 or p € L;
in the latter case we take x := p and obtain b =pV b, i.e., p < b. Hence p < bin
both cases, while ¢ = b. Thus the function g is unique: g(z) = b (Vz € L).

3. If ax = px V ¢, where a € L, then ¢ < ax < z, hence ¢ = 0 and az = pz.
Taking = := a we obtain a = pa, that is, a < p. Since a = 1 reduces to the
previous case 1, while a = 0 reduces to the previous case 2 with b = 0, we can
suppose a ¢ {0,1}. Then p # 1, otherwise az = = would imply z < a, hence
a = 1. Besides, a < p implies p # 0. Therefore p € L and we can take z := p,
which yields ap = p, that is p < a, hence p = a. Thus p =a and ¢ = 0.

4. If Vb = pxVq, where b € L, we apply formula (6) and obtain Vb = pr Vg,
where ¢ < p. Then x < pxrVqg<pVqg=p hencep=1landaxVb=2zxVyg.
Moreover, since b = 0 is the previous case 1, while b = 1 is the previous case 2,
we can assume b ¢ {0,1}.

Taking x := b we get b = bV g, that is, ¢ < b, hence ¢ # 1. We have also
q # 0, otherwise z V b = x would contradict b # 1. Therefore ¢ € L and we can
take x := ¢, which yields ¢ V b = ¢, that is, b < ¢, hence ¢ = b. Thus p =1 and
qg=">

5. Using the representation (6), the last case is ax Vb = pxV ¢, where a,b € L,
a > b and p > ¢q. We can also assume that a,b ¢ {0, 1}, since the 0-1 values for
a or b yield the cases studied before.

Taking x := a, we obtaina=aVb=paVqg<pVqg=np.

Taking x := b we obtain b = pb V ¢, hence ¢ < b.

Since ¢ = 0 would imply b < pz < z, in contradiction with b # 0, it follows
that ¢ # 0, hence p # 0.

Since p = 1 would imply z < ax Vb < a Vb = a, in contradiction with a # 1,
it follows that p # 1, hence ¢q # 1.

The above inequalities imply that p,q € L. Taking z := p we obtain

a=aVb=apVb=ppVqg=p.
Taking z := q we obtain
b<agvb=pVqg=gq,

therefore b = q. Thus a = p and b= q. O

Corollary 2. In order to prove a hereditary property of unary lattice functions
on a distributive lattice, it suffices to prove it in the case of a bounded distributive
lattice, with the functions written in the form (4).
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Proof. This amounts to proving the property for the extensions g constructed
in the proof of Proposition 3. O

It follows from [12], Corollaries 3 and 5, that in a distributive lattice the meet
translations are the functions of the form az. It seems natural to ask which lat-
tice functions ar join translations?

Proposition 4. The following properties are equivalent for a unary lattice func-
tion f:

(i) f is a join translation;

(ii) f is a closure operator (i.e., isotone, extensive and idempotent);

(iv) f is of the form x V b (including the identity function x and the constant
function 1, if any).

Proof. In view of Corollary 2, we can work in a bounded distributive lattice.
We set f(z) = azx Vb, or, equivalently, f(z) = (aV b)z Vb.

(i)<=(iii): Condition (i) reads a(z Vy) Vb = az V bV y and it implies
y<a(lxVy)Vb<aVb, thatis, aV b =1, therefore f(x) = z V b. Conversely,
the latter function is clearly a join translation.

(ii)<=(iii): The function f is anyway isotone and idempotent by proposition
1, so that it remains to characterize extensivity. This means z < f(z), that is,
z < ax Vb, which implies z < a V b, therefore a Vb = 1. So f(z) = z Vb and
conversely, the latter function is clearly extensive. O

The next problem to be studied is commutativity. We say that two functions
f,9 : L — L commute, if fog = go f. A subset F C LY will be called
commutative provided every two members of F' commute.

Lemma 1. Suppose f(xz) =azx Vb and g(x) = cxV d. Then
f(g(z)) =aczVadVvd (1)
and fog=go f if and only if
adVb=cbVd. (8)

Proof. Checking formula (7) is routine. It follows from (7) that the property of
commutativity reads
acxVadVb=caxVcbVd,

which implies the sufficiency of condition (8) and also the necessity, by taking
T := bd. d

We see that in general f and g do not commute. We will point out several
commutative classes of unary lattice functions. They appear to be also lattices.

Proposition 5. (i) Fach of the following classes of lattice functions is a sublattice

of (LF1;-,V) and a commutative subgroup of (LF1;0): 1) the functions of the

form ax Vb with fixed b; 2) the functions of the form ax Vb with fized a and b < a.
(ii) The latter functions satisfy fog=go f=fVg.
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Proof. 1) Applying formulas (2),(3) and (7) with d = b, we obtain
(f9)(z) =(acvabVvbe)r Vb, (fVg)(z)=(aVec)z Vb

and
f(g(z)) = acz Vb=g(f(z).

2) Applying formulas (2),(3) and (7) with ¢ = a and b,d < a, we obtain
bd<bVd<aand

(fo)lx) =axVvdd, (fVg)(z)=axVbVd

and
f(g(z)) =azVvdVb=g(f(z)) =(fVg)z).

O
Corollary 3. (i) The following are particular cases of the classes of functions in
Proposition 5: 1') the functions of the form az (including the identity x and the
constant function 0); 2') the functions of the form x V b (including the identity x
and the constant function 1).

Proof. From Proposition 5 via Corollary 2. O

Remark 3. The functions of the form ax V b with fixed a # 1, form a sublattice
of (LF1;-,V) and a non-commutative subgroup of (LF'1;0). For, taking ¢ = a we
obtain (fg)(z) =azxVvbd, (fVg)(z) =azxVbVd, while (fog)(z) =azxVadVb
and (go f)(z) =azxVabVvd. Takeeg. b=aand d £ a. O

The papers [11],[12] study also the fixed points of translations. Using the
well-known notation

[pg={zeLl|p<z<gq},[p)={zellp<z}, (pl={zrecl|z<p},

we can state:

Remark 4. The sets of fixed points of the functions (1) are

L ,{b}, (a], [b) and [b,aV 1], (9)
respectively. For clearly ax Vb =2 — b < z < aV b and conversely, the latter
inequalities imply (aVb)zVb=2 Vb= 1. O

*

Now we are going to undertake a parallel study in the case when the lattice
L is a Boolean algebra (B;-,V,’,0,1). Let us recall a few prerequisites.

The Boolean functions f : B — B are characterized by the fact that they can
be written in the canonical form* f(z) = ax V bz', where a = f(1) and b = f(0).

4Due to Boole himself and rediscovered by Shannon.
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The set F'B1 of unary Boolean functions is a Boolean subalgebra of the pointwise
defined Boolean algebra BE.
The following computational rules are very useful:

a<b<i=ab=0,a=b<=ab'Va'b=0, (axzVvVbz') =dzVvba.

It is also convenient to use the ring sum = + y = zy’' V z'y, which satisfies the
identity z +x = 0. Notethat 2’ = r+land s +y =z Vy < zy = 0; in
particular ab + cb' = abV cb'.

The Boolean equation ax V bz’ = 0 (ax V bz’ = 1) has a solution iff ab =
0O(avb=1).

The lattice functions of the lattice (B;-, V), that is, the functions of the form
f(z) = pz V q, coincide with the isotone Boolean functions. As a matter of fact,
we can say even more:

Theorem 1. The following conditions are equivalent for a unary Boolean func-

(i) f is of the form f(z) =pxV q;
(ii) f is isotone;
(iii) f is a meet endomorphism;
(iv) f is a join endomorphism;

(v) fis a lattice endomorphism;

(vi) f is idempotent;

(vii) f has fized points.
Proof. As we have already noted, the equivalence (i)<=>(ii) is well known. The
equivalences (iii)<=(iv)<=(v) and (ii)<=>(iii)<=(v) follow from [8], Proposi-
tion 12.8 with @ = b = 0 and Proposition 12.9 with a = 0, respectively. Thus
conditions (i)—(v) are equivalent.

To prove the equivalence (vi)<=-(i) (which is also known), take f(z) = az V
bz'. Then

f(f(x)) = alax vVbz') Vbla'zVi'z') = (aVab)zVabz' = (aVb)zVabx',

therefore fo f = f iff a Vb = a and ab = b, which means b < a. The latter
condition implies f(z) = ax V bz’ V bx = ax V b and conversely, (i) implies
f(@)=([@VqgzVgz'

(vii)<=>(i): The fixed point condition ax V bz’ = x can be written in the form
(axVbx")z' V(a'z Vb2 )z =0, that is, bz’ Va'x = 0, which means bz’ = a'z = 0,
or equivalently, b < z < a. Therefore fixed points do exist iff b < a. O
Corollary 4. The only Boolean function which is a Boolean endomorphism is
the identiy function x.

Proof. Given a lattice endomorphism f(z) =
being a Boolean endomorphism is f(z') = (f(z
This can be written in the equivalent form

(' Vg)(pzVa) V(' Va)p vy =0,

pz V ¢, the missing condition for
))!, that is, pz' V¢ = (p' V 2')q'.
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which reduces to ¢ V p'q’ =0, that is, ¢ =0 and p = 1. O
Proposition 6. A Boolean function is a join translation if and only if it is of
the form x V b.

Comment. This does not follow from Proposition 4, which refers to the func-
tions pzx V ¢ instead of the functions in BF'1.

Proof. We write the condition of being a join translation in the following equiv-
alent forms:
a(zVy)Vbzr'y' =azVbr' Vy,
(a(zVy)Vbz'y')a'z vy V(d(zVy) vVbz'y') azVvbz' Vy) =0,
(axz vV bz')(d'z Vv bz )y vad'br'yvay=0,
and finally a'y = 0. The latter condition is equivalent to a = 1, that is, f(z) =
xVbr' =z Vb. O
Now we pass to the composition of Boolean functions.
Lemma 2. Let f(z) =az V bx' and g(x) = cx Vdz'. Then

flg(z)) = (ac v b )z V (ad V bd' )z’ . (10)

Proof. Routine. O
Let 1p denote the identity function 1g(z) = . Then we have:
Theorem 2. «) The following conditions are equivalent for a unary Boolean
function f:
(i) there is a unary Boolean function g such that fog=1p;
(ii) there is a unary Boolean function g such that go f = 1p;
(iii) there is a unary Boolean function g such that fog=go f=1p;
(iv) fof=1g;
(v) the function f is of the form f(z) =z +b.
B) When this is the case, the function g is unique, namely g = f .
Proof. In view of Lemma 2, the condition fog = 1p can be written in the form

acVbd =1&adVvbd =0. (11)

The first equation has a solution c iff a V b = 1, while the second equation has a
solution d iff ab = 0. Thus the system (11) is consistent iff a = b', which amounts
to f(z) = b’z Vbx' = x + b. When this holds, system (11) becomes

blevbd =1&b'dvbd =0,

whose unique solution is ¢ = b’ , d = b, that is, g(z) = V'z vV bz’ = f(z). So
(i)<=(v) and g = f is unique. This also implies (i)<=>(iv).

We get the condition for g o f = 1p by interchanging in (11) a with ¢ and b
with d. We thus obtain

caVdad =1&chbvdd =0,
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or equivalently,
davdadVvebvdl =0. (12)
So ¢'a = ¢b = 0, hence a < ¢ < V', therefore a < V', and also d'a’ = db' = 0,

hence a’' < d < b, therefore a’ < b. It follows that ' < a, hence a = V', therefore
f(z) = x + b again. Now equation (12) becomes

cdyvdbvebvdy =0,

which is equivalent to ¢ = b & d = b, so that g(z) = f(z) again. Therefore
(ii)<=(v) and g = f is unique.

Clearly the equivalence (i)<=-(ii) with unique g = f implies (i)<=(ii) <= (iii)
with unique g. O

The last topic is commutativity.

Proposition 7. Two Boolean functions, f(x) = ax V bx' and g(z) = cx V dz’,
commute if and only if

a'd=bc, (13)
that is,
f'(1)g(0) = ¢'(1) £(0) - (14)
Proof. In view of Lemma 2, the commutativity condition is equivalent to the
system
ac+ b’ = ca + da’ (15.1)
ad + bd' = cb + db/ (15.2)

But (15.1) is equivalent to (13), while
(15.2) <= ad+bd+b=bc+bd+d <= ad+d=bc+ b= (13) .
O

Whereas Proposition 7 is quite satisfactory, the commutativity of a class of
Boolean functions seems to be a difficult problem; like in the case of distributive
latices, we will obtain only sufficient conditions.

Proposition 5 and Remark 1 suggest that it might be useful to work with the
sets

BF,={f € BF1| f(z) =azVbz', a € B}, (16)

«BF ={f €BF1| f(z) =azxVbz', be B}. (17)

We recall that the ideals of a Boolean algebra B are defined as being the
ideals of the lattice (B;-, V) and they coincide with the ideals of the Boolean ring
(B;+,+,0,1). The congruence associated with an ideal I is defined by

z=y (modl) <= z+yel; (18)

as a matter of fact, every congruence of the Boolean algebra is obtained in this
way. We will denote by e/I the equivalence class of an element e € B under the
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congruence (18).

Proposition 8. A class K C BFy, (K C ,BF) is commutative if and only if
there exists e € B such that the members of K are of the form f(x) = ax V bz’
with a € e/(V'] (of the form f(z) = az V bz’ with b € e/(a]).

Proof. Given f(z) = az V bz’ and g(x) = cx V bx', the commutativity condition
in Proposition 7 can be written in the following equivalent forms:

adb=bd <= (d'+)b=0<= (a+c)b=0<=a+c <V < a =c (mod(V]) .

The second part is proved similarly. O

However the sets K in Proposition 8 are not semigroups. But we are going
to obtain results that are stronger and more symmetric than Proposition 5 and
Remark 3. Define the sets

LF,={fe€BF1| f(z)=azxVb,ac[b)}, (19)
oLF ={f€BFl| f(z)=azx Vb, be (a]}. (20)
Remark 5. If b < a then ax Vb = azVbr Vbs' = axVbx'. Therefore LF, C BF,
and ,LF C, BF. O

Proposition 9. (i) LF, (,LF) is the greatest subsemigroup of (BFy;0) (of
(4 BF;0)). Moreover, it is a commutative semigroup and also a sublattice of
(BF1;-,V).

(ii) For every f,g € LFy, we have fog=go f = fg and for every f,g € LF

we have fog=gof=fVyg.
Proof. We have LF, C BF, by Remark 5. Further, take f,g € LFj, say
f(z) = az Vb with b < aand g(z) =cz Vb withb <c. Thenb<ac<aVe
and using the computation in the proof of Proposition 5, we see that LEF} is a
sublattice and a commutative semigroup.

Now let K be a subsemigroup of (BFy;0) and take f € K, say f(z) = axVbz'.
Then fo f € K, hence fo f € BFy. On the other hand, formula (10) with ¢ = a
and d = b yields (fo f)(z) = (aVba')z Vabz'. It follows that ab = b, hence b < a
and we have f(z) = ax Vb by Remark 5. Thus f € LF, and we have proved that
K C LF,.

The proof of the second part is similar. O
Remark 6. The elements of the commutative sets LF}, and ,LF should be of the
forms prescribed in Proposition 8, namely a € 1/(b'] and b € 0/(a], respectively.
Indeed, they can be written in the form f(z) = az V bz’ by Remark 5, while the
supplementary condition b < a can be written in the equivalent forms b € 0/(a]
and a +1=a' <V, which means a € 1/(b']. O
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